TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74VHCT74F, TC74VHCT74FN, TC74VHCT74FS

DUAL D-TYPE FLIP-FLOP WITH PRESET AND CLEAR

The TC74VHCT74 is an advanced high speed CMOS D-FLIP FLOP fabricated with silicon gate C2MOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

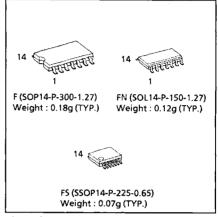
The signal level applied to the D INPUT is transferred to Q OUTPUT during the positive going transition of the CK pulse.

CLR and PR are independent of the CK and are accomplished by setting the appropriate input low.

The input voltage are compatible with TTL output voltage. This device may be used as a level converter for interfacing 3.3V to 5V system.

Input protection and output circuit ensure that 0 to 7V can be applied to the input and output pins without regard to the supply voltage. These structure prevents device destruction due to mismatched supply and input/output voltages such as battery back up, hot board insertion, etc.

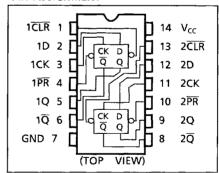
FEATURES:

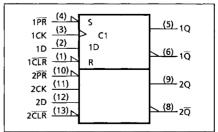

- High Speedf_{MAX} = 160MHz(typ.)
- Compatible with TTL outputs $\cdots V_{lL} = 0.8V$ (Max.)

 $V_{H} = 2.0V (Min.)$

- Power Down Protection is provided on all inputs and outputs
- Balanced Propagation Delays····· t_{pLH} ≃ t_{pHL}
- Pin and Function Compatible with 74ALS74

TRUTH TABLE


	INP	UTS		OUT	PUTS	FUNCTION			
CLR	PR	D	СК	Q	Q	FUNCTION			
L	Н	Х	Х	L	Н	CLEAR			
Н	L	Х	Х	Н	L	PRESET			
L	L	Х	Х	Н	Н				
Н	Н	L	5	L	Н				
Н	Н	Н		Н	L				
Н	Н	Х	Ţ	Qn	\overline{Q}_n	NO CHANGE			
	X : Don't Care								


APPLICATION NOTE

This device can drive the components with CMOS input level by adding a external pull up resistor to output terminal.

PIN ASSIGNMENT

IEC LOGIC SYMBOL

961001EBA

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	~0.5~7.0	V
DC Input Voltage	VIN	-0.5~7.0	V
DC Output Voltage	V _{OUT}	-0.5~7.0	V
Input Diode Current	I _{IK}	-20	mA
Output Diode Current	l _{ok}	-20	mA
DC Output Current	lout	± 25	mA
DC V _{cc} /Ground Current	I _{CC}	± 50	mA
Power Dissipation	P _D	180	mW
Storage Temperature	T _{stg}	-65~150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	4.5~5.5	V
Input Voltage	VIN	0~5.5	V
Output Voltage	Vout	0~5.5	V
Operating Temperature	Topr	-40~85	°C
Input Rise and Fall Time	dt/dv	0~20	ns/v

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITON			Ta = 25°C			Ta =4	UNIT	
PARAMETER	STIMBUL			V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High - Level Input Voltage	ViH		4.5~5.5	2.0			2.0	_	٧	
Low - Level Input Voltage	VIL		4.5~5.5	-	_	0.8	-	0.8	٧	
High - Level Output Voltage	V _{OH}	V _{IN} =	$I_{OH} = -50\mu A$	4.5	3.15	3.65		3.15		V
		V _{IH} or V _{IL}	$I_{OH} = -8mA$	4.5	2.50	_	_	2.40		
Low - Level Output Voltage	Vol	V _{IN} =	$I_{OL} = 50 \mu A$	4.5	-	0.0	0.10		0.10	v
		Vinor Vil	I _{OL} = 8mA	4.5		_	0.36	_	0.44	
Input Leakage Current	I _{IN}	V _{IN} = 5.5V or GND		0~5.5	_	_	± 0.1		± 1.0	μА
	I _{cc}	$V_{IN} = V_{CC}$ or C	5.5	-	_	2.0	_	20.0	,	
Quiescent Supply Current	Ісст	PER INPUT :	: V _{IN} = 3.4V : VCC or GND	5.5	_	_	1.35	_	1.50	mΑ
Output Leakage Current	I _{OPD}	V _{OUT} = 5.5V	0	_	_	+ 0.5		+ 5.0	μΑ	

961001EBA21

The products described in this document are subject to foreign exchange and foreign trade control laws.

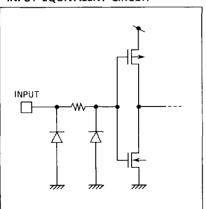
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

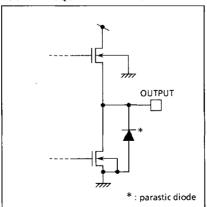
TIMING REQUIREMENTS (Input $t_r = t_f = 3ns$)

PARAMETER	SYMBOL TEST CONDITION			Ta = 25° _C	Ta = -40~85°C	UNIT
PARAIVIETER			V _{CC} (V)	LIMIT	LIMIT	UNIT
Minimum Pulse Width (CK)	t _{W (L)} t _{W (H)}		5.0 ± 0.5	5.0	5.0	
Minimum_Pulse_Width (CLR, PR)	t _{W (L)}		5.0 ± 0.5	5.0	5.0	
Minimum Set - up Time	ts		5.0 ± 0.5	5.0	5.0	ns
Minimum Hold Time	t _h		5.0 ± 0.5	0.0	0.0	
Minimum Removal Time (CLR, PR)	t _{rem}		5.0 ± 0.5	3.5	3.5	

AC ELECTRICAL CHARACTERISTICS (input $t_r = t_f = 3ns$)


PARAMETER	SYMBOL	TEST CONDITION			Ta = 25°C		Ta = -4	UNIT		
PARAMETER	STIVIBUL		$V_{CC}(V)$	CL (pF)	MIN.	TYP.	MAX.	MIN.	MAX.	וייייטן
Propagation Delay Time (CK-Q,Q)	t _{pLH}		F 0 + 0 F	15		5.8	7.8	1.0	9.0	
(CK-Q, Q)	t _{pHL}		5.0 ± 0.5	50	1	6.3	8.8	1.0	10.0	ns
Propagation Delay Time (CLR, PR-Q, Q)	t _{pLH} t _{pHL}		5.0 ± 0.5	15	1	7.6	10.4	1.0	12.0	
(CLR, PR-Q, Q)				50	-	8.1	11.4	1.0	13.0	
Maximum Clock Frequency	f _{MAX}		5.0 ± 0.5	15	100	160		80		
Waximum Clock Frequency		_		50	80	140	_	65	_	MHZ
Input Capacitance	C _{IN}				_	4	10	-	10	ρF
Power Dissipation Capacitance	C _{PD}	(Note 1			_	24		_		PF

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 2 (per F/F)$

INPUT EQUIVALENT CIRCUIT

OUTPUT EQUIVALENT CIRCUIT

