Hex 3-State Noninverting Buffer with Common Enables

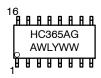
High-Performance Silicon-Gate CMOS

The MC74HC365A is identical in pinout to the LS365. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device is a high-speed hex buffer with 3-state outputs and two common active-low Output Enables. When either of the enables is high, the buffer outputs are placed into high-impedance states. The HC365A has noninverting outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 90 FETs or 22.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

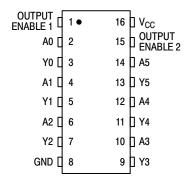


Figure 1. Pin Assignment

A0 $\frac{2}{4}$ $\frac{3}{4}$ $\frac{5}{4}$ $\frac{7}{4}$ $\frac{7}{4}$ $\frac{10}{4}$ $\frac{9}{4}$ $\frac{11}{4}$ $\frac{11}$ $\frac{11}{4}$ $\frac{11}{4}$ $\frac{11}{4}$ $\frac{11}{4}$ $\frac{11}{4}$ $\frac{11$

Figure 2. Logic Diagram

FUNCTION TABLE

	Output		
Enable 1	Enable 2	Α	Υ
L	L	L	L
L	L	Н	Н
Н	Х	X	Z
X	Н	X	Z

X = don't care

Z = high impedance

ORDERING INFORMATION

Device	Package	Shipping [†]	
MC74HC365ADG	SOIC-16 (Pb-Free)	48 Units / Rail	
MC74HC365ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel	
MC74HC365ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel	
NLV74HC365ADTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	٧
V _{in}	DC Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	٧
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	٧
I _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
T _L	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating — SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

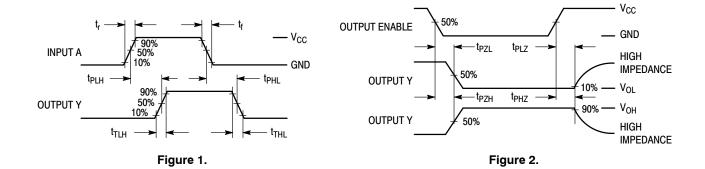
Symbol	Parameter	Parameter					
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V			
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GN	0	V _{CC}	V			
T _A	Operating Temperature, All Package Types	- 55	+ 125	°C			
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.$ (Figure 1) $V_{CC} = 3.$ $V_{CC} = 4.$ $V_{CC} = 6.$	0 V 5 V	0 0 0 0	1000 600 500 400	ns		

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

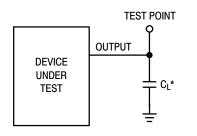
				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$\begin{split} V_{in} = V_{IH} & & I_{out} \leq 3.6 \text{ mA} \\ & I_{out} \leq 6.0 \text{ mA} \\ & I_{out} \leq 7.8 \text{ mA} \end{split}$	4.5	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{aligned} V_{in} = V_{IL} & I_{out} \leq 3.6 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{aligned}$	4.5	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	

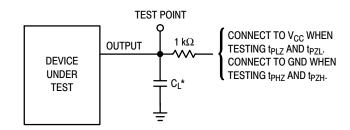
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu			
Symbol	Parameter	Test Conditions	V _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
I _{OZ}	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	6.0	± 0.5	± 5.0	± 10	μА
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4	40	160	μΑ


AC ELECTRICAL CHARACTERISTICS (C $_L$ = 50 pF, Input $t_{\rm f}$ = 6 ns)

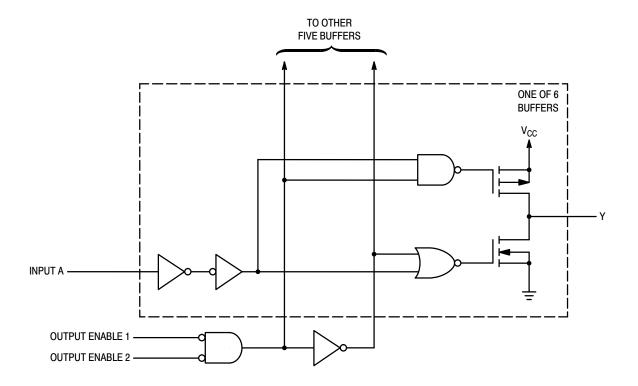
			Guaranteed Limit			
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	2.0 3.0 4.5 6.0	120 60 24 20	150 75 30 26	180 90 36 31	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	220 110 44 37	275 140 55 47	330 170 66 56	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	220 110 44 37	275 140 55 47	330 170 66 56	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 22 12 10	75 28 15 13	90 34 18 15	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	_	15	15	15	pF


		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Buffer)*	60	pF


^{*} Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

SWITCHING WAVEFORMS

TEST CIRCUITS

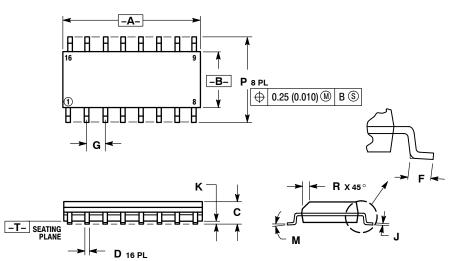

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 3.

Figure 4.

LOGIC DETAIL



SOIC-16 CASE 751B-05 **ISSUE K**

DATE 29 DEC 2006

⊕ 0.25 (0.010) M T B S A S

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

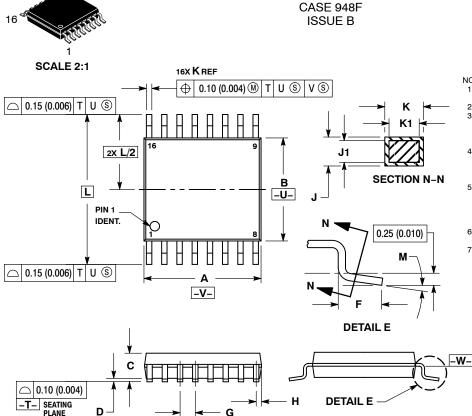
 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD ENGREPHING.

- PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION.
 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
U	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		
	COLLECTOR	PIN 1.	CATHODE	PIN 1.		PIN 1.	COLLECTOR, DYE #	1
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2	
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3	
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3	
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4	
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4	
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4	
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4	
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3	
12.	EMITTER	12.		12.	COLLECTOR, #3	12.	EMITTER, #3	
13.	BASE	13.		13.		13.	BASE, #2	RECOMMENDED
14.	COLLECTOR	14.	NO CONNECTION	14.		14.	EMITTER, #2	SOLDERING FOOTPRINT*
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	8X
								← 6.40 →
STYLE 5:		STYLE 6:		STYLE 7:				
PIN 1.	DRAIN, DYE #1		CATHODE		SOURCE N-CH			16X 1.12 <
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPU	T)		<u> </u>
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPU			1 16
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,	<u>)</u>	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPU	T)		
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU	T)	16X 7	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU	T)	0.58	
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH			
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU		_	
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPU			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPU	T)		
13.	GATE, #2	13.	ANODE	13.	GATE N-CH			
14.	SOURCE, #2		ANODE	14.				
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU	Τ)		PITCH
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH			
								□□18 9 + □ +
								DIMENSIONS: MILLIMETERS


*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Doci Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

DATE 19 OCT 2006

TSSOP-16 WB

NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABILE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL
 IN EXCESS OF THE K DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
 TERMINIAL NILMBERS ADE SUCIUMI ECIP.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	0.65 BSC		BSC	
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
M	0 °	8°	0 °	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales