




## Power MOSFET

| PRODUCT SUMMARY                 |                               |  |  |  |  |
|---------------------------------|-------------------------------|--|--|--|--|
| V <sub>DS</sub> (V)             | - 50                          |  |  |  |  |
| $R_{DS(on)}\left(\Omega\right)$ | V <sub>GS</sub> = - 10 V 0.33 |  |  |  |  |
| Q <sub>g</sub> (Max.) (nC)      | 14                            |  |  |  |  |
| Q <sub>gs</sub> (nC)            | 6.5                           |  |  |  |  |
| Q <sub>gd</sub> (nC)            | 6.5                           |  |  |  |  |
| Configuration                   | Single                        |  |  |  |  |



#### **FEATURES**

- Surface Mountable (Order as IRFR9022, SiHFR9022)
- Straight Lead Option (Order as IRFU9022, SiHFU9022)



COMPLIANT

- Repetitive Avalanche Ratings
- · Dynamic dV/dt Rating
- · Simple Drive Requirements
- Ease of Paralleling

#### **DESCRIPTION**

The Power MOSFET technology is the key to Vishay's advanced line of Power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dV/dt. diode recovery dV/dt. The Power MOSFET transistors also feature all of the well

established advantages of MOSFET'S such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

Surface mount packages enhance circuit performance by surface mount packages ennance circuit performance by reducing stray inductances and capacitance. The TO-252 surface mount package brings the advantages of Power MOSFET's to high volume applications where PC Board surface mounting is desirable. The surface mount option IRFR9022, SiHFR9022 is provided on 16 mm tape. The straight lead option IRFU9022, SiHFU9022 of the device is called the IPAK (TO-251).

They are well suited for applications where limited heat dissipation is required such as, computers and peripherals, telecommunication equipment, DC/DC converters, and a wide range of consumer products.

| ORDERING INFORMATION |               |                         |                          |               |  |
|----------------------|---------------|-------------------------|--------------------------|---------------|--|
| Package              | DPAK (TO-252) | DPAK (TO-252)           | DPAK (TO-252)            | IPAK (TO-251) |  |
| Lead (Pb)-free       | IRFR9022PbF   | IRFR9022TRPbFa          | IRFR9022TRLPbFa          | IRFU9022PbF   |  |
|                      | SiHFR9022-E3  | SiHFR9022T-E3a          | SiHFR9022TL-E3a          | SiHFU9022-E3  |  |
| SnPb                 | IRFR9022      | IRFR9022TR <sup>a</sup> | IRFR9022TRL <sup>a</sup> | IRFU9022      |  |
|                      | SiHFR9022     | SiHFR9022Ta             | SiHFR9022TL <sup>a</sup> | SiHFU9022     |  |

#### Note

a. See device orientation.

| ABSOLUTE MAXIMUM RATINGS To                      | c = 25 °C. unless otherw                                                          | ise noted        |       |    |
|--------------------------------------------------|-----------------------------------------------------------------------------------|------------------|-------|----|
| PARAMETER                                        | SYMBOL                                                                            | LIMIT            | UNIT  |    |
| Drain-Source Voltage                             |                                                                                   | $V_{DS}$         | - 50  | W  |
| Gate-Source Voltage                              |                                                                                   | V <sub>GS</sub>  | ± 20  | V  |
| Continuous Drain Current                         | T <sub>C</sub> = 25 °C                                                            |                  | - 9.0 | А  |
| Continuous Drain Current                         | $V_{GS}$ at - 10 V $\frac{T_C = 25 ^{\circ}\text{C}}{T_C = 100 ^{\circ}\text{C}}$ | I <sub>D</sub>   | - 5.7 |    |
| Pulsed Drain Current <sup>a</sup>                | I <sub>DM</sub>                                                                   | - 36             |       |    |
| Linear Derating Factor                           |                                                                                   | 0.33             | W/°C  |    |
| Single Pulse Avalanche Energy <sup>b</sup>       | E <sub>AS</sub>                                                                   | 440              | mJ    |    |
| Repetitive Avalanche Current <sup>a</sup>        |                                                                                   | I <sub>AR</sub>  | - 9.9 | Α  |
| Repetitive Avalanche Energy <sup>a</sup>         |                                                                                   | E <sub>AR</sub>  | 4.2   | mJ |
| Maximum Power Dissipation                        | $P_{D}$                                                                           | 42               | W     |    |
| Peak Diode Recovery dV/dtc                       | dV/dt                                                                             | 5.8              | V/ns  |    |
| Operating Junction and Storage Temperature Range | T <sub>J</sub> , T <sub>stg</sub>                                                 | - 55 to + 150    | °C    |    |
| Soldering Recommendations (Peak Temperature)     |                                                                                   | 300 <sup>d</sup> |       |    |

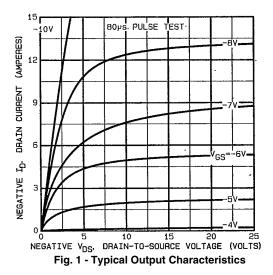
- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). b.  $V_{DD}=$  25 V, Starting  $T_J=$  25 °C, L = 5.1 mH,  $R_G=$  25  $\Omega$ , Peak  $I_L=$  9.9 A c.  $I_{SD}\leq$  9.9 A, dl/dt  $\leq$  -120 A/ $\mu$ s,  $V_{DD}\leq$  40 V,  $T_J\leq$  150 °C. d. 0.063" (1.6 mm) from case. e. When mounted on 1" square PCB (FR-4 or G-10 material).

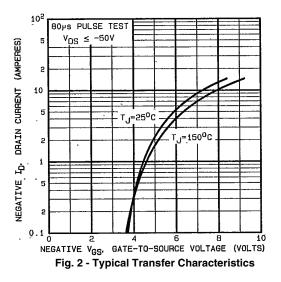
- \* Pb containing terminations are not RoHS compliant, exemptions may apply

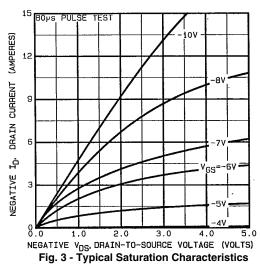
# IRFR9022, IRFU9022, SiHFR9022, SiHFU9022

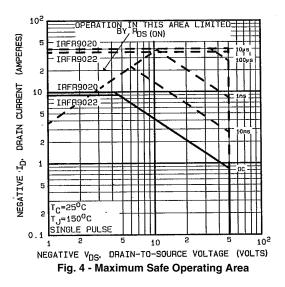
# Vishay Siliconix




| THERMAL RESISTANCE RATINGS       |                   |      |      |      |      |  |
|----------------------------------|-------------------|------|------|------|------|--|
| PARAMETER                        | SYMBOL            | MIN. | TYP. | MAX. | UNIT |  |
| Maximum Junction-to-Ambient      | R <sub>thJA</sub> | -    | -    | 110  |      |  |
| Case-to-Sink                     | R <sub>thCS</sub> | -    | 1.7  | -    | °C/W |  |
| Maximum Junction-to-Case (Drain) | R <sub>thJC</sub> | -    | -    | 3.0  |      |  |


| <b>SPECIFICATIONS</b> T <sub>J</sub> = 25 °C, | SYMBOL              | 1                                                                                 | MIN.                                                                                      | TYP.  | MAX. | UNIT      |      |
|-----------------------------------------------|---------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------|------|-----------|------|
| Static                                        | 01202               | •                                                                                 | EST CONDITIONS                                                                            |       |      | 1117 (741 | 0    |
| Drain-Source Breakdown Voltage                | V <sub>DS</sub>     | V <sub>GS</sub> = 0 V, I <sub>D</sub> = - 250 μA                                  |                                                                                           | - 50  | -    | -         | V    |
| Gate-Source Threshold Voltage                 | V <sub>GS(th)</sub> |                                                                                   | S = V <sub>GS</sub> , I <sub>D</sub> = - 250 μA                                           | - 2.0 | -    | - 4.0     | V    |
| Gate-Source Leakage                           | I <sub>GSS</sub>    |                                                                                   | V <sub>GS</sub> = ± 20 V                                                                  | -     | -    | ± 500     | nA   |
|                                               |                     | V <sub>DS</sub> =                                                                 | max. rating, V <sub>GS</sub> = 0 V                                                        | -     | -    | 250       | †    |
| Zero Gate Voltage Drain Current               | I <sub>DSS</sub>    | V <sub>DS</sub> = 0.8 x m                                                         | ax. rating, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 125 °C                                | -     | -    | 1000      | μΑ   |
| Drain-Source On-State Resistance              | R <sub>DS(on)</sub> | V <sub>GS</sub> = - 10 V                                                          | I <sub>D</sub> = 5.7 A <sup>b</sup>                                                       | -     | 0.28 | 0.33      | Ω    |
| Forward Transconductance                      | 9 <sub>fs</sub>     | $V_{DS}$                                                                          | ≤ - 50 V, I <sub>DS</sub> = - 5.7 A                                                       | 2.3   | 3.5  | -         | S    |
| Dynamic                                       |                     |                                                                                   |                                                                                           |       |      |           |      |
| Input Capacitance                             | C <sub>iss</sub>    |                                                                                   | V <sub>GS</sub> = 0 V,                                                                    | -     | 490  | -         |      |
| Output Capacitance                            | C <sub>oss</sub>    |                                                                                   | $V_{DS} = -25 V$ ,                                                                        | -     | 320  | -         | рF   |
| Reverse Transfer Capacitance                  | C <sub>rss</sub>    | f =                                                                               | f = 1.0 MHz, see fig. 9                                                                   |       | 70   | -         | 1    |
| Total Gate Charge                             | Qg                  | $I_D = -9.7 \text{ A}, V_{DS} = 0.8 \text{ x max}.$                               |                                                                                           | -     | 9.4  | 14        | nC   |
| Gate-Source Charge                            | Q <sub>gs</sub>     | V <sub>GS</sub> = -10 V                                                           | V <sub>GS</sub> = -10 V rating, see fig. 16 (Independent operating                        |       | 4.3  | 6.5       |      |
| Gate-Drain Charge                             | Q <sub>gd</sub>     | temperature)                                                                      |                                                                                           | -     | 4.3  | 6.5       |      |
| Turn-On Delay Time                            | t <sub>d(on)</sub>  | V <sub>DD</sub> = -25 V, I <sub>D</sub> = -9.7 A,                                 |                                                                                           | -     | 8.2  | 12        | - ns |
| Rise Time                                     | t <sub>r</sub>      |                                                                                   |                                                                                           | -     | 57   | 66        |      |
| Turn-Off Delay Time                           | t <sub>d(off)</sub> |                                                                                   | $R_G = 18 \Omega$ , $R_D = 2.4 \Omega$ , see fig. 15 (Independent operating temperature)  |       | 12   | 18        |      |
| Fall Time                                     | t <sub>f</sub>      |                                                                                   |                                                                                           |       | 25   | 38        |      |
| Internal Drain Inductance                     | L <sub>D</sub>      | 6 mm (0.25                                                                        | Between lead,<br>6 mm (0.25") from<br>package and center of<br>die contact.               |       | 4.5  | -         | ъЦ   |
| Internal Source Inductance                    | L <sub>S</sub>      |                                                                                   |                                                                                           |       | 7.5  | -         | - nH |
| <b>Drain-Source Body Diode Characteristic</b> | s                   |                                                                                   |                                                                                           |       |      |           |      |
| Continuous Source-Drain Diode Current         | I <sub>S</sub>      | showing the                                                                       | MOSFET symbol showing the                                                                 |       | -    | - 9.9     | Α    |
| Pulsed Diode Forward Current <sup>a</sup>     | I <sub>SM</sub>     | integral reverse p - n junction diode                                             |                                                                                           | -     | -    | - 40      | ^    |
| Body Diode Voltage                            | $V_{SD}$            | $T_{\rm J} = 25^{\circ}$                                                          | $T_{J} = 25  ^{\circ}\text{C},  I_{S} = -9.9  \text{A},  V_{GS} = 0  \text{V}^{\text{b}}$ |       | -    | - 6.3     | V    |
| Body Diode Reverse Recovery Time              | t <sub>rr</sub>     | - T <sub>J</sub> = 25 °C, I <sub>F</sub> = - 9,7 A, dl/dt = 100 A/μs <sup>b</sup> |                                                                                           | 56    | 110  | 280       | ns   |
| Body Diode Reverse Recovery Charge            | Q <sub>rr</sub>     |                                                                                   |                                                                                           | 0.17  | 0.34 | 0.85      | nC   |
| Forward Turn-On Time                          | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by $L_S$ and $L_D$ )   |                                                                                           |       |      |           |      |


#### Notes


- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14).
- b. Pulse width  $\leq 300~\mu s;$  duty cycle  $\leq 2~\%.$

### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted









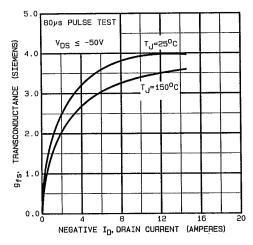



Fig. 5 - Typical Transconductance vs. Drain Current

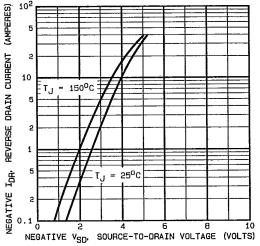



Fig. 6 - Typical Source-Drain Diode Forward Voltage

## IRFR9022, IRFU9022, SiHFR9022, SiHFU9022

## Vishay Siliconix



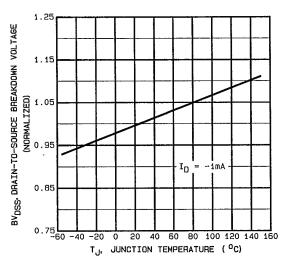



Fig. 7 - Breakdown Voltage vs. Temperature

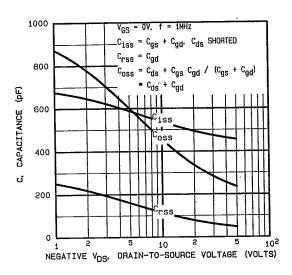



Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage

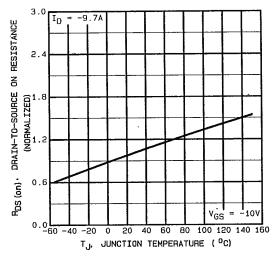



Fig. 8 - Normalized On-Resistance vs. Temperature

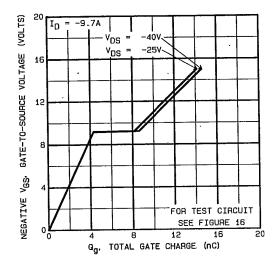



Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage



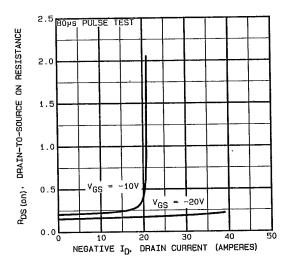



Fig. 11 - Typical On-Resistance vs. Drain Current

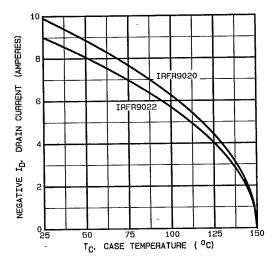



Fig. 12 - Maximum Drain Current vs. Case Temperature

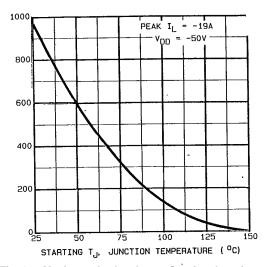



Fig. 13 - Maximum Avalanche vs. Starting Junction Temperature

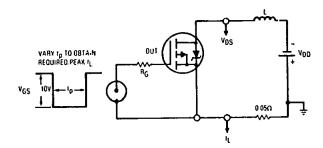



Fig. 13b - Unclamped Inductive Test Circuit

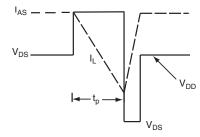



Fig. 13c - Unclamped Inductive Waveforms



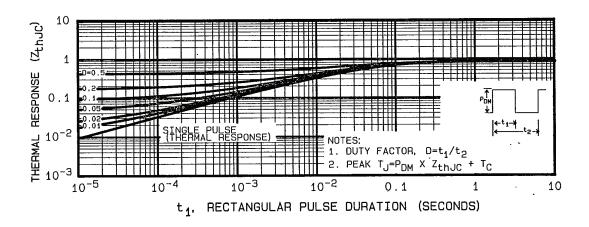



Fig. 14 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

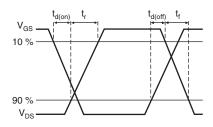



Fig. 15a - Switching Time Waveforms

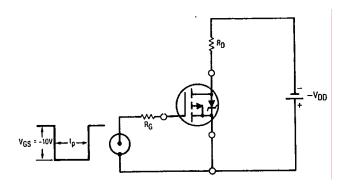



Fig. 15b - Switching Time Test Circuit

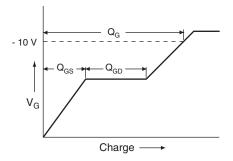



Fig. 16a - Basic Gate Charge Waveform

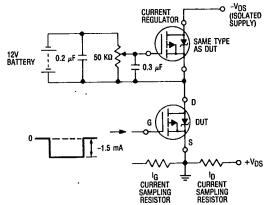
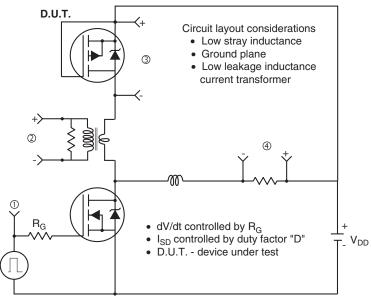





Fig. 16b - Gate Charge Test Circuit

### Peak Diode Recovery dV/dt Test Circuit



• Compliment N-Channel of D.U.T. for driver



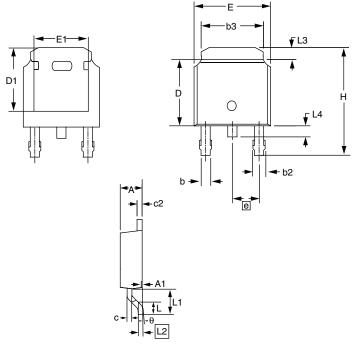

\* V<sub>GS</sub> = - 5 V for logic level and - 3 V drive devices

Fig. 17 - For P-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?91349">www.vishay.com/ppg?91349</a>.



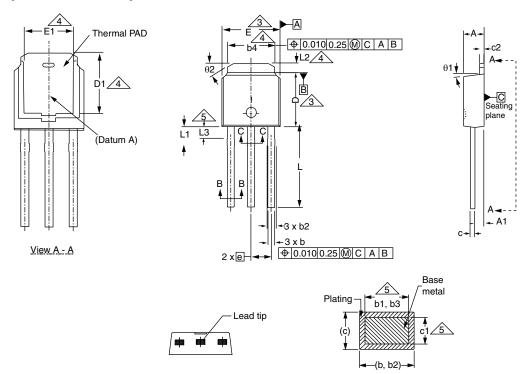
### **TO-252AA (HIGH VOLTAGE)**



|      | MILLI | METERS    | INC   | HES       |  |
|------|-------|-----------|-------|-----------|--|
| DIM. | MIN.  | MAX.      | MIN.  | MAX.      |  |
| Е    | 6.40  | 6.73      | 0.252 | 0.265     |  |
| L    | 1.40  | 1.77      | 0.055 | 0.070     |  |
| L1   | 2.74  | 3 REF     | 0.108 | REF       |  |
| L2   | 0.50  | 8 BSC     | 0.020 | ) BSC     |  |
| L3   | 0.89  | 1.27      | 0.035 | 0.050     |  |
| L4   | 0.64  | 1.01      | 0.025 | 0.040     |  |
| D    | 6.00  | 6.22      | 0.236 | 0.245     |  |
| Н    | 9.40  | 10.40     | 0.370 | 0.409     |  |
| b    | 0.64  | 0.88      | 0.025 | 0.035     |  |
| b2   | 0.77  | 1.14      | 0.030 | 0.045     |  |
| b3   | 5.21  | 5.46      | 0.205 | 0.215     |  |
| е    | 2.28  | 2.286 BSC |       | 0.090 BSC |  |
| Α    | 2.20  | 2.38      | 0.087 | 0.094     |  |
| A1   | 0.00  | 0.13      | 0.000 | 0.005     |  |
| С    | 0.45  | 0.60      | 0.018 | 0.024     |  |
| c2   | 0.45  | 0.58      | 0.018 | 0.023     |  |
| D1   | 5.30  | -         | 0.209 | -         |  |
| E1   | 4.40  | -         | 0.173 | -         |  |
| θ    | 0'    | 10'       | 0'    | 10'       |  |

ECN: S-81965-Rev. A, 15-Sep-08

DWG: 5973


#### Notes

- 1. Package body sizes exclude mold flash, protrusion or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 0.10 mm per side.
- 2. Package body sizes determined at the outermost extremes of the plastic body exclusive of mold flash, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.
- 3. The package top may be smaller than the package bottom.
- 4. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.10 mm total in excess of "b" dimension at maximum material condition. The dambar cannot be located on the lower radius of the foot.

Document Number: 91344 www.vishay.com Revision: 15-Sep-08



### **TO-251AA (HIGH VOLTAGE)**



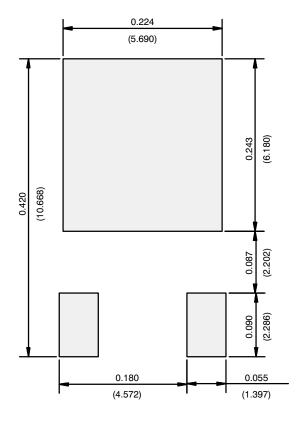
Section B - B and C - C

|      | MILLIMETERS |      | INC   | HES   |
|------|-------------|------|-------|-------|
| DIM. | MIN.        | MAX. | MIN.  | MAX.  |
| Α    | 2.18        | 2.39 | 0.086 | 0.094 |
| A1   | 0.89        | 1.14 | 0.035 | 0.045 |
| b    | 0.64        | 0.89 | 0.025 | 0.035 |
| b1   | 0.65        | 0.79 | 0.026 | 0.031 |
| b2   | 0.76        | 1.14 | 0.030 | 0.045 |
| b3   | 0.76        | 1.04 | 0.030 | 0.041 |
| b4   | 4.95        | 5.46 | 0.195 | 0.215 |
| С    | 0.46        | 0.61 | 0.018 | 0.024 |
| c1   | 0.41        | 0.56 | 0.016 | 0.022 |
| c2   | 0.46        | 0.86 | 0.018 | 0.034 |
| D    | 5.97        | 6.22 | 0.235 | 0.245 |

|      | MILLIMETERS |      | INC      | HES   |
|------|-------------|------|----------|-------|
| DIM. | MIN.        | MAX. | MIN.     | MAX.  |
| D1   | 5.21        | -    | 0.205    | -     |
| Е    | 6.35        | 6.73 | 0.250    | 0.265 |
| E1   | 4.32        | -    | 0.170    | -     |
| е    | 2.29 BSC    |      | 2.29 BSC |       |
| L    | 8.89        | 9.65 | 0.350    | 0.380 |
| L1   | 1.91        | 2.29 | 0.075    | 0.090 |
| L2   | 0.89        | 1.27 | 0.035    | 0.050 |
| L3   | 1.14        | 1.52 | 0.045    | 0.060 |
| θ1   | 0'          | 15'  | 0'       | 15'   |
| θ2   | 25'         | 35'  | 25'      | 35'   |
|      |             |      |          |       |

ECN: S-82111-Rev. A, 15-Sep-08

DWG: 5968


### Notes

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimension are shown in inches and millimeters.
- 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.13 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body.
- 4. Thermal pad contour optional with dimensions b4, L2, E1 and D1.
- 5. Lead dimension uncontrolled in L3.
- 6. Dimension b1, b3 and c1 apply to base metal only.
- 7. Outline conforms to JEDEC outline TO-251AA.

Document Number: 91362 Revision: 15-Sep-08



### **RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)**



Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE



## **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

## **Material Category Policy**

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000