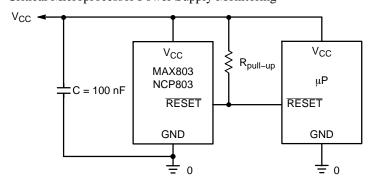
Very Low Supply Current 3-Pin Microprocessor Reset Monitor

The MAX803/NCP803 is a cost–effective system supervisor circuit designed to monitor $V_{\rm CC}$ in digital systems and provide a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 10 µsec of V_{CC} falling through the reset voltage threshold. Reset is maintained active for a timeout period which is trimmed by the factory after V_{CC} rises above the reset threshold. The MAX803/NCP803 has an open drain active—low \overline{RESET} output. Both devices are available in SOT—23 and SC—70 packages.


The MAX803/NCP803 is optimized to reject fast transient glitches on the V_{CC} line. Low supply current of 0.5 μA (V_{CC} = 3.2 V) make these devices suitable for battery powered applications.

Features

- Precision V_{CC} Monitor for 1.5 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies
- Precision Monitoring Voltages from 1.2 V to 4.9 V Available in 100 mV Steps
- Four Guaranteed Minimum Power–On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms)
- RESET Output Guaranteed to $V_{CC} = 1.0 \text{ V}$
- Low Supply Current
- V_{CC} Transient Immunity
- No External Components
- Wide Operating Temperature: -40°C to 105°C
- These Devices are Pb-Free and are RoHS Compliant

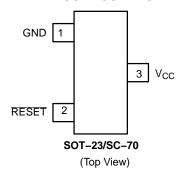
Typical Applications

- Computers
- Embedded Systems
- Battery Powered Equipment
- Critical Microprocessor Power Supply Monitoring

Figure 1. Typical Application Diagram

ON Semiconductor®

www.onsemi.com


xxx = Specific Device Code

M = Date Code

= Pb–Free Package

(Note: Microdot may be in either location)

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 8 of this data sheet.

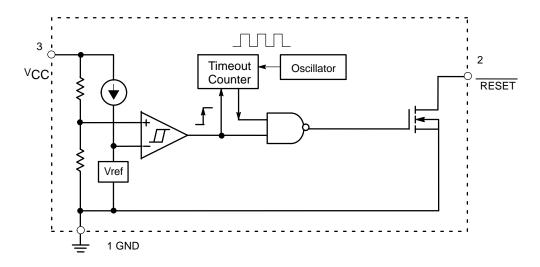


Figure 2. NCP803, MAX803 Series Open-Drain Active-Low Output

PIN DESCRIPTION

Pin No.	Symbol	Description
1	GND	Ground
2	RESET	RESET output remains low while V_{CC} is below the reset voltage threshold, and for a reset timeout period after V_{CC} rises above reset threshold.
3	V _{CC}	Supply Voltage: C = 100 nF is recommended as a bypass capacitor between V _{CC} and GND.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage (V _{CC} to GND)	V _{CC}	-0.3 to 6.0	V
RESET Output Voltage (CMOS)		-0.3 to (V _{CC} + 0.3)	V
Input Current, V _{CC}		20	mA
Output Current, RESET		20	mA
dV/dt (V _{CC})		100	V/µsec
Thermal Resistance, Junction-to-Air (Note 1) SOT-23 SC-70	00/	301 314	°C/W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{sol}	+260	°C
ESD Protection Human Body Model (HBM): Following Specification JESD22-A114 Machine Model (MM): Following Specification JESD22-A115		2000 200	V
Latchup Current Maximum Rating: Following Specification JESD78 Class II Positive Negative		200 200	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This based on a 35x35x1.6mm FR4 PCB with 10mm² of 1 oz copper traces under natural convention conditions and a single component

2. The maximum package power dissipation limit must not be exceeded.

$$P_D = \frac{T_J(max) - T_A}{R_{\theta}J_A} \qquad \text{with } T_{J(max)} = 150^{\circ}C$$

characterization.

ELECTRICAL CHARACTERISTICS $T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 3)

Characteristic	Symbol	Min	Тур	Max	Unit
V_{CC} Range $T_{\Delta} = 0^{\circ}C$ to +70°C		4.0		<i></i>	V
$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 4)}$		1.0 1.2	_	5.5 5.5	
Supply Current	I _{CC}				μΑ
V _{CC} = 3.3 V	100				par t
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		-	0.5	1.2	
$T_A = 85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		-	_	2.0	
$V_{CC} = 5.5 \text{ V}$			0.0	4.0	
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$		_	0.8	1.8 2.5	
Reset Threshold (V _{in} Decreasing) (Note 6)	V _{TH}		_	2.0	V
MAX803SQ463/NCP803SN463	VIH				\ \ \ \
$T_A = +25^{\circ}C$		4.56	4.63	4.70	
$T_A = -40$ °C to +85°C		4.51	_	4.75	
$T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		4.40	_	4.88	
MAX803SQ438/NCP803SN438					7
$T_A = +25^{\circ}C$		4.31	4.38	4.45	
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		4.27		4.49	1
$T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		4.16		4.60	4
NCP803SN400		2.04	4.00	4.06	
$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C		3.94 3.90	4.00	4.06 4.10	
$T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$		3.80		4.10	
MAX803SQ308/NCP803SN308		0.00		0	_
$T_A = +25^{\circ}C$		3.04	3.08	3.11	
$T_A = -40$ °C to +85°C		3.00	_	3.15	
$T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		2.92	_	3.23	
MAX803SQ293/NCP803SN293					7
$T_A = +25^{\circ}C$		2.89	2.93	2.96	
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		2.85	_	3.00	
$T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		2.78	_	3.08	
NCP803SN263		0.50	0.00	0.00	
$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C		2.59 2.55	2.63	2.66 2.70	
$T_A = -40^{\circ} \text{C to } +63^{\circ} \text{C}$ $T_A = +85^{\circ} \text{C to } +105^{\circ} \text{C (Note 5)}$		2.50	_	2.76	
NCP803SN232		2.00		2.70	-
$T_A = +25^{\circ}C$		2.29	2.32	2.35	
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		2.26	_	2.38	
$T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		2.20	_	2.45	
NCP803SN160					1
$T_A = +25^{\circ}C$		1.58	1.60	1.62	
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		1.56	_	1.64	
T _A = +85°C to +105°C (Note 5)		1.52	_	1.68	4
MAX803SN120, MAX803SQ120 $T_A = +25$ °C		1.18	1.20	1.22	
$T_{\Delta} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$		1.17	-	1.23	
$T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$		1.14	-	1.26	1
Detector Voltage Threshold Temperature Coefficient		-	30	-	ppm/°C
/ _{CC} to Reset Delay V _{CC} = V _{TH} to (V _{TH} – 100 mV)		-	10	-	μsec
Reset Active TimeOut Period (Note 6)	t _{RP}				msec
MAX803SN(Q)293D1 MAX803SN(Q)203D2/MAX803SN(Q)308D2		1.0	_	3.3	
MAX803SN(Q)293D2/MAX803SN(Q)308D2 MAX803SN(Q)293D3		20 100	_	66 330	
MAX803SN(Q)293		140	_	460	1
RESET Output Voltage Low	V _{OL}	-	-	0.3	V
$V_{CC} = V_{TH} - 0.2 V$					
$1.6 \text{ V} \leq V_{TH} \leq 2.0 \text{ V}, I_{SINK} = 0.5 \text{ mA}$					
$2.1 \text{ V} \le \text{V}_{TH} \le 4.0 \text{ V}, \text{I}_{SINK} = 1.2 \text{ mA}$					
$4.1 \text{ V} \le \text{V}_{TH} \le 4.9 \text{ V}, \text{I}_{SINK} = 3.2 \text{ mA}$					
RESET Leakage Current $V_{CC} > V_{TH}$, RESET De-asserted	I _{LEAK}	-	-	1	μΑ

Production testing done at T_A = 25°C, over temperature limits guaranteed by design.
 For NCV automotive devices, this temperature range is T_A = -40°C to +125°C.
 For NCV automotive devices, this temperature range is T_A = +85°C to +125°C.
 Contact your ON Semiconductor sales representative for other threshold voltage and timeout options.

TYPICAL OPERATING CHARACTERISTICS

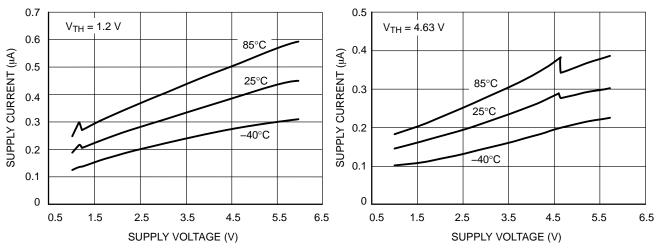


Figure 3. Supply Current vs. Supply Voltage

Figure 4. Supply Current vs. Supply Voltage

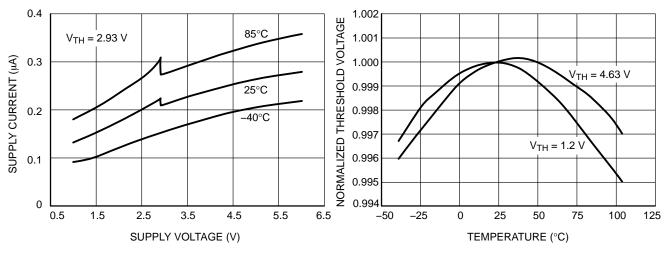


Figure 5. Supply Current vs. Supply Voltage

Figure 7. Supply Current vs. Temperature

Figure 6. Normalized Reset Threshold Voltage vs. Temperature

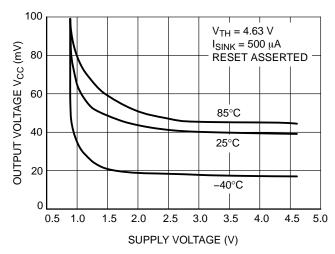


Figure 8. Output Voltage Low vs. Supply Voltage

TYPICAL OPERATING CHARACTERISTICS

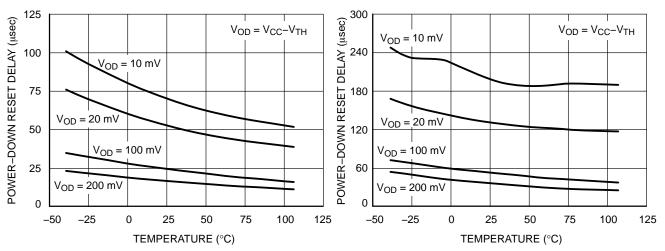


Figure 9. Power–Down Reset Delay vs. Temperature and Overdrive ($V_{TH} = 1.2 V$)

Figure 10. Power–Down Reset Delay vs. Temperature and Overdrive (V_{TH} = 4.63 V)

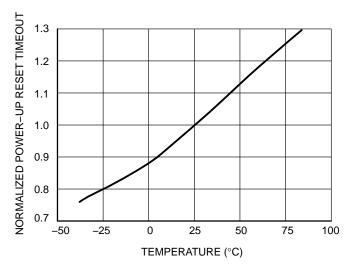


Figure 11. Normalized Power–Up Reset vs.
Temperature

Detail Operation Description

The MAX803, NCP803 series microprocessor reset supervisory circuits are designed to monitor the power supplies in digital systems and provide a reset signal to the processor without any external components. Figure 2 shows the timing diagram and a typical application below. Initially consider that input voltage $V_{\rm CC}$ is at a nominal level greater than the voltage detector upper threshold ($V_{\rm TH}$). And the

RESET (RESET) output voltage (Pin 2) will be in the high state for MAX803 and NCP803 devices. If there is an input

power interruption and V_{CC} becomes significantly deficient, it will fall below the lower detector threshold (V_{TH-}). This event causes the RESET output to be in the low state for the MAX803 and NCP803 devices. After completion of the power interruption, V_{CC} will rise to its nominal level and become greater than the V_{TH} . This sequence activates the internal oscillator circuitry and digital counter to count. After the count of the timeout period, the reset output will revert back to the original state.

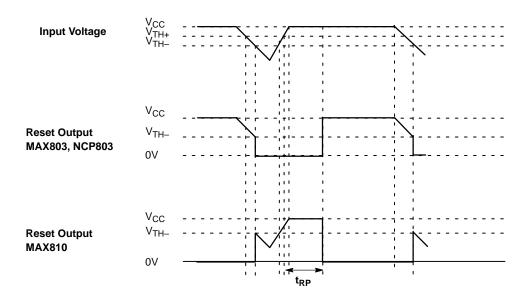
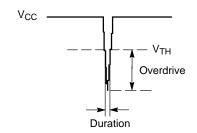



Figure 12. Timing Waveforms

APPLICATIONS INFORMATION

V_{CC} Transient Rejection

The MAX803/NCP803 series provides accurate V_{CC} monitoring and reset timing during power—up, power—down, and brownout/sag conditions, and rejects negative—going transients (glitches) on the power supply line. Figure 13 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power—down. Typically, transient that goes 100 mV below the reset threshold and lasts 5.0 μ s or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the MAX803.

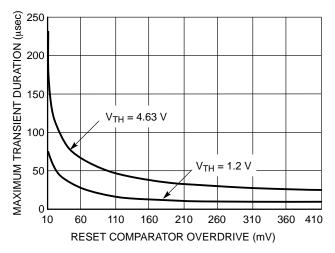
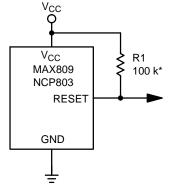



Figure 13. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25°C

RESET Signal Integrity During Power-Down

The MAX803/NCP803 \overline{RESET} output is valid to $V_{CC}=1.0$ V. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the Microprocessor will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations where \overline{RESET} must be maintained valid to $V_{CC}=0$ V, since

the NCP803/MAX803 has Open–Drain and active–low output, it typically uses a pullup resistor. With this device, RESET will most likely not maintain an active condition, but will drift to a non–active level due to the pullup resistor and the reduced sinking capability of the open–drain device. Therefore, this device is not recommended for applications where the $\overline{\text{RESET}}$ pin is required to be valid down to $V_{CC} = 0 \text{ V}$.

*Assume High-Z Reset Input to Microprocessor

Figure 14. RESET Signal Integrity

MAX803 RESET Output Allows Use With Two Power Supplies

In numerous applications the pullup resistor place on the \overline{RESET} output is connected to the supply voltage monitored by the IC. Nevertheless, a different supply voltage can also power this output and so level—shift from the monitored supply to reset the microprocessor. However, if the NCP803/MAX803's supply goes blew 1 V, the \overline{RESET} output ability to sink current will decrease and the result is a high state on the pin even though the supply's IC is under the threshold level. This occurs at a V_{CC} level that depends on the R_{pullup} value and the voltage which is connected.

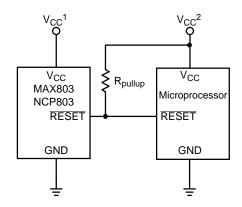


Figure 15. MAX803 RESET Output with Two Supplies

ORDERING, MARKING AND THRESHOLD INFORMATION

Part Number	Vth** (V)	Time out*** (ms)	Description	Marking	Package	Shipping [†]
NCP803SN160T1G	1.60	140–460		SCQ	SOT23-3 (Pb-Free)	
NCP803SN232T1G	2.32	140–460		SQR	SOT23-3 (Pb-Free)	
NCP803SN263T1G	2.63	140–460		SQC	SOT23-3 (Pb-Free)	
NCP803SN293T1G	2.93	140–460		SQD	SOT23-3 (Pb-Free)	
NCP803SN308T1G	3.08	140–460		SQE	SOT23-3 (Pb-Free)	
NCP803SN400T1G	4.00	140–460		RAD	SOT23-3 (Pb-Free)	
NCP803SN438T1G	4.38	140–460		SQF	SOT23-3 (Pb-Free)	
NCP803SN463T1G	4.63	140–460		SQG	SOT23-3 (Pb-Free)	
NCP803SN120T1G	1.20	140–460	Open Drain RESET	SSW	SOT23-3 (Pb-Free)	
NCP803SN293D1T1G	2.93	1–3.3		SSX	SOT23-3 (Pb-Free)	
NCP803SN293D2T1G	2.93	20–66		SSY	SOT23-3 (Pb-Free)	
NCP803SN293D3T1G	2.93	100–330		SSZ	SOT23-3 (Pb-Free)	3000 / Tape & Reel
MAX803SQ120T1G	1.20	140–460		ZV	SC70-3 (Pb-Free)	
MAX803SQ263T1G	2.63	140–460		SX	SC70-3 (Pb-Free)	
MAX803SQ293T1G	2.93	140–460		ZW	SC70-3 (Pb-Free)	
MAX803SQ308T1G	3.08	140–460		ZX	SC70-3	
NCV803SQ308T1G*		140–460		ZA	(Pb-Free)	
MAX803SQ438T1G	4.38	140–460		ZY	SC70-3 (Pb-Free)	
MAX803SQ463T1G	4.63	140–460		ZZ	SC70-3 (Pb-Free)	
MAX803SQ293D1T1G	2.93	1–3.3		YA	SC70-3 (Pb-Free)	
MAX803SQ293D2T1G	2.93	20–66		YB	SC70-3 (Pb-Free)	
MAX803SQ308D2T1G	3.08	20–66		SY	SC70-3	
NCV803SQ308D2T1G*		20–66		CY	(Pb-Free)	
MAX803SQ293D3T1G	2.93	100–330		YC	SC70-3 (Pb-Free)	
NCP803SN293T3G	2.93	140–460		SQD	SOT23-3 (Pb-Free)	10000 / Tape & Reel

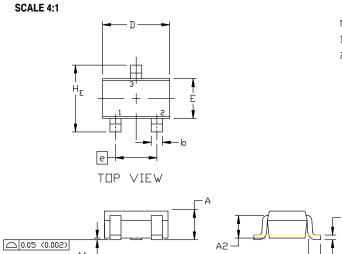
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

**Contact your ON Semiconductor sales representative for other threshold voltage options.

^{***}Contact your ON Semiconductor sales representative for timeout options availability for other threshold voltage options.

SC-70 (SOT-323) **CASE 419** ISSUE R


END VIEW

DATE 11 OCT 2022

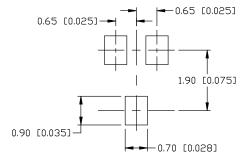
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES			
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF	-	0.028 BSC			
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.00	2.20	0.071	0.080	0.087	
E	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC				0.026 BS	C	
L	0.20	0.38	0.56	0.008	0.015	0.022	
HE	2.00	2.10	2.40	0.079	0.083	0.095	

GENERIC MARKING DIAGRAM

SIDE VIEW



= Specific Device Code XX

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales