Intel® 965 Express Chipset Family #### **Datasheet** - For the Intel® 82Q965, 82Q963, 82G965 Graphics and Memory Controller Hub (GMCH) and Intel® 82P965 Memory Controller Hub (MCH) July 2006 Document Number: 313053-002 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® 82P965 Memory Controller Hub (MCH) and the Intel® 82Q965, 82Q963, 82G965 Graphics and Memory Controller Hub (GMCH) may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. Hyper-Threading Technology requires a computer system with an Intel® Pentium® processor supporting Hyper-Threading Technology and an HT Technology enabled chipset, BIOS, and an operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/info/hyperthreading for information including details on which processors support HT Technology. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Intel® Active Management Technology requires the platform to have an Intel® AMT-enabled chipset, network hardware and software. The platform must also be connected to a power source and an active LAN port. See Intel® Active Management Technology for additional information. I^2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I^2C bus/protocol and was developed by Intel. Implementations of the I^2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation. Intel, Pentium, Intel Core, Core Inside, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. ${}^{*}\mathrm{Other}$ names and brands may be claimed as the property of others. Copyright[©] 2006, Intel Corporation ### **Contents** | 1 | Introd | luction | | 19 | | |---|----------------------|----------------|---|------------|--| | | 1.1 | Termino | ology | 24 | | | | 1.2 | | ce Documents | | | | | 1.3 | | Overview | | | | | 1.5 | 1.3.1 | Host Interface | | | | | | 1.3.2 | System Memory Interface | | | | | | 1.3.3 | Direct Media Interface (DMI) | 29 | | | | | 1.3.4 | PCI Express* Interface (Intel® 82Q965, 82G965, 82P965 (G)MCI | Н | | | | | 1.3.5 | Only)Intel [®] Active Management Technology (Intel [®] AMT) (Intel [®] 82Q9 GMCH Only) | 29
965 | | | | | 1.3.6 | Alerting Standard Format (ASF) (Intel® 82Q965 and 82Q963 GM | CH | | | | | 1.3.7 | Only)Graphics Features (Intel® 82Q965, 82Q963, 82G965 GMCH) | 31 | | | | | 1.3.7 | SDVO and Analog Display Features (Intel® 82Q965, 82Q963, 82Q | 51
G965 | | | | | 1.5.0 | GMCH Only) | | | | | | 1.3.9 | (G)MCH Clocking | | | | | | 1.3.10 | Thermal Sensor | 33 | | | | | 1.3.11 | Power Management | 33 | | | 2 | Signal Description35 | | | | | | | 2.1 | Host Int | erface Signals | 37 | | | | 2.2 | DDR2 D | RAM Channel A Interface | 40 | | | | 2.3 | DDR2 D | RAM Channel B Interface | 41 | | | | 2.4 | DDR2 D | RAM Reference and Compensation | 42 | | | | 2.5 | PCI Exp | ress* Interface Signals (Intel® 82Q965, 82G965, 82P965 (G)MCH | | | | | 2.6 | | Display Signals (Intel® 82Q965, 82Q963, 82G965 GMCH Only) | | | | | 2.7 | | Reset, and Miscellaneous | | | | | 2.7 | | ledia Interface (DMI) | | | | | | | er Link (CL) | | | | | 2.9 | | • • | | | | | 2.10 | | erial DVO (SDVO) Interface (Intel® 82Q965, 82Q963, 82G965 GM | | | | | 2 11 | | | | | | 2 | 2.11 | | nd Ground | | | | 3 | , | | s Map | | | | | 3.1 | | Address Range | | | | | | | DOS Range (0h – 9_FFFFh) | | | | | | 3.1.2 | Legacy Video Area (A_0000h-B_FFFFh) | | | | | | 3.1.3 | Expansion Area (C_0000h-D_FFFFh) | | | | | | 3.1.4
3.1.5 | Extended System BIOS Area (E_0000h-E_FFFFh) | | | | | | 3.1.5 | PAM Memory Area Details | | | | | | 3.1.7 | Legacy Interrupt Routing | | | | | 3.2 | | emory Address Range (1 MB – TOLUD) | | | | | ٥.٢ | 3.2.1 | ISA Hole (15 MB – 16 MB) | | | | | | | \ | | | | | 3.2.2 | TSEG | | |--------|-------------------|---|------| | | 3.2.3 | Pre-allocated Memory | 58 | | 3.3 | PCI Mem | ory Address Range (TOLUD – 4 GB) | 59 | | | 3.3.1 | APIC Configuration Space (FEC0_0000h-FECF_FFFFh) | 60 | | | 3.3.2 | HSEG (FEDA_0000h-FEDB_FFFFh) | | | | 3.3.3 | FSB Interrupt Memory Space (FEE0_0000-FEEF_FFFF) | 60 | | | 3.3.4 | High BIOS Area | 61 | | 3.4 | | mory Address Space (4 GB to TOUUD) | | | J. T | 3.4.1 | Memory Re-claim Background | | | | 3.4.2 | Memory Reclaiming | | | 2 - | | | | | 3.5 | | ress* Configuration Address Space (Intel® 82Q965, 82G965, 82P96 | | | | | Only) | | | 3.6 | PCI Expr | ess st Graphics Attach (PEG) (Intel lpha 82Q965, 82G965, 82P965 (G)M | ICH | | | | | | | 3.7 | | Memory Address Ranges (Intel® 82Q965, 82Q963, 82G965 GMCH | | | | | | | | 3.8 | System I | Management Mode (SMM) | 64 | | | 3.8.1 | SMM Space Definition | 65 | | | 3.8.2 | SMM Space Restrictions | | | | 3.8.3 | SMM Space Combinations | | | | 3.8.4 | SMM Control Combinations | | | | 3.8.5 | SMM Space Decode and Transaction Handling | | | | 3.8.6 | Processor WB Transaction to an Enabled SMM Address Space | | | | 3.8.7 | SMM Access Through GTT TLB (Intel® 82Q965, 82Q963, 82G965 | | | | | GMCH Only) | 67 | | 3.9 | Memory | Shadowing | | | 3.10 | | ess Space | | | 3.10 | 3.10.1 | PCI Express* I/O Address Mapping (Intel® 82Q965, 82G965, 82P9 | UC | | | 3.10.1 | | | | 2 11 | (C)MCII | (G)MCH Only) | | | 3.11 | | Decode Rules and Cross-Bridge Address Mapping | | | | 3.11.1 | Legacy VGA and I/O Range Decode Rules | /(| | (G)MCI | H Reaiste | r Description | 71 | | . , | _ | • | | | 4.1 | _ | Terminology | | | 4.2 | Configur | ation Process and Registers | | | | 4.2.1 | Platform Configuration Structure | | | 4.3 | Configur | ation Mechanisms | | | | 4.3.1 | Standard PCI Configuration Mechanism | 74 | | | 4.3.2 | PCI Express* Enhanced Configuration Mechanism (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) | | | | | 82G965, 82P965 (G)MCH Only) | 75 | | 4.4 | Routing | Configuration Accesses | | | | 4.4.1 | Internal Device Configuration Accesses | 77 | | | 4.4.2 | Bridge Related Configuration Accesses | | | 4.5 | I/O Mani | ped Registers | | | 5 | 4.5.1 | CONFIG_ADDRESS—Configuration Address Register | | | | 4.5.2 | CONFIG_DATA—Configuration Data Register | | | | | | | | Host B | ridge/DR <i>A</i> | AM Controller Registers (Device 0, Function 0) | 83 | | 5.1 | | dge/DRAM Controller Configuration Register Details (Device 0, | | | J. 1 | | 0) | . 87 | | | 5.1.1 | VID—Vendor Identification | | | | 5.1.2 | DID—Device Identification | | | | J.1.2 | DEVICE INCHIGUIGNI | | | 5.1.3 | PCICMD—PCI Command | | |--------|---|-----| | 5.1.4 | PCISTS—PCI Status | | | 5.1.5 | RID—Revision Identification | 88 | | 5.1.6 | CC-Class Code | 88 | | 5.1.7 | MLT—Master Latency Timer | 89 | | 5.1.8 | HDR—Header Type | | | 5.1.9 | SVID—Subsystem Vendor Identification | | | 5.1.10 | SID—Subsystem Identification | | | 5.1.11 | CAPPTR—Capabilities Pointer | | | 5.1.12 | PXPEPBAR—PCI Express* Egress Port Base Address (Intel® | | | 3.1.12 | 82Q965/82G965/82P965 (G)MCH Only) | 91 | | 5.1.13 | MCHBAR—(G)MCH Memory-Mapped Register Range Base | 97 | | 5.1.14 | GGC—GMCH Graphics Control Register (Intel® 82Q965, 82Q963, | , , | | 3.1.17 | 82G965 GMCH Only) | g: | | 5.1.15 | DEVEN—Device Enable | J. | | 5.1.16 | PCI EXPRESS*XBAR—PCI Express* Register Range Base Address | | | 5.1.10 | (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) | 0 | | 5.1.17 | DMIBAR—Root Complex Register Range Base Address | | | 5.1.18 | PAMO—Programmable Attribute Map 0 | | | 5.1.19 | PAM1—Programmable Attribute Map 1 | | | 5.1.20 | PAM2—Programmable Attribute Map 2 | 100 | | 5.1.21 | PAM3—Programmable Attribute Map 3 | | | 5.1.22 | PAM4—Programmable Attribute Map 4 | | | 5.1.23 | PAM5—Programmable Attribute Map 5 | | | 5.1.24 | PAM6—Programmable Attribute Map 6 | | | 5.1.25 | LAC—Legacy Access Control | | | 5.1.26 | REMAPBASE—Remap Base Address Register | | | 5.1.27 | REMAPLIMIT—Remap Limit Address Register | | | | | | | 5.1.28 | SMRAM—System Management RAM Control | | | 5.1.29 | ESMRAMC—Extended System Management RAM Control | | | 5.1.30 | TOM—Top of Memory | | | 5.1.31 | TOUUD—Top of Upper Usable DRAM | TTI | | 5.1.32 | GBSM—Graphics Base of Stolen Memory (Intel® 82G965, 82Q965, | | | F 4 33 | 82063Q GMCH Only) | | | 5.1.33 | TSEGMB—TSEG Memory Base | | | 5.1.34 | TOLUD—Top of Low Usable DRAM | | | 5.1.35 | ERRSTS—Error Status | | | 5.1.36 | ERRCMD—Error Command | | | 5.1.37 | SMICMD—SMI Command | | | 5.1.38 | SKPD—Scratchpad Data | | | 5.1.39 |
CAPIDO—Capability Identifier | | | MCHBAR | Registers | | | 5.2.1 | CHDECMISC—Channel Decode Miscellaneous | | | 5.2.2 | CODRBO—Channel O DRAM Rank Boundary Address O | | | 5.2.3 | CODRB1—Channel 0 DRAM Rank Boundary Address 1 | | | 5.2.4 | CODRB2—Channel O DRAM Rank Boundary Address 2 | 124 | | 5.2.5 | CODRB3—Channel O DRAM Rank Boundary Address 3 | 124 | | 5.2.6 | CODRA01—Channel O DRAM Rank 0,1 Attribute | 125 | | 5.2.7 | CODRA23—Channel O DRAM Rank 2,3 Attribute | | | 5.2.8 | COCYCTRKPCHG—Channel 0 CYCTRK Precharge | | | 5.2.9 | COCYCTRKACT—Channel 0 CYCTRK ACT | | | 5.2.10 | COCYCTRKWR—Channel 0 CYCTRK WR | | | 5.2.11 | COCYCTRKRD—Channel 0 CYCTRK READ | | | 5.2.12 | COCYCTRKREFR—Channel 0 CYCTRK REFR | | | 5.2.13 | COCKECTRL—Channel 0 CKE Control | | | | | | 5.2 | | | 5.2.14
5.2.15 | COODTCTRL—Channel 0 DRAM Refresh Control | |---|---------|------------------|--| | | | 5.2.16 | C1DRB0—Channel 1 DRAM Rank Boundary Address 0 | | | | 5.2.17 | C1DRB1—Channel 1 DRAM Rank Boundary Address 1 | | | | 5.2.18 | C1DRB2—Channel 1 DRAM Rank Boundary Address 2 | | | | 5.2.19 | C1DRB43—Channel 1 DRAM Rank Boundary Address 3 | | | | 5.2.20 | C1DRA01—Channel 1 DRAM Rank 0,1 Attributes | | | | 5.2.21 | C1DRA23—Channel 1 DRAM Rank 2,3 Attributes | | | | 5.2.22 | C1CYCTRKPCHG—Channel 1 CYCTRK PreCharge | | | | 5.2.23 | C1CYCTRKACT—Channel 1 CYCTRK ACT 138 | | | | 5.2.24 | C1CYCTRKWR—Channel 1 CYCTRK Write | | | | 5.2.25 | C1CYCTRKRD—Channel 1 CYCTRK Read | | | | 5.2.26 | C1CKECTRL—Channel 1 CKE Control | | | | 5.2.27 | C1REFRCTRL—Channel 1 DRAM Refresh Control | | | | 5.2.28 | C1ODTCTRL—Channel 1 ODT Control | | | | 5.2.29 | EPC0DRB0—ME Channel 0 DRAM Rank Boundary Address 0 145 | | | | 5.2.30 | EPC0DRB1—ME Channel 0 DRAM Rank Boundary Address 1 145 | | | | 5.2.31 | EPC0DRB2—ME Channel 0 DRAM Rank Boundary Address 2 146 | | | | 5.2.32 | EPC0DRB3—ME Channel 0 DRAM Rank Boundary Address 3 146 | | | | 5.2.33 | EPC0DRA01—ME Channel 0 DRAM Rank 0,1 Attribute | | | | 5.2.34 | EPC0DRA23—ME Channel 0 DRAM Rank 2,3 Attribute | | | | 5.2.35 | EPDCYCTRKWRTPRE—MED CYCTRK WRT PRE | | | | 5.2.36 | EPDCYCTRKWRTACT—MED CYCTRK WRT ACT | | | | 5.2.37 | EPDCYCTRKWRTWR—MED CYCTRK WRT WR | | | | 5.2.38 | EPDCYCTRKWRTRD—MED CYCTRK WRT READ | | | | 5.2.39 | EPDCKECONFIGREG—MED CKE Related Configuration Register 151 | | | | 5.2.40 | MEMEMSPACE—ME Memory Space configuration | | | | 5.2.41
5.2.42 | EPDREFCONFIG—ME DRAM Refresh Configuration | | | | | TSC1—Thermal Sensor Control 1 | | | | 5.2.43
5.2.44 | TSS—Thermal Sensor Status | | | | 5.2.44 | TSTTP—Thermal Sensor Temperature Trip Point | | | | 5.2.46 | TCO—Thermal Calibration Offset | | | | 5.2.47 | THERM1—Hardware Protection | | | | 5.2.48 | TIS—Thermal Interrupt Status | | | | 5.2.49 | TSMICMD—Thermal SMI Command | | | | 5.2.50 | PMSTS—Power Management Status | | | 5.3 | | Legisters | | | 5.5 | 5.3.1 | EPESD—ME Element Self Description | | | | 5.3.2 | EPLE1D—Controller Link Entry 1 Description | | | | 5.3.3 | EPLE1A—Controller Link Entry 1 Address | | | | 5.3.4 | EPLE2D—Controller Link Entry 2 Description | | | | 5.3.5 | EPLE2A—Controller Link Entry 2 Address | | 6 | DCI Eve | * D- | gisters (Device 1, Function 0) (Intel [®] 82Q965/82G965/82P965 Only)167 | | 6 | - | | | | | 6.1 | • | ess* Configuration Register Details (Device 1, Function 0) | | | | 6.1.1 | VID1—Vendor Identification | | | | 6.1.2 | DID1—Device Identification | | | | 6.1.3 | PCICMD1—PCI Command | | | | 6.1.4 | PCISTS1—PCI Status | | | | 6.1.5
6.1.6 | RID1—Revision Identification | | | | 6.1.7 | CC1—Class Code | | | | 6.1.7 | HDR1—Header Type | | | | 6.1.9 | PBUSN1—Primary Bus Number | | | | 0.1.3 | FDOSINT—FIIIIALY DUS NUITIDEL | | | | 6.1.10
6.1.11 | SBUSN1—Secondary Bus Number | | |---|--------|------------------|--|-----| | | | | SUBUSN1—Subordinate Bus Number | | | | | 6.1.12 | IOBASE1—I/O Base Address | | | | | 6.1.13 | IOLIMIT1—I/O Limit Address | | | | | 6.1.14 | SSTS1—Secondary Status | | | | | 6.1.15 | MBASE1—Memory Base Address | | | | | 6.1.16 | MLIMIT1—Memory Limit Address | | | | | 6.1.17 | PMBASE1—Prefetchable Memory Base Address | | | | | 6.1.18 | PMLIMIT1—Prefetchable Memory Limit Address | | | | | 6.1.19 | PMBASEU1—Prefetchable Memory Base Address | | | | | 6.1.20 | PMLIMITU1—Prefetchable Memory Limit Address | | | | | 6.1.21 | CAPPTR1—Capabilities Pointer | | | | | 6.1.22 | INTRLINE1—Interrupt Line | | | | | 6.1.23 | INTRPIN1—Interrupt Pin | | | | | 6.1.24 | BCTRL1—Bridge Control | 186 | | | | 6.1.25 | PM_CAPID1—Power Management Capabilities | | | | | 6.1.26 | PM_CS1—Power Management Control/Status | | | | | 6.1.27 | SS_CAPID—Subsystem ID and Vendor ID Capabilities | | | | | 6.1.28 | SS—Subsystem ID and Subsystem Vendor ID | | | | | 6.1.29 | MSI_CAPID—Message Signaled Interrupts Capability ID | | | | | 6.1.30 | MC—Message Control | | | | | 6.1.31 | MA—Message Address | | | | | 6.1.32 | MD—Message Data | | | | | 6.1.33 | PEG_CAPL—PCI Express* Capability List | | | | | 6.1.34 | PEG_CAP—PCI Express* Capabilities | | | | | 6.1.35 | DCAP—Device Capabilities | | | | | 6.1.36 | DCTL—Device Control | | | | | 6.1.37 | DSTS—Device Status | | | | | 6.1.38 | LCAP—Link Capabilities | | | | | 6.1.39 | LCTL—Link Control | | | | | 6.1.40 | LSTS—Link Status | | | | | 6.1.41 | SLOTCAP—Slot Capabilities | | | | | 6.1.42 | SLOTCTL—Slot Control | 206 | | | | 6.1.43 | SLOTSTS—Slot Status | 208 | | | | 6.1.44 | RCTL—Root Control | 210 | | | | 6.1.45 | RSTS—Root Status | 211 | | | | 6.1.46 | PEGLC—PCI Express*-G Legacy Control | 212 | | | | 6.1.47 | VCECH—Virtual Channel Enhanced Capability Header | | | | | 6.1.48 | PVCCAP1—Port VC Capability Register 1 | 213 | | | | 6.1.49 | PVCCAP2—Port VC Capability Register 2 | 214 | | | | 6.1.50 | PVCCTL—Port VC Control | 214 | | | | 6.1.51 | VCORCAP—VCO Resource Capability | 215 | | | | 6.1.52 | VCORCTL—VCO Resource Control | | | | | 6.1.53 | VCORSTS—VCO Resource Status | | | | | 6.1.54 | RCLDECH—Root Complex Link Declaration Enhanced | 216 | | | | 6.1.55 | ESD—Element Self Description | | | | | 6.1.56 | LE1D—Link Entry 1 Description | | | | | 6.1.57 | LE1A—Link Entry 1 Address | | | | | 6.1.58 | PEGSSTS—PCI Éxpress*-G Sequence Status | | | 7 | Direct | Memory I | nterface (DMI) Registers | 221 | | | 7.1 | Direct Me | emory Interface (DMI) Configuration Register Details | 222 | | | | 7.1.1 | DMIVCECH—DMI Virtual Channel Enhanced Capability | | | | | 7.1.2 | DMIPVCCAP1—DMI Port VC Capability Register 1 | | | | | 7.1.3 | DMIPVCCAP2—DMI Port VC Capability Register 2 | | | | | | | | | | | 7.1.4 | DMIPVCCTL—DMI Port VC Control | 224 | |---|-----|--------|---|--------------| | | | 7.1.5 | DMIVCORCAP—DMI VCO Resource Capability | 224 | | | | 7.1.6 | DMIVCORCTLO—DMI VCO Resource Control | | | | | 7.1.7 | DMIVCORSTS—DMI VC0 Resource Status | | | | | 7.1.8 | DMIVC1RCAP—DMI VC1 Resource Capability | | | | | 7.1.9 | DMIVC1RCTL1—DMI VC1 Resource Control | | | | | 7.1.10 | DMIVC1RSTS—DMI VC1 Resource Status | | | | | 7.1.10 | DMILCAP—DMI Link Capabilities | | | | | 7.1.11 | | | | | | | DMILCTL—DMI Link Control | | | | | 7.1.13 | DMILSTS—DMI Link Status | . 230 | | 8 | | | hics Device Registers (Device 2) (Intel [®] 82Q965/82Q963/82G965 | 231 | | | | | | | | | 8.1 | | figuration Register Details (Device 2, Function 0) | | | | | 8.1.1 | VID2—Vendor Identification | . 233 | | | | 8.1.2 | DID2—Device Identification | . 233 | | | | 8.1.3 | PCICMD2—PCI Command | 234 | | | | 8.1.4 | PCISTS2—PCI Status | 235 | | | | 8.1.5 | RID2—Revision Identification | 236 | | | | 8.1.6 | CC—Class Code | 236 | | | | 8.1.7 | CLS—Cache Line Size | 237 | | | | 8.1.8 | MLT2—Master Latency Timer | | | | | 8.1.9 | HDR2—Header Type | | | | | 8.1.10 | GTTMMADR—Graphics Translation Table, Memory Mapped Range | | | | | 0.1.10 | Address | 238 | | | | 8.1.11 | GMADR—Graphics Memory Range Address | | | | | 8.1.12 | IOBAR—IO Base Address | | | | | 8.1.13 | SVID2—Subsystem Vendor Identification | | | | | 8.1.14 | SID2—Subsystem Identification | | | | | 8.1.15 | ROMADR—Video BIOS ROM Base Address | | | | | 8.1.16 | CAPPOINT—Capabilities Pointer | | | | | 8.1.17 | | | | | | | INTRLINE—Interrupt Line | | | | | 8.1.18 | INTRPIN—Interrupt Pin | | | | | 8.1.19 | MINGNT—Minimum Grant | | | | | 8.1.20 | MAXLAT—Maximum Latency | | | | | 8.1.21 | MCAPPTR—Mirror of Device 0 Capabilities Pointer | | | | | 8.1.22 | CAPIDO—Mirror of Device 0 Capability Identifier | | | | | 8.1.23 | MGGC—Mirror of Device 0 GMCH Graphics Control Register | | | | | 8.1.24 | DEVEN—Mirror of Device 0 Device Enable | | | | | 8.1.25 | SSRW—Software Scratch Read Write | | | | | 8.1.26 | BSM—Base of Stolen Memory | 248 | | | | 8.1.27 | HSRW—Hardware Scratch Read Write | | | | | 8.1.28 | MSI_CAPID—Message Signaled Interrupts Capability ID | 249 | | | | 8.1.29 | MC—Message Control | 249 | | | | 8.1.30 | MA—Message Address | 250 | | | | 8.1.31 | MD—Message Data | 250 | | | | 8.1.32 | GDRST—Graphics Reset | | | | | 8.1.33 | PMCAPID—Power Management Capabilities ID | | | | | 8.1.34 | PMCAP—Power Management Capabilities | | | | | 8.1.35 | PMCS—Power Management Control/Status | | | | | 8.1.36 | SWSMI—Software SMI | | | | 8.2 | | figuration Register Details (Device 2, Function 1) | | | | 0.2 | 8.2.1 | VID2—Vendor Identification | | | | | | | | | | | 8.2.2 | DID2—Device Identification | . 256
257 | | | | | | | | | | 8.2.4 | PCISTS2—PCI Status | 258 | |---|--------|-------------
--|-----| | | | 8.2.5 | RID2—Revision Identification | 259 | | | | 8.2.6 | CC—Class Code Register | 259 | | | | 8.2.7 | CLS—Cache Line Size | | | | | 8.2.8 | MLT2—Master Latency Timer | | | | | 8.2.9 | HDR2—Header Type | | | | | 8.2.10 | MMADR—Memory Mapped Range Address | | | | | 8.2.11 | SVID2—Subsystem Vendor Identification | | | | | 8.2.12 | SID2—Subsystem Identification | | | | | | | | | | | 8.2.13 | ROMADR—Video BIOS ROM Base Address | | | | | 8.2.14 | CAPPOINT—Capabilities Pointer | | | | | 8.2.15 | MINGNT—Minimum Grant | | | | | 8.2.16 | MAXLAT—Maximum Latency | | | | | 8.2.17 | MCAPPTR—Mirror of Device 0 Capabilities Pointer | | | | | 8.2.18 | CAPID0—Capability Identifier | | | | | 8.2.19 | MGGC—Mirror of Device 0 GMCH Graphics Control Register | 265 | | | | 8.2.20 | DEVEN—Device Enable | 266 | | | | 8.2.21 | SSRW—Mirror Function 0 Software Scratch Read/Write | 267 | | | | 8.2.22 | BSM—Mirror of Function 0 Base of Stolen Memory | 267 | | | | 8.2.23 | HSRW—Mirror of Device 2, Function 0 Hardware Scratch Read-Wr | | | | | 8.2.24 | PMCAPID—Mirror Function 0 Power Management Capabilities ID | | | | | 8.2.25 | PMCAP—Mirror Function 0 Power Management Capabilities | | | | | 8.2.26 | PMCS—Power Management Control/Status | | | | | 8.2.27 | SWSMI—Mirror of Function 0 Software SMI | | | | | 0.2.27 | SWSMI MINOR OF FUNCTION O SOFTWARE SMI | 2/1 | | 9 | Manage | eability Er | ngine (ME) Subsystem Registers (Device 3, Functions 0,1,2) | 273 | | | 9.1 | Host Eml | bedded Controller Interface (HECI1) Configuration Register Details | | | | 9.1 | | 3, Function 0) | | | | | • | · | | | | | 9.1.1 | ID—Identifiers | | | | | 9.1.2 | CMD—Command | | | | | 9.1.3 | STS—Device Status | | | | | 9.1.4 | RID—Revision ID | | | | | 9.1.5 | CC—Class Code | | | | | 9.1.6 | CLS—Cache Line Size | | | | | 9.1.7 | MLT—Master Latency Timer | 278 | | | | 9.1.8 | HTYPE—Header Type | 278 | | | | 9.1.9 | HECI_MBAR—HECI MMIO Base Address | 279 | | | | 9.1.10 | SS—Sub System Identifiers | | | | | 9.1.11 | CAP—Capabilities Pointer | | | | | 9.1.12 | INTR—Interrupt Information | | | | | 9.1.13 | MGNT—Minimum Grant | | | | | 9.1.14 | MLAT—Maximum Latency | | | | | 9.1.15 | HFS—Host Firmware Status | | | | | 9.1.16 | PID—PCI Power Management Capability ID | | | | | | | | | | | 9.1.17 | PC—PCI Power Management Capabilities | | | | | 9.1.18 | PMCS—PCI Power Management Control And Status | | | | | 9.1.19 | MID—Message Signaled Interrupt Identifiers | | | | | 9.1.20 | MC—Message Signaled Interrupt Message Control | | | | | 9.1.21 | MA—Message Signaled Interrupt Message Address | | | | | 9.1.22 | MD—Message Signaled Interrupt Message Data | | | | | 9.1.23 | HIDM—HECI Interrupt Delivery Mode | | | | 9.2 | HECI2 Co | onfiguration Register Details (Device 3, Function 1)) (Intel $^{ ext{@}}$ 82Q9 $ ext{@}$ | 65 | | | | | nly) ´´ ´` `` `` `` `` `` `` `` `` `` `` `` | | | | | 9.2.1 | ID—Identifiers | | | | | 9.2.2 | CMD—Command | | | | | J. Z. Z | C. D. Communication and the contraction of cont | _00 | | | 9.2.3 | STS—Device Status | . 290 | |-----|--------|--|-------| | | 9.2.4 | RID—Revision ID | . 291 | | | 9.2.5 | CC—Class Code | | | | 9.2.6 | CLS—Cache Line Size | | | | 9.2.7 | MLT—Master Latency Timer | | | | 9.2.8 | HTYPE—Header Type | | | | 9.2.9 | BIST—Built In Self Test | | | | 9.2.10 | HECI MBAR—HECI MMIO Base Address | | | | | - | | | | 9.2.11 | SS—Sub System Identifiers | | | | 9.2.12 | CAP—Capabilities Pointer | | | | 9.2.13 | INTR—Interrupt Information | | | | 9.2.14 | MGNT—Minimum Grant | | | | 9.2.15 | MLAT—Maximum Latency | | | | 9.2.16 | HFS—Host Firmware Status | | | | 9.2.17 | PID—PCI Power Management Capability ID | | | | 9.2.18 | PC—PCI Power Management Capabilities | . 296 | | | 9.2.19 | PMCS—PCI Power Management Control and Status | . 297 | | | 9.2.20 | MID—Message Signaled Interrupt Identifiers | . 299 | | | 9.2.21 | MC—Message Signaled Interrupt Message Control | . 299 | | | 9.2.22 | MA—Message Signaled Interrupt Message Address | . 300 | | | 9.2.23 | MUA—Message Signaled Interrupt Upper Address (Optional) | | | | 9.2.24 | MD—Message Signaled Interrupt Message Data | . 300 | | | 9.2.25 | HIDM—HECI Interrupt Delivery Mode | . 301 | | 9.3 | | Configuration Register Details (Device 3, Function 2) (Intel® 82Q9 | | | J.J | | nly) | | | | 9.3.1 | | | | | | ID—Identification | | | | 9.3.2 | CMD—Command Register | | | | 9.3.3 | STS—Device Status | | | | 9.3.4 | RID—Revision ID | | | | 9.3.5 | CC—Class Codes | | | | 9.3.6 | CLS—Cache Line Size | | | | 9.3.7 | MLT—Master Latency Timer | | | | 9.3.8 | HTYPE—Header Type | | | | 9.3.9 | PCMDBA—Primary Command Block IO Bar | | | | 9.3.10 | PCTLBA—Primary Control Block Base Address | | | | 9.3.11 | SCMDBA—Secondary Command Block Base Address | . 308 | | | 9.3.12 | SCTLBA—Secondary Control Block base Address | . 309 | | | 9.3.13 | LBAR—Legacy Bus Master Base Address | . 309 | | | 9.3.14 | SS—Sub System Identifiers | .310 | | | 9.3.15 | EROM—Expansion ROM Base Address | .310 | | | 9.3.16 | CAP—Capabilities Pointer | . 311 | | | 9.3.17 | INTR—Interrupt Information | . 311 | | | 9.3.18 | MGNT—Minimum Grant | | | | 9.3.19 | MLAT—Maximum Latency | | | | 9.3.20 | PID—PCI Power Management Capability ID | | | | 9.3.21 | PC—PCI Power Management Capabilities | | | | 9.3.22 | PMCS—PCI Power Management Control and Status | | | | 9.3.23 | MID—Message Signaled Interrupt Capability ID | | | | 9.3.23 | MC—Message Signaled Interrupt Capability 1D | | | | | MA—Message Signaled Interrupt Message Control | | | | 9.3.25 | | | | | 9.3.26 | MAU—Message Signaled Interrupt Message Upper Address | | | | 9.3.27 | MD—Message Signaled Interrupt Message Data | | | 9.4 | | lirection Configuration Register Details (Device 3, Function 3) (Interest of L.) | | | | - | GMCH Only) | | | | 9.4.1 | ID—Identification | . 319 | | | | 9.4.2 | CMD—Command Register | | |----|--------|----------------------|---|------------| | | | 9.4.3 | STS—Device Status | . 320 | | | | 9.4.4 | RID—Revision ID | . 321 | | | | 9.4.5 | CC—Class Codes | | | | | 9.4.6 | CLS—Cache Line Size | | | | | 9.4.7 | MLT—Master Latency Timer | | | | | 9.4.8 | HTYPE—Header Type | . 323 | | | | 9.4.9 | KTIBA—KT IO Block Base Address | | | | | 9.4.10 | KTMBA—KT Memory Block Base Address | | | | | 9.4.11 | SS—Sub System Identifiers | . 324 | | | | 9.4.12 | EROM—Expansion ROM Base Address | | | | | 9.4.13 | CAP—Capabilities Pointer | | | | | 9.4.14 | INTR—Interrupt Information | | | | | 9.4.15 | MGNT—Minimum Grant | . 326 | | | | 9.4.16 | MLAT—Maximum Latency | | | | | 9.4.17 | PID—PCI Power Management Capability ID | | | | | 9.4.18 | PC—PCI Power Management Capabilities | | | | | 9.4.19 | PMCS—PCI Power Management Control and Status | . 329 | | | | 9.4.20 | MID—Message Signaled Interrupt Capability ID | . 330 | | | | 9.4.21 | MC—Message Signaled Interrupt Message Control | | | | | 9.4.22 | MA—Message Signaled Interrupt Message Address | | | | | 9.4.23 | MAU—Message Signaled Interrupt Message Upper Address | | | | | 9.4.24 | MD—Message Signaled Interrupt Message Data | . 332 | | 10 | Functi | onal Deco | ription | 333 | | 10 | | | • | | | | 10.1 | | erface | | | | | 10.1.1 | FSB IOQ Depth | | | | | 10.1.2 | FSB OOQ Depth | | | | | 10.1.3 | FSB GTL+ Termination | | | | | 10.1.4 | FSB Dynamic Bus Inversion | | | | 10.2 | System | Memory Controller | | | | | 10.2.1 | DRAM Technologies and Organization | | | | | 10.2.2 | Memory Detection and Initialization | | | | | 10.2.3 | DRAM Clock Generation | | | | | 10.2.4 | Suspend to RAM and Resume | | | | | 10.2.5 | DDR2 On-Die Termination | | | | 10.3 | PCI Exp | ress* (Intel [®] 82Q965, 82G965, 82P965 (G)MCH) | . 343 | | | | 10.3.1 | Transaction Layer | . 343 | | | | 10.3.2 | Data Link Layer | | | | | 10.3.3 | Physical Layer | | | | 10.4 | Intel® S | erial Digital Video
Output (SDVO) (Intel® 82Q965, 82Q963, 82G96 | 5 | | | | | Only) | | | | | 10.4.1 | Intel® SDVO Capabilities | | | | | 10.4.2 | Intel® SDVO Modes | | | | | 10.4.3 | PCI Express* and Internal Graphics Simultaneous Operation (Inte | . ت
®اد | | | | | 82Q965, 82G965 Only) | | | | 10.5 | Integrat | red Graphics Device (IGD) (Intel® 82Q965, 82Q963, 82G965 GMCH | | | | | | | | | | | 10.5.1 | Overview | | | | 10.6 | | Interfaces | | | | | 10.6.1 | Analog Display Port Characteristics | | | | | 10.6.2 | Digital Display Interface | | | | | 10.6.3 | Multiple Display Configurations | | | | 10.7 | | lanagement | | | | | - · - · · | | | | | 10.8 | Thermal | Sensor | 356 | |----|---------|------------|--|-----| | | | 10.8.1 | PCI Device 0, Function 0 | | | | | 10.8.2 | MCHBAR Thermal Sensor Registers | | | | | 10.8.3 | Programming Sequence | | | | 10.0 | 10.8.4 | Trip Point Temperature Programming | | | | 10.9 | Clocking | | 359 | | 11 | Electri | cal Charac | teristics | 361 | | | 11.1 | Absolute | Minimum and Maximum Ratings | 361 | | | | 11.1.1 | | | | | 11.2 | Signal G | roups | 364 | | | 11.3 | Buffer Si | upply and DC Characteristics | 367 | | | | 11.3.1 | I/O Buffer Supply Voltages | 367 | | | | 11.3.2 | General DC Characteristics | | | | | 11.3.3 | R, G, B / CRT DAC Display DC Characteristics (Intel® 8 | | | | | | 82Q963, 82G965 GMCH Only) | 372 | | 12 | Ballou | t and Pack | age Information | 373 | | | 12.1 | Ballout | | 373 | | | 12.2 | Package | Dimensions | 389 | | 13 | Testal | oility | | 391 | | | 13.1 | XOR Tes | t Mode Initialization | 391 | | | 13.2 | | in Definition | | | | 13.3 | | ins | | | | 13.3 | | cluded from XOR Mode(s) | | | | 13.4 | PADS EX | ciuded itotti AOK Mode(S) | 402 | ### **Figures** **Tables** | Figure 1-1. Intel® Q965/G965 Express Chipset System Block Diagram Example | |---| | Figure 12-2. (G)MCH Ballout Diagram (Top View Middle- Columns 29-15) | | Table 2-1. Signal Terminology | | TSEG65 Table 3-7. SMM Space Table | | Table 10-1. Sample System Memory Organization with Interleaved Channels | | |---|-------| | Table 10-2. Sample System Memory Organization with Asymmetric Channels | . 335 | | Table 10-3. DDR2 DIMM Supported Configurations | . 339 | | Table 10-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode) | | | Table 10-5. DRAM Address Translation (Dual Channel Symmetric Mode) | | | Table 10-6. Concurrent SDVO / PCI Express* Configuration Strap Controls | . 346 | | Table 10-7. Display Port Characteristics | | | Table 10-8. Analog Port Characteristics | | | Table 11-1. Absolute Minimum and Maximum Ratings | | | Table 11-2. Current Consumption in S0 | | | Table 11-3. Signal Groups | | | Table 11-4. I/O Buffer Supply Voltage | | | Table 11-5. DC Characteristics | | | Table 11-6. R, G, B / CRT DAC Display DC Characteristics: Functional Operating Ra | | | $(VCCA_DAC = 3.3 V \pm 5\%)$ | | | Table 12-1. (G)MCH Ballout Sorted by Signal Name | | | Table 13-1. XOR Chain 14 functionality | | | Table 13-2. XOR Chain Outputs | | | Table 13-3. XOR Chain 0 | | | Table 13-4. XOR Chain 1 | | | Table 13-5. XOR Chain 2 | | | Table 13-6. XOR Chain 3 | | | Table 13-7. XOR Chain 4 | | | Table 13-8. XOR Chain 5 | | | Table 13-9. XOR Chain 6 | | | Table 13-10. XOR Chain 7 | | | Table 13-11. XOR Chain 8 | | | Table 13-12. XOR Chain 9 | | | Table 13-13. XOR Chain 10 | | | Table 13-14. XOR Chain 11 | | | Table 13-15. XOR Chain 12 | | | Table 13-16. XOR Chain 13 | | | Table 13-17. XOR Chain 14 | | | Table 13-18. XOR Pad Exclusion List | . 402 | | | | # **Revision History** | Revision | Description | Date | |----------|---|-----------| | -001 | Initial Release | June 2006 | | -002 | Added 82Q965, 82G965, and 82Q963 GMCH components. | July 2006 | § # Intel® 82Q965, 82Q963, 82G965, 82P965 (G)MCH Features - Processor/Host Interface (FSB) - —Supports a single Intel® Core™2 Duo desktop processor, Intel® Pentium® 4 processor, or Intel® Pentium® D processor. - —Supports Pentium 4 processor / Pentium D processor subset of the Extended Mode Scaleable Bus Protocol. - —Supports Pentium 4 processor / Pentium D processor FSB interrupt delivery - -533/800/1066 MT/s (133/200/266 MHz) FSB - —Hyper-Threading Technology (HT Technology) - —FSB Dynamic Bus Inversion (DBI) - -36-bit host bus addressing - -12-deep In-Order Queue - -1-deep Defer Queue - —GTL+ bus driver with integrated GTL termination resistors - —Supports cache Line Size of 64 bytes - System Memory Interface - One or two channels (each channel consisting of 64 data lines) - -Channels are asymmetric, interleaved - -- DDR2-800/667/533 frequencies - -Unbuffered DIMMs only - —Supports 256-Mb, 512-Mb, and 1-Gb technologies for x8 and x16 devices - —Supports four banks for all DDR2 devices up to 512-Mbit density. Supports eight banks for 1-Gbit DDR2 devices - —8 GB maximum memory - Direct Media Interface (DMI) - —Chip-to-chip connection interface to Intel ICH8 - —2 GB/s point-to-point DMI to ICH8 (1 GB/s each direction) - —100 MHz reference clock (shared with PCI Express graphics attach) - —32-bit downstream addressing - —Messaging and Error Handling - PCI Express* Interface (82Q965, 82G965, 82P965 (G)MCH only) - -One x16 PCI Express port - —Compatible with the PCI Express Base Specification, Revision 1.1a - —Raw bit rate on data pins of 2.5 Gb/s resulting in a real bandwidth per pair of 250 MB/s - Intel® Active Management Technology (82G965 GMCH only) - —Asset Management - —OOB diagnostics - —Network protection with NOC filters and agent presence - —Integrated hardware/software platform solution - Integrated Graphics Device (82Q965, 82Q963, 82G965 GMCH only) - —Core frequency of 400 MHz - -1.6 GP/s pixel rate - —High-Quality 3D Setup and Render Engine - —High-Quality Texture Engine - —3D Graphics Rendering Enhancements - -2D Graphics - -Video Overlay - —Multiple Overlay Functionality - Analog Display (82Q965, 82Q963, 82G965 GMCH only) - —400 MHz Integrated 24-bit RAMDAC - —Up to 2048x1536 @ 75 Hz refresh - —Hardware Color Cursor Support - —DDC2B Compliant Interface - Digital Display (82Q965, 82Q963, 82G965 GMCH only) - SDVO ports in either single/single-combined or dual operation modes supported - —270 MHz dot clock on each 12-bit interface - —Flat panels up to 2048x1536 @ 60 Hz or digital CRT/HDTV at 1920x1080 @ 85Hz - —Dual independent display options with digital display - Multiplexed digital display channels (supported with ADD2 Card). - —Supports TMDS transmitters or TV-Out encoders - —ADD2/ADD2+ card uses PCI Express graphics x16 connector - —Two channels multiplexed with PCI Express* Graphics port - —Supports Hot-Plug and Display - —Supports TMDS transmitters or TV-out encoders - Thermal Sensor - —Catastrophic Trip Point support - —Hot Trip Point support for SMI generation - Power Management - —PC99 suspend to DRAM support ("STR", mapped to ACPI state S3) - ACPI Revision 1.0 compatible power management - —Supports processor states: C0 and C1 - —Supports System states: S0, S1D, S3, S4, and S5 - —Supports processor Thermal Management 2 (TM2) - Package - $-34 \text{ mm} \times 34 \text{ mm}$. The 1226 balls are located in a non-grid pattern § ### 1 Introduction The Intel® Q965/Q963/G965G/P965 Express chipsets are designed for use with the Intel® Core™2 Duo desktop processor, Intel® Pentium® D processor, and Intel® Pentium® 4 processor based platforms. Each chipset contains two components: GMCH (or MCH) for the host bridge and I/O Controller Hub 8 (ICH8) for the I/O subsystem. The 82Q965 GMCH is part of the Q965 Express chipset, 82Q963 GMCH is part of the Q963 Express chipset, 82G965 GMCH is part of the G965 Express chipset, and 82P965 MCH is part of the P965 Express chipset. The ICH8 is the eighth generation I/O Controller Hub and provides a multitude of I/O related functions. The following figures show example system block diagrams for the Q965, Q963, G965, and P965 Express chipsets. This document is the datasheet for the Intel® 82Q965 Graphics and Memory Controller Hub (GMCH), Intel® 82Q963 Graphics and Memory Controller Hub (GMCH), Intel® 82G965 Graphics and Memory Controller Hub (MCH), and Intel® 82P965 Memory Controller Hub (MCH). Topics covered include; signal description, system memory map, PCI register description, a description of the (G)MCH interfaces and major functional units, electrical characteristics, ballout definitions, and package characteristics. **Note:** Unless otherwise specified, the information in this document applies to the Intel[®] 82Q965 Graphics and Memory Controller Hub (GMCH), Intel[®] 82Q963 Graphics and Memory Controller Hub (GMCH), Intel[®] 82G965 Graphics and Memory Controller Hub (GMCH), and Intel[®] 82P965 Memory Controller Hub (MCH). Note: The term (G)MCH refers to the 82Q965/82Q963/82G965 GMCH and 82P965 MCH. **Note:** Unless otherwise specified, ICH8 refers to the Intel[®] 82801HB ICH8 and 82801HR ICH8R I/O Controller Hub 8 components. The primary differences between the 82Q965 GMCH, 82Q963 GMCH, 82G965 GMCH, and 82P965 MCH are: | Capability | Intel® 82Q965 | Intel® 82Q963 | Intel® 82G965 | Intel® 82P965 | |---|------------------------|------------------|------------------------|------------------------| | Memory Speed | DDR2-
800/667/533 | DDR2-
667/533 | DDR2-
800/667/533 | DDR2-
800/667/533 | | Integrated
Graphics Device | Yes | Yes | Yes | No | | Discrete Graphics | PCI Express
x16 | None | PCI Express
x16 | PCI Express
x16 | | PCI Express
Interface | Yes
(1) x16, (6) x1 | No
(6) x1 | Yes
(1) x16, (6) x1 | Yes
(1) x16, (6) x1 | | Advanced Media
Capabilities | No | No | Yes | No | | SDVO Expansion | MEC / ADD2 | Add2 only | MEC / ADD2
 _ | | Dual Independent
Display | Yes | No | Yes | _ | | Intel [®] Active
Management
Technology
(AMT) ² | Yes ¹ | No | No | No | | Alerting Standard
Format (ASF) | Yes ¹ | Yes | No | No | #### NOTE: - 1. For the 82Q965, only one manageability solution can be supported, AMT or ASF. - 2. Intel® Active Management Technology requires the platform to have an Intel® AMT-enabled chipset, network hardware and software, connection with a power source and an active LAN port. Figure 1-1. Intel® Q965/G965 Express Chipset System Block Diagram Example Figure 1-2. Intel[®] Q963 Express Chipset System Block Diagram Example Figure 1-3. Intel® P965 Express Chipset System Block Diagram Example ### 1.1 Terminology | Term | Decembrian | |-------------------------------------|---| | | Description | | ADD Card | Advanced Digital Display Card. Provides digital display options for an Intel Graphics Controller that supports ADD cards (have DVOs multiplexed with AGP interface). Keyed like an AGP 4x card and plugs into an AGP connector. Will not work with an Intel Graphics Controller that implements Intel [®] SDVO. | | ADD2 Card | Advanced Digital Display Card – 2^{nd} Generation. Provides digital display options for an Intel graphics controller that supports ADD2 cards. Plugs into an x16 PCI Express* connector but utilizes the multiplexed SDVO interface. Will not work with an Intel Graphics Controller that supports Intel® DVO and ADD cards. | | Media
Expansion
Card
(MEC) | Media Expansion Card –. Provides digital display options for an Intel Graphics Controller that supports MEC cards. Plugs into an x16 PCI Express connector but utilizes the multiplexed SDVO interface. Adds Video In capabilities to platform. Will not work with an Intel Graphics Controller that supports DVO and ADD cards. Will function as an ADD2 card in an ADD2 supported system, but Video In capabilities will not work. | | Core | The internal base logic in the (G)MCH | | Processor | Refers to the Intel [®] Core [™] 2 Duo desktop processor, Intel [®] Pentium [®] D processor, and Intel [®] Pentium [®] 4 processor. | | CRT | Cathode Ray Tube | | DBI | Dynamic Bus Inversion | | DDR2 | A second generation Double Data Rate SDRAM memory technology | | DMI | (G)MCH-Intel® ICH8 Direct Media Interface | | DVI | Digital Video Interface. Specification that defines the connector and interface for digital displays. | | FSB | Front Side Bus, synonymous with Host or processor bus | | Full Reset | Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN# and PWROK are asserted. | | GMCH | Graphics Memory Controller Hub component that contains the processor interface, DRAM controller, internal graphics controller (IGD), and graphics interfaces. It communicates with the I/O controller hub (Intel® ICH8*) over the DMI interconnect and Control interfaces. | | (G)MCH | Term used when referring to both GMCH and MCH components. | | HDMI | High Definition Multimedia Interface – HDMI supports standard, enhanced, or high-definition video, plus multi-channel digital audio on a single cable. It transmits all ATSC HDTV standards and supports 8-channel digital audio, with bandwidth to spare for future requirements and enhancements (additional details available through https://www.hdmi.org/) | | Host | This term is used synonymously with processor | | INTx | An interrupt request signal where X stands for interrupts A, B, C and D | | IOQ | In Order Queue | | Intel® AMT | Intel® Active Management Technology. Second generation system management technology. | | Term | Description | |--------------|--| | Intel® ICH8 | Eighth generation I/O Controller Hub component that contains additional functionality compared to previous Intel® ICHs, The Intel® I/O Controller Hub component contains the primary PCI interface, LPC interface, USB2, SATA, and other I/O functions. It communicates with the (G)MCH over a proprietary interconnect called DMI. | | IGD | Internal Graphics Device | | LCD | Liquid Crystal Display | | LVDS | Low Voltage Differential Signaling. A high speed, low power data transmission standard used for display connections to LCD panels. | | 00Q | Out of Order Queuing: | | MCH | Memory Controller Hub that contains a host interface, DRAM controller, and DMI/Controller interface connections to the ICH8. In this document MCH refers to the 82P965 MCH. | | ME | Manageability engine for BTS '06 Intel® AMT | | MSI | Message Signaled Interrupt. A transaction initiated outside the host, conveying interrupt information to the receiving agent through the same path that normally carries read and write commands. | | PCI Express* | Third Generation Input Output (PCI Express) Graphics Attach called PCI Express Graphics. A high-speed serial interface whose configuration is software compatible with the existing PCI specifications. The specific PCI Express implementation intended for connecting the (G)MCH to an external Graphics Controller is an x16 link and replaces AGP. | | Primary PCI | The physical PCI bus that is driven directly by the Intel® ICH8 component. Communication between Primary PCI and the (G)MCH occurs over DMI. Note that the Primary PCI bus is not PCI Bus 0 from a configuration standpoint. | | SCI | System Control Interrupt. Used in ACPI protocol. | | SDVO | Serial Digital Video Out (SDVO). Digital display channel that serially transmits digital display data to an external SDVO device. The SDVO device accepts this serialized format and then translates the data into the appropriate display format (i.e. TMDS, LVDS, and TV-Out). This interface is not electrically compatible with the previous digital display channel - DVO. For the 82Q965, 82G965, the SDVO ports are multiplexed on a portion of the x16 graphics PCI Express interface. | | SDVO Device | Third party codec that utilizes SDVO as an input. May have a variety of output formats, including DVI, LVDS, HDMI, TV-out, etc. | | SERR | An indication that an unrecoverable error has occurred on an I/O bus. | | SMI | System Management Interrupt. Used to indicate any of several system conditions such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity. | | Rank | A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a DIMM. | | TMDS | Transition Minimized Differential Signaling. Signaling interface from Silicon Image that is used in DVI and HDMI. | | VCO | Voltage Controlled Oscillator | | UMA | Unified Memory Architecture. Describes an IGD using system memory for its frame buffers. | #### 1.2 Reference Documents | Document Name | Location | |---|---| | Intel® 965 Express Chipset Family Specification Update | www.intel.com/design/c
hipsets/specupdt/31305
4.htm | | Intel® 965 Express Chipset Family Thermal Mechanical Design
Guide. | www.intel.com/design/c
hipsets/designex/31305
5.htm | | Intel [®] Pentium [®] D Processor 900 Sequence, Intel [®] Pentium [®] Processor Extreme Edition, and Intel [®] Pentium [®] 4 Processor Thermal and Mechanical Design Guidelines | http://intel.com/design/
pentiumXE/designex/
306830.htm | | Intel [®] Core [™] 2 Duo Desktop Processor E6000 Sequence Thermal and Mechanical Design Guidelines | 313685 | | Intel [®] I/O Controller Hub 8 (ICH8) Family Thermal Mechanical
Design Guide. | www.intel.com/design/c
hipsets/designex/31305
8.htm | | Advanced Configuration and Power Interface Specification,
Version 2.0 | http://www.acpi.info/ | | Advanced Configuration and Power Interface Specification,
Version 1.0b | http://www.acpi.info/ | | The PCI Local Bus Specification, Version 2.3 | http://www.pcisig.com/s
pecifications | | PCI Express* Specification, Version 1.1 | http://www.pcisig.com/s
pecifications | ### 1.3 (G)MCH Overview The (G)MCH is designed for use with the Intel Core™2 Duo desktop processor, Pentium D processor and Pentium 4 processor desktop platforms. The role of a (G)MCH in a system is to manage the flow of information between its four interfaces: the processor interface (FSB), the System Memory interface (DRAM controller), the External Graphics interface (82Q965, 82G965, 82P965 (G)MCH only), and the I/O Controller through the DMI interface. This includes arbitrating between the four interfaces when each initiates transactions. The processor interface supports the Pentium 4 processor subset of the Extended Mode of the Scalable Bus Protocol. The (G)MCH is optimized for the Intel® Pentium® 4 and Pentium D processor family in an LGA775 socket. The (G)MCH supports one or two channels of DDR2 SDRAM. It
also supports the PCI Express based external graphics attach (82Q965, 82Q963), 82G965 GMCH only). The Q965/Q963/G965/P965 express chipset platforms support the eighth generation I/O Controller Hub (Intel ICH8) to provide a multitude of I/O related features. #### 1.3.1 Host Interface The (G)MCH can use a single LGA775 socket processor. The (G)MCH supports a FSB frequency of 533/800/1066 MHz using a scalable FSB Vcc_CPU. It supports 36-bit host addressing, decoding up to 8 GB of the processor's memory address space. Host-initiated I/O cycles are decoded to PCI Express (82Q965, 82G965, 82P965 (G)MCH only), DMI, or the (G)MCH configuration space. Host-initiated memory cycles are decoded to PCI Express, DMI or system memory. PCI Express device accesses (82Q965, 82G965, 82P965 (G)MCH only) to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from PCI Express using PCI semantics and from DMI to system SDRAM will be snooped on the host bus. Capabilities of the Processor/Host Interface (FSB) interface include: - Supports a single the Intel Core[™]2 Duo desktop processor, Pentium D processor and Pentium 4 processor. Processors supported include: Intel[®] Pentium[®] D processor 900 sequence, Intel[®] Pentium[®] processor Extreme Edition 965, 955, Intel[®] Pentium[®] 4 processor 6x1 sequence in an LGA775 package. - Supports the Pentium 4 and Pentium D processor subset of the Extended Mode Scaleable Bus Protocol. The primary enhancements over the Compatible Mode P6 bus protocol are: - Source synchronous double-pumped (2x) Address - Source synchronous quad-pumped (4x) Data - Supports Pentium 4 processor and Pentium D processor FSB interrupt delivery - Supports Pentium 4 processor and Pentium D processor Front Side Bus (FSB) at the following frequency ranges: - 533 MT/s (133 MHz) - 800 MT/s (200 MHz) - 1066 MT/s (266 MHz) - Supports Hyper-Threading Technology (HT Technology) - Supports FSB Dynamic Bus Inversion (DBI) - Supports 36-bit host bus addressing, allowing the processor to access the entire 64 GB of the (G)MCH's memory address space - Has a 12-deep In-Order Queue to support up to twelve outstanding pipelined address requests on the host bus - Has a 1-deep Defer Queue - Uses GTL+ bus driver with integrated GTL termination resistors - Supports a Cache Line Size of 64 bytes #### 1.3.2 System Memory Interface The (G)MCH integrates a system memory DDR2 controller with two, 64-bit wide interfaces. Only Double Data Rate (DDR2) memory is supported; consequently, the buffers support only SSTL_1.8 V signal interfaces. The memory controller interface is fully configurable through a set of control registers. Capabilities of the system memory interface include: - Enhanced scheduling and out of order accesses using Intel® Fast Memory Access - The (G)MCH System Memory Controller directly supports one or two channels of memory (each channel consisting of 64 data lines) - The memory channels are asymmetric: "Flex Memory" channels are assigned addresses serially. Channel B addresses are assigned after all Channel A addresses - The memory channels are interleaved: Addresses are bounced between the channels after each cache line (64-B boundary) - Supports DDR2 memory DIMM frequencies of 533, 667 and 800 MHz. The speed used in all channels is the speed of the slowest DIMM in the system - I/O Voltage of 1.8 V for DDR2 - Supports only unbuffered DIMMs - Supports maximum memory bandwidth of 6.4 GB/s in single-channel or dualchannel asymmetric mode, or 12.8 GB/s in dual-channel interleaved mode assuming DDR2 800MHz - Supports 256-Mb, 512-Mb, and 1-Gb technologies for x8 and x16 devices (DDR2 800MHz 1Gb technology not supported) - Supports four banks for all DDR2 devices up to 512-Mbit density. Supports eight banks for 1-Gbit DDR2 devices - Using 256 Mb technologies, the smallest memory capacity possible is 128 MB, assuming Single-Channel Mode. (8 K rows * 512 columns * 1 cell/(row * column) * 16 b/cell * 4 banks/devices * 4 devices/DIMM-side * 1 DIMM-side/channel * 1 channel * 1 B/8 b * 1 M/1024 K = 128 MB) - By using 1 Gb technology (DDR2 800MHz 1 Gb technology is not supported) in Dual Channel Interleaved Mode, the largest memory capacity possible is 8 GB. (16 K rows * 1 K columns * 1 cell/(row * column) * 8 b/cell * 8 banks/device * 8 devices/DIMM-side * 4 DIMM-sides/channel * 2 channels * 1 B/8 b * 1 G/1024 M * 1 M/(K*K) = 8 GB) - Maximum DRAM address decode space is 8 GB (assuming 36-bit addressing) - Supports up to 32 simultaneous open pages per channel (assuming 4 ranks of 8 bank devices) - Supports opportunistic refresh scheme - Supports Partial Writes to memory using Data Mask (DM) signals - Supports page sizes of 4 KB, 8 KB and 16 KB - Supports a burst length of 8 for single-channel and dual-channel interleaved and asymmetric operating modes - Improved flexible memory architecture #### 1.3.3 Direct Media Interface (DMI) Direct Media Interface (DMI) is the chip-to-chip connection between the (G)MCH and ICH8. This high-speed interface integrates advanced priority-based servicing allowing for concurrent traffic and true isochronous transfer capabilities. Base functionality is completely software transparent permitting current and legacy software to operate normally. To provide for true isochronous transfers and configurable Quality of Service (QoS) transactions, the ICH8 supports two virtual channels on DMI: VC0 and VC1. These two channels provide a fixed arbitration scheme where VC1 is always the highest priority. VC0 is the default conduit of traffic for DMI and is always enabled. VC1 must be specifically enabled and configured at both ends of the DMI link (i.e., the ICH8 and (G)MCH). - A chip-to-chip connection interface to Intel ICH8 - 2 GB/s point-to-point DMI to ICH8 (1 GB/s each direction) - 100 MHz reference clock (shared with PCI Express Graphics Attach) - 32-bit downstream addressing - APIC and MSI interrupt messaging support. Will send Intel-defined "End Of Interrupt" broadcast message when initiated by the processor. - Message Signaled Interrupt (MSI) messages - SMI, SCI and SERR error indication - Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port DMA, floppy drive, and LPC bus masters # 1.3.4 PCI Express* Interface (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) The (G)MCH contains one 16-lane (x16) PCI Express port intended for an external PCI Express graphics card. The PCI Express port is compliant to the *PCI Express* Base Specification* revision 1.1. The x16 port operates at a frequency of 2.5 Gb/s on each lane while employing 8b/10b encoding; the port supports a maximum theoretical bandwidth of 40 Gb/s in each direction. The 82Q965 and 82G965 GMCHs multiplex the PCI Express interface with the Intel[®] SDVO ports. - One, 16-lane PCI Express port intended for graphics attach, compatible to the PCI Express* Base Specification revision 1.1a. - PCI Express frequency of 1.25 GHz resulting in 2.5 Gb/s each direction - Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a real bandwidth per pair of 250 MB/s given the 8b/10b encoding used to transmit data across this interface - Maximum theoretical realized bandwidth on the interface of 4 GB/s in each direction simultaneously, for an aggregate of 8 GB/s when x16. - PCI Express* Graphics Extended Configuration Space. The first 256 bytes of configuration space alias directly to the PCI Compatibility configuration space. The remaining portion of the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as extended configuration space. - PCI Express Enhanced Addressing Mechanism. Accessing the device configuration space in a flat memory mapped fashion. - Automatic discovery, negotiation, and training of link out of reset - Supports traditional PCI style traffic (asynchronous snooped, PCI ordering) - Supports traditional AGP style traffic (asynchronous non-snooped, PCI Express-relaxed ordering) - Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal PCI 2.3 Configuration space as a PCI-to-PCI bridge) - Supports "static" lane numbering reversal. This method of lane reversal is controlled by a Hardware Reset strap, and reverses both the receivers and transmitters for all lanes (e.g., TX[15]->TX[0], RX[15]->RX[0]). This method is transparent to all external devices and is different than lane reversal as defined in the PCI Express Specification. In particular, link initialization is not affected by static lane reversal. # 1.3.5 Intel[®] Active Management Technology (Intel[®] AMT) (Intel[®] 82Q965 GMCH Only) Intel® AMT combines highly-available OOB remote management and network protection into an OS-independent and tamper-resistant solution to help address company IT department top issues of network protection, asset management, and system reliability. - · Hardware and software asset management - Provide OOB diagnostics - Network protection with NOC filters and agent presence - Integrated hardware and software platform solution Intel[®] AMT integrates advanced manageability features into hardware and firmware. Intel AMT extends the capabilities of existing management solutions by enabling system and S/W asset information, remote diagnostics, recovery and network protection through the OOB (Out-Of-Band) channel (i.e., it is available even when the system is in a low-power "off" state or the operating system is hung). Intel® Active Management Technology is only supported by the Q965 Express chipset. # 1.3.6 Alerting Standard Format (ASF) (Intel® 82Q965 and 82Q963 GMCH Only) ASF is a specification that Intel and IBM developed jointly back in 1997 and updated in 1999. Alerting Standard Format (ASF) provides alerting capabilities (no event log - history must be stored on server) to notify IT of system problems over the network. ASF provides basic power-up/power-down capabilities. An ASF design contains several required components (a list of components is provided
later in this section), and Intel provides some (but not all) of them. Each OEM must (1) decide what features to support and what devices are required, (2) ensure that these devices meet the ASF specification, and (3) acquire/develop any software/hardware not provided by Intel. ASF can be supported by the Q965 Q963 Express chipsets. For Q965 Express chipset platforms, only one manageability solution can be supported. # 1.3.7 Graphics Features (Intel® 82Q965, 82Q963, 82G965 GMCH) The GMCH provides an integrated graphics device (IGD) delivering cost competitive 3D, 2D and video capabilities. The GMCH contains an extensive set of instructions for 3D operations, 2D operations, motion compensation, overlay, and display control. The GMCH's video engines support video conferencing and other video applications. The GMCH uses a UMA configuration with up to 256 MB of DVMT for graphics memory. The GMCH also has the capability to support external graphics accelerators via the PCI Express* Graphics (PEG) port but cannot work concurrently with the integrated graphics device. High bandwidth access to data is provided through the system memory port. # 1.3.8 SDVO and Analog Display Features (Intel® 82Q965, 82Q963, 82G965 GMCH Only) The GMCH provides interfaces to a progressive scan analog monitor and two SDVO ports (multiplexed with PCI Express x16 graphics port signals on the 82Q965 and 82G965 GMCH) capable of driving an Advanced Digital Display (ADD2) card or Media Expansion card (82Q965 and 82G965 GMCH only). The digital display channels are capable of driving a variety of SDVO devices (e.g., TMDS, TV-Out). Note that SDVO only works with the Integrated Graphics Device (IGD). The Media Expansion card adds Video-in capabilities. The GMCH provides two multiplexed SDVO ports that are capable of driving up to a 270 MHz pixel clock each. When combined with a DVI compliant external device and connector, the GMCH has a high-speed interface to a digital display (e.g., flat panel or digital CRT). The GMCH SDVO ports can each support a single-channel SDVO device. If both ports are active in single-channel mode, they can have different display timing and data. The GMCH is compliant with DVI Specification 1.0. Capabilities of the SDVO and Analog Display interfaces include: - SDVO Support - SDVO ports in either single/single-combined or dual operation modes supported - 3x3 Built In full panel scalar - 180 degree Hardware screen rotation - Multiplexed Digital Display Channels (Supported with ADD2 Card) - Two channels multiplexed with PCI Express* Graphics port - 270 MHz dot clock on each 12-bit interface - Supports flat panels up to 2048x1536 @ 60 Hz or digital CRT/HDTV at 1920x1080 @ 85 Hz - Supports Hot-Plug and Display - Supports TMDS transmitters or TV-out encoders - ADD2/Media Expansion card use PCI Express Graphics x16 connector - Analog Display Support - 400 MHz Integrated 24-bit RAMDAC - Up to 2048x1536 @ 75 Hz refresh - Hardware Color Cursor Support - DDC2B Compliant Interface - Dual Independent Display options with digital display #### 1.3.9 (G)MCH Clocking - Differential Host clock of 133/200/266 MHz (HCLKP/HCLKN). These clock frequencies support transfer rates of 533/800/1066 MT/s. The Host PLL generates 2x, 4x, and 8x versions of the host clock for internal optimizations. - Chipset core clock synchronized to host clock - Internal and external memory clocks of 266 MHz, 333 MHz, and 400 MHz generated from one of two (G)MCH PLLs that use the host clock as a reference. This includes 2x and 4x for internal optimizations. - The PCI Express* PLL of 100 MHz. This serial reference clock (GCLKP/GCLKN) generates the PCI Express core clock of 250 MHz (82Q965, 82G965, 82P965 (G)MCH only). - Display timings are generated from display PLLs that use a 96 MHz differential non-spread spectrum clock as a reference. Display PLLs can also use the SDVO_TVCLKIN[+/-] from an SDVO device as a reference. (82Q965, 82Q963, 82G965 GMCH Only) - All of the above clocks are capable of tolerating Spread Spectrum clocking as defined in the Clock Generator specification. - Host, Memory, and PCI Express Graphics PLLs, and all associated internal clocks are disabled until PWROK is asserted. #### 1.3.10 Thermal Sensor The (G)MCH Thermal Sensor support includes: - Catastrophic Trip Point support for emergency clock gating for the (G)MCH at 118 °C - Hot Trip Point support for SMI generation between 85 °C and 105 °C #### 1.3.11 Power Management (G)MCH Power Management support includes: - PC99 suspend to DRAM support ("STR", mapped to ACPI state S3) - SMRAM space remapping to A0000h (128 KB) - Supports extended SMRAM space above 256 MB, additional 1-MB TSEG from the Base of graphics stolen memory (BSM) when enabled, and cacheable (cacheability controlled by processor) - ACPI Rev 1.0 compatible power management - Supports processor states: C0 and C1 - Supports System states: S0, S1D, S3, S4, and S5 - Supports processor Thermal Management 2 (TM2) § ### 2 Signal Description This section provides a detailed description of (G)MCH signals. The signals are arranged in functional groups according to their associated interface (see Figure 2-1). Table 2-1 lists the notations used to describe the signal type. Table 2-1. Signal Terminology | Term | Description | |--------------|--| | PCI Express* | PCI-Express interface signals. These signals are compatible with PCI Express 1.1 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = (D+ - D-) * 2 = 1.2Vmax. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V. | | DMI | Direct Media Interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = (D+ - D-) * 2 = 1.2Vmax. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V. | | CMOS | CMOS buffers. 1.5 V tolerant. | | COD | CMOS Open Drain buffers. 3.3 V tolerant. | | HCSL | Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+ -D-) * 2 = 1.4V$. Single ended input tolerant from -0.35 V to 1.2 V. Typical crossing voltage 0.35 V. | | HVCMOS | High Voltage CMOS buffers. 3.3 V tolerant. | | HVIN | High Voltage CMOS input-only buffers. 3.3 V tolerant. | | SSTL-1.8 | Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V tolerant. | | А | Analog reference or output. May be used as a threshold voltage or for buffer compensation. | | GTL+ | Gunning Transceiver Logic signaling technology. Implements a voltage level as defined by VTT of 1.2 V. | Figure 2-1. Signal Information Diagram ## 2.1 Host Interface Signals **Note:** Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination voltage of the Host Bus (V_{TT}) . | Signal Name | Туре | Description | |-------------|-------------|---| | HADS# | I/O
GTL+ | Address Strobe: The processor bus owner asserts HADS# to indicate the first of two cycles of a request phase. The (G)MCH can assert this signal for snoop cycles and interrupt messages. | | HBNR# | I/O
GTL+ | Block Next Request: This signal is used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth. | | HBPRI# | O
GTL+ | Priority Agent Bus Request: The (G)MCH is the only Priority Agent on the processor bus. It asserts this signal to obtain the ownership of the address bus. This signal has priority over symmetric bus requests and will cause the current symmetric owner to stop issuing new transactions unless the HLOCK# signal was asserted. | | HBREQ0# | I/O
GTL+ | Bus Request 0: The (G)MCH pulls the processor's bus HBREQ0# signal low during HCPURST#. The processor samples this signal on the active-to-inactive transition of HCPURST#. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 HCLKs and the maximum hold time is 20 HCLKs. HBREQ0# should be tri-stated after the hold time requirement has been satisfied. | | HCPURST# | O
GTL+ | CPU Reset : The HCPURST# pin is an output from the (G)MCH. The (G)MCH asserts HCPURST# while RSTIN# is asserted and for approximately 1 ms after RSTIN# is de-asserted. The HCPURST# allows the processors to begin execution in a known state. | | | | Note that the Intel® ICH8 must provide processor frequency select strap setup and hold times around HCPURST#. This requires strict synchronization between (G)MCH HCPURST# deassertion and the ICH8 driving the straps. | | HDBSY# | I/O
GTL+ | Data Bus Busy: This signal is used by the data bus owner to hold the data bus for transfers requiring more than one cycle. | | HDEFER# | O
GTL+ | Defer: This signal indicates that the (G)MCH will terminate the transaction currently being snooped with either a deferred response or with a retry response. | | Signal Name | Typo | | Doscription | | |--------------|-------------|--|---|---| |
Signal Name | Туре | | Description | | | HDINV[3:0]# | I/O
GTL+ | Dynamic Bus Inversion
the HD[63:0]# signals. The
are inverted. HDINV[3:0]
of data bits driven electric
corresponding 16 bit grou | ney indicate if the
are asserted so
ally low (low vol | e associated signals
uch that the number
tage) within the | | | | HDINVx# Data Bits | | | | | | HDINV3# HD[63:48] | # | | | | | HDINV2# HD[47:32] | # | | | | | HDINV1# HD[31:16] | # | | | | | HDINV0# HD[15:0]# | | | | HA[35:3]# | I/O | Host Address Bus: HA[3 | | | | | GTL+ | address bus. During proce
inputs. The (G)MCH drives
behalf of DMI and PCI Exp
are transferred at 2x rate. | s HA[35:3]# dur
ress* Graphics i | ing snoop cycles on | | HADSTB[1:0]# | I/O | Host Address Strobe: H | | | | | GTL+ | strobes used to transfer H transfer rate. | A[35:3]# and H | REQ[4:0] at the 2x | | HD[63:0]# | I/O | Host Data: These signals bus. Data on HD[63:0] are | | | | | GTL+ | data signals may be invertion the HDINV[3:0]# signal | ted on the proce | | | HDSTBP[3:0]# | I/O | Differential Host Data S | | | | HDSTBN[3:0]# | GTL+ | source synchronous strobe
HDINV[3:0]# at 4x transf | | er HD[63:0]# and | | | | These signals are not leve falling edge of both strobe differential, and not true of | s. Hence, they a | | | | | Strobes | Bits | Data | | | | HDSTBP3#, HDSTBN3# | HDINV3# | HD[63:48]# | | | | HDSTBP2#, HDSTBN2# | HDINV2# | HD[47:32]# | | | | HDSTBP1#, HDSTBN1# | HDINV1# | HD[31:16]# | | | | HDSTBP0#, HDSTBN0# | HDINV0# | HD[15:0]# | | HHIT# | I/O | Hit: This signal indicates t | | | | | GTL+ | unmodified version of the driven in conjunction with snoop window. | • | | | HHITM# | I/O | Hit Modified: This signal | | | | | GTL+ | modified version of the re-
assumes responsibility for
driven in conjunction with | providing the lir | ne. This signal is also | | HLOCK# | I/O | Host Lock: All processor | | | | | GTL+ | of HLOCK# and HADS#, u
atomic (i.e., no DMI or PC
system memory are allow
processor). | I Express* Grap | hics accesses to | | Signal Name | Туре | Description | |-------------|-------------|--| | HREQ[4:0]# | I/O
GTL+ | Host Request Command: These signals define the attributes of the request. HREQ[4:0]# are transferred at 2x rate. They are Asserted by the requesting agent during both halves of Request Phase. In the first half, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half, the signals carry additional information to define the complete transaction type. | | HTRDY# | O
GTL+ | Host Target Ready: This signal indicates that the target of the processor transaction is able to enter the data transfer phase. | | HRS[2:0]# | O
GTL+ | Response Signals: These signals indicate the type of response according to the following: 000 | | BSEL[2:0] | I
CMOS | Bus Speed Select : At the de-assertion of RSTIN#, the value sampled on these signals determine the expected frequency of the bus. | | HRCOMP | I/O
CMOS | Host RCOMP: This signal is used to calibrate the Host GTL+ I/O buffers. This signal is powered by the Host Interface termination rail (V_{TT}) . | | HSCOMP | I/O
CMOS | Slew Rate Compensation: This signal is used for compensation for the Host Interface. | | HSCOMP# | I/O
A | Slew Rate Compensation: This signal is used for compensation for the Host Interface for falling edges. | | HSWING | I
A | Host Voltage Swing: This signal provides the reference voltage used by FSB RCOMP circuits. HSWING is used for the signals handled by HRCOMP. | | HDVREF | I
A | Host Reference Voltage : This signal is the voltage input for the data signals of the Host GTL interface. | | HACCVREF | I
A | Host Reference Voltage : This signal is used the voltage input for the Address signals of the Host GTL interface. | ## 2.2 DDR2 DRAM Channel A Interface | Signal Name | Туре | Description | |--------------|-----------------|--| | SCLK_A[5:0] | 0
SSTL-1.8 | SDRAM Differential Clock: (3 per DIMM). SCLK_Ax and its complement, SCLK_Ax# make a differential clock pair output. The crossing of the positive edge of SCLK_Ax and the negative edge of its complement SCLK_Ax# are used to sample the command and control signals on the SDRAM. | | SCLK_A[5:0]# | O
SSTL-1.8 | SDRAM Complementary Differential Clock : (3 per DIMM). These are the complementary differential DDR2 clock signals. | | SCS_A[3:0]# | O
SSTL-1.8 | Chip Select : (1 per Rank) These signals select particular SDRAM components during the active state. There is one chip select for each SDRAM rank. | | SMA_A[14:0] | O
SSTL-1.8 | Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM. | | SBS_A[2:0] | 0
SSTL-1.8 | Bank Select: These signals define which banks are selected within each SDRAM rank. | | | | DDR2: 1-Gb technology uses 8 banks. | | SRAS_A# | O
SSTL-1.8 | Row Address Strobe: This signal is used with SCAS_A# and SWE_A# (along with SCS_Ax#) to define the SDRAM commands. | | SCAS_A# | O
SSTL-1.8 | Column Address Strobe: This signal is used with SRAS_A# and SWE_A# (along with SCS_Ax#) to define the SDRAM commands. | | SWE_A# | O
SSTL-1.8 | Write Enable : This signal is used with SCAS_A# and SRAS_A# (along with SCS_Ax#) to define the SDRAM commands. | | SDQ_A[63:0] | I/O
SSTL-1.8 | Data Lines: SDQ_Ax signals interface to the SDRAM data bus. | | SDM_A[7:0] | O
SSTL-1.8 | Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SDM_Ax bit for every data byte lane. | | SDQS_A[7:0] | I/O
SSTL-1.8 | Data Strobes: For DDR2, SDQS_Ax, and its complement SDQS_Ax# make up a differential strobe pair. The data is captured at the crossing point of SDQS_Ax and its complement SDQS_Ax# during read and write transactions. | | SDQS_A[7:0]# | I/O
SSTL-1.8 | Data Strobe Complements: These are the complementary DDR2 strobe signals. | | SCKE_A[3:0] | O
SSTL-1.8 | Clock Enable: (1 per Rank). SCKE_Ax is used to initialize the SDRAMs during power-up, to power-down SDRAM ranks, and to place all SDRAM ranks into and out of self-refresh during Suspend-to-RAM. | | SODT_A[3:0] | O
SSTL-1.8 | On Die Termination: SODT_A[3:0] are active On-die termination control signals for DDR2 devices. | ## 2.3 DDR2 DRAM Channel B Interface | Signal Name | Туре | Description | |--------------|-----------------|---| | SCLK_B[5:0] | O
SSTL-1.8 | SDRAM Differential Clock: (3 per DIMM). SCLK_Bx and its complement, SCLK_Bx#, make a differential clock pair output. The crossing of the positive edge of SCLK_Bx and the negative edge of its complement SCLK_Bx# are used to sample the command and control signals on the SDRAM. | | SCLK_B[5:0]# | O
SSTL-1.8 | SDRAM Complementary Differential Clock: (3 per DIMM). These are the complementary differential DDR2 clock signals. | | SCS_B[3:0]# | O
SSTL-1.8 | Chip Select: (1 per Rank) These signals select particular SDRAM components during the active state. There is one chip select for each SDRAM rank | | SMA_B[14:0] | O
SSTL-1.8 | Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM. | | SBS_B[2:0] | O
SSTL-1.8 | Bank Select: These signals define which banks are selected within each SDRAM rank | | | | DDR2: 1-Gb technology uses 8 banks. | | SRAS_B# | O
SSTL-1.8 | Row Address Strobe: This signal is used with SCAS_B# and SWE_B# (along with SCS_Bx#) to define the SDRAM commands | | SCAS_B# | O
SSTL-1.8 | Column Address Strobe: This signal is used with SRAS_B# and SWE_B# (along with SCS_Bx#) to define the SDRAM commands. | | SWE_B# | O
SSTL-1.8 | Write Enable: This signal is used with SCAS_B# and SRAS_B# (along with SCS_Bx#) to define the SDRAM commands. | | SDQ_B[63:0] | I/O
SSTL-1.8 | Data Lines: SDQ_Bx signals interface to the SDRAM data bus. | | SDM_B[7:0] | O
SSTL-1.8 | Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SBDM_Bx for every data byte lane. | | SDQS_B[7:0] | I/O
SSTL-1.8 | Data Strobes: For DDR2, SDQS_Bx, and its complement ,SDQS_Bx#, make up a differential strobe pair. The data is captured at the crossing point of SDQS_Bx and its complement SDQS_Bx# during read and write transactions. | | SDQS_B[7:0]# | I/O
SSTL-1.8 | Data Strobe Complements: These are the complementary DDR2 strobe signals. | | SCKE_B[3:0] | 0
SSTL-1.8 | Clock Enable: (1 per Rank). SCKE_Bx is used to initialize the SDRAMs during power-up, to power-down SDRAM ranks, and to place all SDRAM ranks into and out of self-refresh during Suspend-to-RAM. | | SODT_B[3:0] | O
SSTL-1.8 | On Die Termination: SODT_B[3:0] are active On-die termination control signals for DDR2 devices. | ## 2.4 DDR2 DRAM Reference and Compensation | Signal Name | Туре | Description | |-------------|------
--| | SRCOMP[3:0] | I | System Memory RCOMP: | | | Α | | | SVREF | I | SDRAM Reference Voltage: Reference voltage input for DQ, | | | Α | DQS, and DQS# input signals. | | SMRCOMPVOL | I | System Memory RCOMP Reference: | | | Α | | | SMRCOMPVOH | I | System Memory RCOMP Reference: | | | Α | | # 2.5 PCI Express* Interface Signals (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) | Signal Name | Туре | Description | |---------------|----------------|---| | EXP_RXN[15:0] | I | PCI Express Receive Differential Pair (RX): | | EXP_RXP[15:0] | PCI
Express | | | EXP_TXN[15:0] | 0 | PCI Express Graphics Transmit Differential Pair (TX): | | EXP_TXP[15:0] | PCI
Express | | | EXP_COMPO | I | PCI Express Graphics Output Current Compensation: | | | Α | | | EXP_COMPI | I | PCI Express Graphics Input Current Compensation: | | | Α | | # 2.6 Analog Display Signals (Intel® 82Q965, 82Q963, 82G965 GMCH Only) **Note:** This interface and associated signals are not used on the 82P965 MCH. Contact your field representative for details on termination of the associated package balls. | Signal Name | Туре | Description | |-------------|---------------------|---| | RED | O
A | RED Analog Video Output : This signal is a CRT analog video output from the internal color palette DAC. The DAC is designed for a 37.5 ohm routing impedance, but the terminating resistor to ground will be 75 ohms (e.g., 75 ohm resistor on the board, in parallel with a 75 ohm CRT load). | | RED# | O
A | RED# Analog Output : This signal is an analog video output from the internal color palette DAC. It should be shorted to the ground plane. | | GREEN | O
A | GREEN Analog Video Output: This signal is a CRT analog video output from the internal color palette DAC. The DAC is designed for a 37.5 ohm routing impedance, but the terminating resistor to ground will be 75 ohms (e.g., 75 ohm resistor on the board, in parallel with a 75 ohm CRT load). | | GREEN# | O
A | GREEN# Analog Output: This signal is an analog video output from the internal color palette DAC. It should be shorted to the ground plane. | | BLUE | O
A | BLUE Analog Video Output: This signal is a CRT analog video output from the internal color palette DAC. The DAC is designed for a 37.5 ohm routing impedance, but the terminating resistor to ground will be 75 ohms (e.g., 75 ohm resistor on the board, in parallel with a 75 ohm CRT load). | | BLUE# | O
A | BLUE# Analog Output: This signal is an analog video output from the internal color palette DAC. It should be shorted to the ground plane. | | REFSET | O
A | Resistor Set: Set point resistor for the internal color palette DAC. A 255 ohm 1% resistor is required between REFSET and motherboard ground. | | HSYNC | O
3.3V
CMOS | CRT Horizontal Synchronization: This signal is used as the horizontal sync (polarity is programmable) or "sync interval", 3.3 V output. | | VSYNC | O
3.3V
CMOS | CRT Vertical Synchronization: This signal is used as the vertical sync (polarity is programmable) 3.3 V output. | | DDC_CLK | I/O
3.3V
CMOS | Monitor Control Clock: This signal may be used as the DDC_CLK for a secondary multiplexed digital display connector. | | DDC_DATA | I/O
3.3V
CMOS | Monitor Control Data: This signal may be used as the DDC_Data for a secondary multiplexed digital display connector. | # 2.7 Clocks, Reset, and Miscellaneous | Signal
Name | Туре | Description | |----------------|-----------|---| | HCLKP
HCLKN | I
HCSL | Differential Host Clock In: These signals receive a differential host clock from the external clock synthesizer. This clock is used by all of the (G)MCH logic that is in the Host clock domain. Memory domain clocks are also derived from this source. | | GCLKP
GCLKN | I
HCSL | Differential PCI Express* Graphics Clock In: These signals receive a differential 100 MHz serial reference clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of PCI Express. | | DREFCLKN | I | Display PLL Differential Clock In: | | DREFCLKP | HCSL | | | RSTIN# | I
HVIN | Reset In : When asserted, this signal will asynchronously reset the (G)MCH logic. This signal is connected to the PCIRST# output of the Intel® ICH8. All PCI Express Graphics Attach output signals will also tri-state compliant to <i>PCI Express* Specification Rev 1.1</i> . | | | | This input should have a Schmitt trigger to avoid spurious resets. | | | | This signal is required to be 3.3 V tolerant. | | PWROK | I
HVIN | Power OK: When asserted, PWROK is an indication to the (G)MCH that core power has been stable for at least 10 us. | | EXP_EN | I | PCI Express* SDVO Concurrent Select | | | CMOS | 0 = Only SDVO or PCI Express Operational | | | | 1 = SDVO and PCI Express operating simultaneously via PCI Express* Graphics port | | | | NOTE: For the 82Q963 GMCH and 82P965 MCH, this signal should be pulled low. | | EXP_SLR | I
CMOS | PCI Express* Static Lane Reversal/Form Factor Selection: For the 82Q965, 82G965, 82P965 (G)MCH components, this signal selects if the PCI Express lane numbers are reversed to differentiate BTX or ATX form factors. | | | | 0 = (G)MCH's PCI Express lane numbers are reversed (BTX Platforms) | | | | 1 = Normal operation (ATX Platforms) | | | | NOTE: This signal does not apply to the 82Q963 GMCH. | | ICH_SYNC# | 0 | ICH Sync: This signal is connected to the MCH_SYNCH# signal on the ICH8. | | | HVCMOS | | | Signal
Name | Туре | Description | |-------------------|-------------|---| | TEST[2:0] | I/O | In Circuit Test: These signals should be connected to test points on the motherboard. They are internally shorted to the package ground and can be used to determine if the corner balls on the (G)MCH are correctly soldered down to the motherboard. These signals should NOT connect to ground on the motherboard. If TEST[2:0] are not going to be used, they should be left as no connects | | XORTEST | I/O
GTL+ | XOR Test: As an input this signal is used for Bed of Nails testing by OEMs to execute XOR Chain test. It is used as an output for XOR chain testing. | | ALLZTEST | I/O
GTL | ALL Z Test: As an input this signal is used for Bed of Nails testing by OEMS to Execute XOR Chain test. It is used as an output for XOR chain testing. | | SDVO_CTRL
CLK | I/O
COD | Serial Digital Video Device Control Clock. This signal is not used on the 82P965 MCH. | | SDVO_CTRL
DATA | I/O
COD | Serial Digital Video Device Control Data. This signal is not used on the 82P965 MCH. | # 2.8 Direct Media Interface (DMI) | Signal Name | Туре | Description | |--------------|------|---| | DMI_RXP[3:0] | I | Direct Media Interface: Receive differential pair (Rx) | | DMI_RXN[3:0] | DMI | | | DMI_TXP[3:0] | 0 | Direct Media Interface: Transmit differential pair (Tx) | | DMI_TXN[3:0] | DMI | | # 2.9 Controller Link (CL) | Signal Name | Туре | Description | |-------------|------|---| | CL_DATA | I/O | Controller Link DATA: Data signal for the Controller Link | | | CMOS | interface | | CL_CLK | I/O | Controller Link Clock: Clock signal for the Controller Link | | | CMOS | interface | | CL_VREF | I | Controller Link VREF: Voltage refference for Controller | | | CMOS | Link | | CL_RST# | I | Controller Link RESET: | | | CMOS | | | CL_PWROK | I | Controller Link Power OK: | | | CMOS | | # 2.10 Intel[®] Serial DVO (SDVO) Interface (Intel[®] 82Q965, 82Q963, 82G965 GMCH Only) Only the 82Q965, 82G965, 82Q963 GMCHs have SDVO signals. For the 82Q965 and 82G965 GMCH, the SDVO signals are multiplexed with PCI Express signals; SDVO_CTTCLK and SDVO_CTRLDATA are the only unmultiplexed signals on the SDVO interface. For the 82Q963 GMCH, the SDVO signals are not multiplexed. | Signal Name | Туре | Description | |---------------|--------------------|---| | SDVOB_CLKN | O
PCI Express* | Serial Digital Video Channel B Clock Complement | | SDVOB_CLKP | O
PCI Express | Serial Digital Video Channel B Clock | | SDVOB_RED# | O
PCI Express | Serial Digital Video Channel C Red Complement | | SDVOB_RED | O
PCI Express | Serial Digital Video Channel C Red | | SDVOB_GREEN# | O
PCI Express | Serial Digital Video Channel B Green Complement | | SDVOB_GREEN | O
PCI Express | Serial Digital Video Channel B Green | | SDVOB_BLUE# | O
PCI Express | Serial Digital Video Channel B Blue Complement | | SDVOB_BLUE | O
PCI Express | Serial Digital Video Channel B Blue | | SDVOC_RED# | O
PCI Express | Serial Digital Video Channel C Red Complement | | SDVOC_RED | O
PCI Express | Serial Digital Video Channel C Red Channel B
Alpha | | SDVOC_GREEN# | O
PCI Express | Serial Digital Video Channel C Green Complement | | SDVOC_GREEN | O
PCI Express |
Serial Digital Video Channel C Green | | SDVOC_BLUE# | O
PCI Express | Serial Digital Video Channel C Blue Complement | | SDVOC_BLUE | O
PCI Express | Serial Digital Video Channel C Blue | | SDVOC_CLKN | O
PCI Express * | Serial Digital Video Channel C Clock Complement | | SDVOC_CLKP | O
PCI Express | Serial Digital Video Channel C Clock | | SDVO_TVCLKIN# | I
PCI Express | Serial Digital Video TVOUT Synchronization Clock Complement | | SDVO_TVCLKIN | I
PCI Express | Serial Digital Video TVOUT Synchronization Clock | | SDVOB_INT# | I
PCI Express | Serial Digital Video Input Interrupt Complement | | Signal Name | Туре | Description | |----------------|------------------|---| | SDVOB_INT | I
PCI Express | Serial Digital Video Input Interrupt | | SDVOC_INT# | I
PCI Express | Serial Digital Video Input Interrupt Complement | | SDVOC_INT | I
PCI Express | Serial Digital Video Input Interrupt | | SDVO_FLDSTALL# | I
PCI Express | Serial Digital Video Field Stall Complement. | | SDVO_FLDSTALL | I
PCI Express | Serial Digital Video Field Stall | | SDVO_CTRLCLK | I/O
COD | Serial Digital Video Device Control Clock. This signal is not used on the 82P965 MCH. | | SDVO_CTRLDATA | I/O
COD | Serial Digital Video Device Control Data. This signal is not used on the 82P965 MCH. | Table 2-2 shows the mapping of SDVO signals to the PCI Express* lanes in the various possible configurations as determined by the strapping configuration. Note that slot-reversed configurations do not apply to the Integrated-graphics only variants. Table 2-2. SDVO/PCI Express* Signal Mapping (Intel® 82Q965 and 82G965 Only) | | Configuration-wise Mapping | | | | |---------------|----------------------------|-------------------------|--|--| | SDVO Signal | SDVO Only –
Normal | SDVO Only –
Reversed | Concurrent
SDVO and PCI
Express* –
Normal | Concurrent
SDVO and PCI
Express* –
Reversed | | SDVOB_RED# | EXP_TXN0 | EXP_TXN15 | EXP_TXN15 | EXP_TXN0 | | SDVOB_RED | EXP_TXP0 | EXP_TXP15 | EXP_TXP15 | EXP_TXP0 | | SDVOB_GREEN# | EXP_TXN1 | EXP_TXN14 | EXP_TXN14 | EXP_TXN1 | | SDVOB_GREEN | EXP_TXP1 | EXP_TXP14 | EXP_TXP14 | EXP_TXP1 | | SDVOB_BLUE# | EXP_TXN2 | EXP_TXN13 | EXP_TXN13 | EXP_TXN2 | | SDVOB_BLUE | EXP_TXP2 | EXP_TXP13 | EXP_TXP13 | EXP_TXP2 | | SDVOB_CLKN | EXP_TXN3 | EXP_TXN12 | EXP_TXN12 | EXP_TXN3 | | SDVOB_CLKP | EXP_TXP3 | EXP_TXP12 | E XP_TXP12 | EXP_TXP3 | | SDVOC_RED# | EXP_TXN4 | EXP_TXN11 | EXP_TXN11 | EXP_TXN4 | | SDVOC_RED | EXP_TXP4 | EXP_TXP11 | EXP_TXP11 | EXP_TXP4 | | SDVOC_GREEN# | EXP_TXN5 | EXP_TXN10 | EXP_TXN10 | EXP_TXN5 | | SDVOC_GREEN | EXP_TXP5 | EXP_TXP10 | EXP_TXP10 | EXP_TXP5 | | SDVOC_BLUE# | EXP_TXN6 | EXP_TXN9 | EXP_TXN9 | EXP_TXN6 | | SDVOC_BLUE | EXP_TXP6 | EXP_TXP9 | EXP_TXP9 | EXP_TXP6 | | SDVOC_CLKN | EXP_TXN7 | EXP_TXN8 | EXP_TXN8 | EXP_TXN7 | | SDVOC_CLKP | EXP_TXP7 | EXP_TXP8 | EXP_TXP8 | EXP_TXP7 | | SDVO_TVCLKIN# | EXP_RXN0 | EXP_RXN15 | EXP_RXN15 | EXP_RXN0 | | SDVO_TVCLKIN | EXP_RXP0 | EXP_RXP15 | EXP_RXP15 | EXP_RXP0 | | | Configuration-wise Mapping | | | | |----------------|----------------------------|-----------|-----------|--| | SDVO Signal | SDVO Only –
Normal | | | Concurrent
SDVO and PCI
Express* –
Reversed | | SDVOB_INT# | EXP_RXN1 | EXP_RXN14 | EXP_RXN14 | EXP_RXN1 | | SDVOB_INT | EXP_RXP1 | EXP_RXP14 | EXP_RXP14 | EXP_RXP1 | | SDVOC_INT# | EXP_RXN5 | EXP_RXN10 | EXP_RXN10 | EXP_RXN5 | | SDVOC_INT | EXP_RXP5 | EXP_RXP10 | EXP_RXP10 | EXP_RXP5 | | SDVO_FLDSTALL# | EXP_RXN2 | EXP_RXN13 | EXP_RXN13 | EXP_RXN2 | | SDVO_FLDSTALL | EXP_RXP2 | EXP_RXP13 | EXP_RXP13 | EXP_RXP2 | ## 2.11 Power and Ground | Signal Name | Voltage | Description | |-------------|-------------------|---| | VCC | 1.25 V | Core Power | | VTT | 1.05 V /
1.2 V | Processor System Bus Power | | VCC_EXP | 1.25 V | PCI Express* and DMI Power | | VCCSM | 1.8 V | System Memory Power | | VCC_SMCLK | 1.8 V | System Clock Memory Power | | VCC3_3 | 3.3 V | 3.3 V CMOS Power | | VCCA_EXPPLL | 1.25 V | PCI Express PLL Analog Power | | VCCA_DPLLA | 1.25 V | Display PLL A Analog Power : For the 82P965 MCH, contact your Intel field representative for proper termination. | | VCCA_DPLLB | 1.25 V | Display PLL B Analog Power : For the 82P965 MCH, contact your Intel field representative for proper termination. | | VCCA_HPLL | 1.25 V | Host PLL Analog Power | | VCCA_MPLL | 1.25 V | System Memory PLL Analog Power | | VCCA_DAC | 3.3 V | Display DAC Analog Power | | VCCA_EXP | 3.3 V | PCI Express Analog Power | | VCCDQ_CRT | 1.5 V /
1.8 V | Display Digital Quiet Supply Power | | VCCD_CRT | 1.5 V /
1.8 V | Display Digital Supply Power | | VCC_CL | 1.25 V | Controller Link Aux Power | | VCC_CL_PLL | 1.25V | Controller Link PLL Analog Power | | VSS | 0 V | Ground | # 3 System Address Map The (G)MCH supports 64 GB (64 bit addressing) or 4 GB of addressable memory space and 64 KB+3 of addressable I/O space. There is a programmable memory address space under the 1 MB region that is divided into regions that can be individually controlled with programmable attributes (e.g., Disable, Read/Write, Write Only, or Read Only). Attribute programming is described in the Chapter 5. This chapter focuses on how the memory space is partitioned and what the separate memory regions are used for. I/O address space has simpler mapping and is explained near the end of this section. **Note:** Address mapping information for the Integrated Graphics Device applies to the 82Q965, 82Q963, and 82G965 GMCH only. The 82P965 MCH does not have an IGD. **Note:** References to PCI Express applies to the 82Q965/82G965/82P965 (G)MCH only. The 82Q963 GMCH does not support PCI Express. The HREQ[4:3] FSB signals are decoded to determine whether the access is 32 bit or 36 bit. The (G)MCH supports a maximum of 8 GB of DRAM; no DRAM memory will be accessible above 8 GB. DRAM capacity is limited by the number of address pins available. There is no hardware lock to stop someone from inserting more memory than is addressable. In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI Interface. The exception to this rule is VGA ranges, which may be mapped to PCI-Express*, DMI, or to the internal graphics device (IGD). In the absence of more specific references, cycle descriptions referencing PCI should be interpreted as the DMI Interface/PCI, while cycle descriptions referencing PCI Express or IGD are related to the PCI Express bus or the internal graphics device respectively. The reclaim base/reclaim limit registers remap logical accesses bound for addresses above 4 GB onto physical addresses that fall within DRAM. The address map includes a number of programmable ranges: - Device 0 - PXPEPBAR (82Q965, 82G965, 82P965 (G)MCH only) Egress port registers. Necessary for setting up VC1 as an isochronous channel using time based weighted round robin arbitration. (4 KB window) - MCHBAR Memory mapped range for internal(G)MCH registers. For example, memory buffer register controls. (16 KB window) - PCIEXBAR (82Q965/82G965/82P965 (G)MCH only) Flat memory-mapped address spaced to access device configuration registers. This mechanism can be used to access PCI configuration space (0h–FFh) and Extended configuration space (100h–FFFh) for PCI Express devices. - DMIBAR -This window is used to access registers associated with the (G)MCH/ICH8 Serial Interconnect (DMI) register memory range. (4 KB window) - GGC GMCH graphics control register (82Q965, 82Q963, and 82G965 GMCH only). Used to select the amount of main memory that is pre-allocated to support the internal graphics device in VGA (non-linear) and Native (linear) modes. (0–64 MB options). - Device 1 (82Q965, 82Q963, and 82G965 GMCH only) - MBASE1/MLIMIT1 PCI Express port non-prefetchable memory access window. - PMUBASE1/PMULIMIT1 PCI Express port prefetchable memory access window. - IOBASE1/IOLIMIT1 PCI Express port IO access window. - Device 2, Function 0 (82Q965, 82Q963, and 82G965 GMCH only) - MMADR IGD registers and internal graphics instruction port. (512 KB window) - IOBAR IO access window for internal graphics. Though this window address/data register pair, using I/O semantics, the IGD and internal graphics instruction port registers can be accessed. Note, this allows accessing the same registers as MMADR. In addition, the IOBAR can be used to issue writes to the GTT address table. - GMADR Internal graphics translation window (128 MB, 256 MB or 512 MB window). - GTTADR Internal graphics translation table location. (128 KB, 256 KB or 512 KB window). - Device 2, Function 1 (82Q965, 82Q963, and 82G965 GMCH only) - MMADR Function 1 IGD registers and internal graphics instruction port. (512 KB window) - Device 3, Function 0 - MEHECIBAR Function 0 HECI memory mapped registers (16 B window) - Device 3, Function 1 - MEHECIBAR Function 1 HECI2 memory mapped registers (16 B window) - Device 3, Function 2 - MEIDEPCTRLIO Function 2 I/O space used in Native Mode for the Primary Controller's Control Block (4 B window) - MEIDESCMDIO Function 2 /O space used in Native Mode for the Secondary Controller's Command Block (8 B window) - Device 3, Function 3: - MEIDESCMDIO Function 2 /O space used in Native Mode for the Secondary Controller's Command Block (8 B window) The rules for the above programmable ranges are: - 1. ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system designers responsibility to limit memory population so that adequate PCI, PCI Express, High BIOS, PCI Express memory mapped space, and APIC memory space can be allocated. - 2. In the
case of overlapping ranges with memory, the memory decode will be given priority. - There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges. - 4. Accesses to overlapped ranges may produce indeterminate results. - 5. The only peer-to-peer cycles allowed below the top of Low Usable memory (register TOLUD) are DMI Interface to PCI Express VGA range writes. Note that peer to peer cycles to the Internal Graphics VGA range are not supported. Figure 3-1 represents system memory address map in a simplified form. Figure 3-1. System Address Ranges #### NOTES: - 1. References to Internal Graphics Device/address ranges are for the 82Q965, 82Q963, and 82G965 GMCH only. - References to PCI Express devices/address ranges are for the 82Q965, 82G965, 82P965 (G)MCH only. ## 3.1 Legacy Address Range This area is divided into the following address regions: - 0 640 KB: DOS Area - 640 768 KB: Legacy Video Buffer Area - 768 896 KB in 16 KB sections (total of 8 sections): Expansion Area - 896 960 KB in 16 KB sections (total of 4 sections): Extended System BIOS Area - 960 KB 1 MB Memory: System BIOS Area Figure 3-2. DOS Legacy Address Range ## 3.1.1 DOS Range (0h – 9_FFFFh) The DOS area is $640 \text{ KB} (0000_0000h - 0009_FFFFh})$ in size and is always mapped to the main memory controlled by the (G)MCH. #### 3.1.2 Legacy Video Area (A_0000h-B_FFFFh) The legacy 128KB VGA memory range, frame buffer, (000A_0000h - 000B_FFFFh) can be mapped to Device 2 IGD (82Q965, 82Q963, 82G965 GMCH only), to Device 1 PCI Express(82Q965, 82G965, 82P965 (G)MCH only), and/or to the DMI Interface. The appropriate mapping depends on which devices are enabled and the programming of the VGA steering bits. Based on the VGA steering bits, priority for VGA mapping is constant. The (G)MCH always decodes internally mapped devices first. Internal to the 82Q965, 82Q963, 82G965 GMCH, decode precedence is always given to IGD. The (G)MCH always positively decodes internally mapped devices, namely the IGD and PCI-Express. Subsequent decoding of regions mapped to PCI Express or the DMI Interface depends on the Legacy VGA configuration bits (VGA Enable & MDAP). This region is also the default for SMM space. #### Compatible SMRAM Address Range (A_0000h-B_FFFFh) When compatible SMM space is enabled, SMM-mode processor accesses to this range are routed to physical system DRAM at 000A_0000h – 000B_FFFFh. Non-SMM-mode processor accesses to this range are considered to be to the Video Buffer Area as described above. PCI Express and DMI originated cycles to enabled SMM space are not allowed and are considered to be to the Video Buffer Area if IGD is not enabled as the VGA device. PCI Express and DMI initiated cycles are attempted as Peer cycles, and will master abort on PCI if no external VGA device claims them. #### Monochrome Adapter (MDA) Range (B_0000h-B_7FFFh) Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to IGD, PCI-Express, or the DMI Interface (depending on configuration bits). Since the monochrome adapter may be mapped to anyone of these devices, the (G)MCH must decode cycles in the MDA range (000B_0000h - 000B_7FFFh) and forward either to IGD (82Q965, 82Q963, 82G965 GMCH only), PCI-Express (82Q965, 82G965, 82P965 (G)MCH only), or the DMI Interface. This capability is controlled by a VGA steering bits and the legacy configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the (G)MCH decodes IO cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to the either IGD, PCI-Express, and/or the DMI Interface. #### 3.1.3 Expansion Area (C_0000h-D_FFFFh) This 128 KB ISA Expansion region (000C_0000h - 000D_FFFFh) is divided into eight 16 KB segments. Each segment can be assigned one of four read/write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through (G)MCH and are subtractive decoded to ISA space. Memory that is disabled is not remapped. Non-snooped accesses from PCI Express or DMI to this region are always sent to system memory. **Table 3-1. Expansion Area Memory Segments** | Memory Segments | Attributes | Comments | |-------------------|------------|-------------| | 0C0000h - 0C3FFFh | WE, RE | Add-on BIOS | | 0C4000h - 0C7FFFh | WE, RE | Add-on BIOS | | 0C8000h - 0CBFFFh | WE, RE | Add-on BIOS | | 0CC000h - 0CFFFFh | WE, RE | Add-on BIOS | | 0D0000h - 0D3FFFh | WE, RE | Add-on BIOS | | 0D4000h - 0D7FFFh | WE, RE | Add-on BIOS | | 0D8000h - 0DBFFFh | WE, RE | Add-on BIOS | | 0DC000h - 0DFFFFh | WE, RE | Add-on BIOS | #### 3.1.4 Extended System BIOS Area (E_0000h-E_FFFFh) This 64 KB area (000E_0000h - 000E_FFFFh) is divided into four 16 KB segments. Each segment can be assigned independent read and write attributes so it can be mapped either to main DRAM or to DMI Interface. Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped elsewhere. Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM. Table 3-2. Extended System BIOS Area Memory Segments | Memory Segments | Attributes | Comments | |-------------------|------------|----------------| | 0E0000h - 0E3FFFh | WE, RE | BIOS Extension | | 0E4000h - 0E7FFFh | WE, RE | BIOS Extension | | 0E8000h - 0EBFFFh | WE, RE | BIOS Extension | | 0EC000h - 0EFFFFh | WE, RE | BIOS Extension | #### 3.1.5 System BIOS Area (F_0000h-F_FFFFh) This area is a single 64 KB segment (000F_0000h - 000F_FFFFh). This segment can be assigned read and write attributes. It is by default (after reset) read/write disabled and cycles are forwarded to DMI Interface. By manipulating the read/write attributes, the (G)MCH can "shadow" BIOS into the main DRAM. When disabled, this segment is not remapped. Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM. Table 3-3. System BIOS Area Memory Segments | Memory Segments | Attributes | Comments | |-------------------|------------|-----------| | 0F0000h - 0FFFFFh | WE, RE | BIOS Area | #### 3.1.6 PAM Memory Area Details The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM Memory Area. The (G)MCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all memory residing on DMI should be set as non-cacheable, there will normally not be IWB cycles targeting DMI. However, DMI becomes the default target for processor and DMI originated accesses to disabled segments of the PAM region. If the MTRRs covering the PAM regions are set to writeback (WB) or RD it is possible to get IWB cycles targeting DMI. This may occur for processor-originated cycles (in a dual-processor system) and for DMI-originated cycles to disabled PAM regions. For example, say that a particular PAM region is set for "Read Disabled" and the MTRR associated with this region is set to WB. A DMI master generates a memory read targeting the PAM region. A snoop is generated on the FSB and the result is an IWB. Since the PAM region is "Read Disabled" the default target for the Memory Read becomes DMI. The IWB associated with this cycle will cause the (G)MCH to hang. ### 3.1.7 Legacy Interrupt Routing Table 3-4. Specifics of Legacy Interrupt Routing | Interrupt Source | Default Interrupt A/B/C/D | |--|---| | Internal Graphics D2:F0 (82Q965, 82Q963, and 82G965 GMCH only) | А | | PEG (External Graphics Device) | Function of what is defined in
Interrupt Pin register of the PEG
device | | PEG (Internally generated Interrupt) D1:F0 | А | | ME (HECI) D3, F0 (82Q965 and 82Q963 GMCH only) | С | | ME (IDER) D3, F2 (82Q965 and 82Q963 GMCH only) | В | | ME (KT) D3, F3 (82Q965 and 82Q963 GMCH only) | А | ## 3.2 Main Memory Address Range (1 MB – TOLUD) This address range extends from 1 MB to the top of Low Usable physical memory that is permitted to be accessible by the (G)MCH (as programmed in the TOLUD register). All accesses to addresses within this range will be forwarded by the (G)MCH to main memory unless it falls into the optional TSEG, optional ISA Hole, or optional IGD stolen VGA memory. Figure 3-3. Main Memory Address Range #### NOTES: - 1. References to Internal Graphics Device/address ranges are for the 82Q965, 82Q963, and 82G965 GMCH only. - References to PCI Express devices/address ranges are for the 82Q965, 82G965, 82P965 (G)MCH only. #### 3.2.1 ISA Hole (15 MB – 16 MB) A hole can be created at 15 MB–16 MB as controlled by the fixed hole enable in Device 0 space. Accesses within this hole are forwarded to the DMI Interface. The range of physical DRAM memory disabled by opening the hole is not remapped to the top of the memory – that physical DRAM space is not accessible. This 15 MB–16 MB hole is an optionally enabled ISA hole. #### 3.2.2 TSEG TSEG size is optionally 1 MB, 2 MB, or 8 MB. For the 82Q965, 82Q963, and 82G965 GMCH. TSEG is below IGD stolen memory, which is at the top of Low Usable physical memory (TOLUD). SMM-mode processor accesses to enabled TSEG access the physical DRAM at the same address. Non-processor originated accesses are not allowed to SMM space. PCI-Express, DMI, and IGD originated cycle to enabled SMM space are handled as invalid cycle type with reads and writes to location 0 and byte enables turned off for writes. When the extended SMRAM space is enabled, processor accesses to the TSEG range without SMM attribute or without WB attribute are also forwarded to memory as invalid accesses (see Table 3-5). Non-SMM-mode writeback cycles that target TSEG space are completed to main memory for cache coherency. When SMM is enabled, the maximum amount of memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG register which is fixed at 1 MB, 2 MB, or 8 MB. ### 3.2.3 Pre-allocated Memory Voids of physical
addresses that are not accessible as general system memory and reside within system memory address range (< TOLUD) are created for SMM-mode and legacy VGA graphics compatibility. It is the responsibility of BIOS to properly initialize these regions. Table 3-5 details the location and attributes of the regions. Enabling/Disabling these ranges are described in the (G)MCH Control register (GCC register, device 0, offset 52h). Table 3-5. Pre-allocated Memory Example for 64 MB DRAM, 1 MB VGA, and 1 MB TSEG | Memory
Segments | Attributes | Comments | |----------------------------|------------------------------------|---| | 0000_0000h -
03DF_FFFFh | R/W | Available System Memory 62 MB | | 03E0_0000h -
03EF_FFFFh | SMM Mode Only -
Processor Reads | TSEG Address Range & Pre-allocated Memory | | 03F0_0000h -
03FF_FFFFh | R/W | Pre-allocated Graphics VGA memory. 1 MB (or 4/8/16/32/64 MB) when IGD is enabled on the 82Q965, 82Q963, 82G965 GMCH. | ### 3.3 PCI Memory Address Range (TOLUD – 4 GB) This address range, from the top of low usable DRAM (TOLUD) to 4 GB is normally mapped to the DMI Interface. With PCI Express* port (82Q965, 82G965, 82P965 (G)MCH), there is one exceptions to this rule. Addresses decoded to the PCI Express Memory Window defined by the MBASE1, MLIMIT1, registers are mapped to PCI Express. Note: AGP Aperture no longer exists with PCI-Express. In a Manageability Engine configuration, there is the following exception to this rule. • Addresses decoded to the ME Keyboard and Text MMIO range (EPKTBAR) There are other MMIO Bars that may be mapped to this range or to the range above TOUUD. There are sub-ranges within the PCI Memory address range defined as APIC Configuration Space, FSB Interrupt Space, and High BIOS Address Range. The exceptions listed above for internal graphics and the PCI Express ports **MUST NOT** overlap with these ranges. Figure 3-4. PCI Memory Address Range #### 3.3.1 APIC Configuration Space (FECO_0000h_FECF_FFFFh) This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the ICH8 portion of the chipset, but may also exist as stand-alone components like PXH. The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play software, fixed address decode regions have been allocated for them. Processor accesses to the default IOAPIC region (FEC0_0000h to FEC7_FFFFh) are always forwarded to DMI. The (G)MCH optionally supports additional I/O APICs behind the PCI Express "Graphics" port (82Q965, 82G965, 82P965 (G)MCH only). When enabled via the PCI Express Configuration register (Device 1, offset 200h), the PCI Express port will positively decode a subset of the APIC configuration space – specifically FEC8_0000h thru FECF_FFFFh. Memory request to this range will then be forwarded to the PCI Express port. This mode is intended for the entry Workstation/Server components of the (G)MCH, and would be disabled in typical Desktop systems. When disabled, any access within entire APIC Configuration space (FEC0_0000h to FECF_FFFFh) is forwarded to DMI. #### 3.3.2 HSEG (FEDA_0000h-FEDB_FFFFh) This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window to SMM Memory. It is sometimes called the High SMM memory space. SMM-mode processor accesses to the optionally enabled HSEG are remapped to 000A_0000h - 000B_FFFFh. Non-SMM-mode processor accesses to enabled HSEG are considered invalid and are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode writeback cycles that are remapped to SMM space to maintain cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not allowed. Physical DRAM behind the HSEG transaction address is not remapped and is not accessible. All cacheline writes with WB attribute or Implicit writebacks to the HSEG range are completed to DRAM like an SMM cycle. ## 3.3.3 FSB Interrupt Memory Space (FEE0_0000-FEEF_FFFF) The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI Express or DMI may issue a Memory Write to 0FEEx_xxxxh. The (G)MCH will forward this Memory Write along with the data to the FSB as an Interrupt Message Transaction. The (G)MCH terminates the FSB transaction by providing the response and asserting HTRDYB. This memory write cycle does not go to main memory. #### 3.3.4 High BIOS Area The top 2 MB (FFE0_0000h - FFFF_FFFFh) of the PCI memory address range is reserved for system BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The processor begins execution from the High BIOS after reset. This region is mapped to DMI interface so that the upper subset of this region aliases to 16 MB-256 KB range. The actual address space required for the BIOS is less than 2 MB; however, the minimum processor MTRR range for this region is 2 MB so that full 2 MB must be considered. ### 3.4 Main Memory Address Space (4 GB to TOUUD) The (G)MCH supports 36-bit addressing. The maximum main memory size supported is 8 GB total DRAM memory. A hole between TOLUD and 4 GB occurs when main memory size approaches 4 GB or larger. As a result, TOM, and TOUUD registers and RECLAIMBASE/RECLAIMLIMIT registers become relevant. The new reclaim configuration registers exist to reclaim lost main memory space. The "greater than 32 bit reclaim handling" will be handled similar to previous (G)MCHs. Upstream read and write accesses above 36-bit addressing will be treated as invalid cycles by PCI Express and DMI. #### **Top of Memory** The "Top of Memory" (TOM) register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped IO above TOM). TOM is used to allocate Manageability Engine (ME) stolen memory. The Manageability Engine's stolen size register reflects the total amount of physical memory stolen by the ME. The ME stolen memory is located at the top of physical memory. The ME stolen memory base is calculated by subtracting the amount of memory stolen by ME from TOM. The Top of Upper Usable DRAM (TOUUD) register reflects the total amount of addressable DRAM. If reclaim is disabled, TOUUD will reflect TOM minus ME's stolen size. If reclaim is enabled, then it will reflect the reclaim limit. Also, the reclaim base will be the same as TOM minus ME stolen memory size to the nearest 64 MB alignment. The TOLUD register is restricted to 4 GB memory (A[31:20]), but the (G)MCH can support up to 16 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOUUD register helps identify the address range in between the 4 GB boundary and the top of physical memory. This identifies memory that can be directly accessed (including reclaim address calculation) that is useful for memory access indication, early path indication, and trusted read indication. When reclaim is enabled, TOLUD must be 64 MB aligned, but when reclaim is disabled, TOLUD can be 1 MB aligned. C1DRB3 cannot be used directly to determine the effective size of memory as the values programmed in the DRBs depend on the memory mode (Flex memory mode, interleaved). The Reclaim Base/Limit registers also can not be used because reclaim can be disabled. The C0DRB3 register is used for memory channel identification (channel 0 vs. channel 1) in the case of Flex memory mode operation. #### 3.4.1 Memory Re-claim Background The following are examples of memory-mapped I/O devices that are typically located below 4 GB: - High BIOS - HSEG - TSEG - · Graphics stolen - XAPIC - Local APIC - FSB Interrupts - Mbase/Mlimit - Memory-mapped I/O space that supports only 32B addressing The (G)MCH provides the capability to re-claim the physical memory overlapped by the memory-mapped I/O logical address space. The (G)MCH re-maps physical memory from the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent sized logical address range located just below the Manageability Engine's stolen memory. #### 3.4.2 Memory Reclaiming An incoming address (referred to as a logical address) is checked to see if it falls in the memory re-map window. The bottom of the re-map window is defined by the value in the RECLAIMBASE register. The top of the re-map window is defined by the value in the RECLAIMLIMIT register. An address that falls within this window is reclaimed to the physical memory starting at the address defined by the TOLUD register. The TOLUD register must be 64 MB aligned when RECLAIM is enabled, but can be 1 MB aligned when reclaim is disabled. # 3.5 PCI Express* Configuration Address Space (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) The PCIEXBAR registers (Device 0, Function 0 defines the base address for the configuration space associated with all devices and functions that are potentially a part of the PCI Express root complex hierarchy. The size of this range is programmable. BIOS must assign this address range such that it will not conflict with any other address ranges. See Chapter 6 for more details. # 3.6 PCI Express* Graphics Attach (PEG) (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) The (G)MCH can be programmed to direct memory accesses to the PCI Express interface when addresses are within either of two ranges specified via registers in (G)MCH's Device 1 configuration space. - The first range is controlled via the Memory Base Register (MBASE) and Memory Limit Register (MLIMIT) registers. - The second range is controlled via the Pre-fetchable Memory Base (PMBASE) and Pre-fetchable Memory Limit (PMLIMIT) registers. Conceptually, address decoding for each range follows the same basic concept. The top 12 bits of the respective Memory Base and Memory Limit registers correspond to
address bits 31:20 of a memory address. For the purpose of address decoding, the (G)MCH assumes that address bits 19:0 of the memory base are zero and that address bits 19:0 of the memory limit address are FFFFFh. This forces each memory address range to be aligned to 1 MB boundary and to have a size granularity of 1 MB. The (G)MCH positively decodes memory accesses to PCI Express memory address space as defined by the following equations: Memory_Base_Address ≤ Address ≤ Memory_Limit_Address $Prefetchable_Memory_Base_Address \leq Address \leq Prefetchable_Memory_Limit_Address$ The window size is programmed by the plug-and-play configuration software. The window size depends on the size of memory claimed by the PCI Express device. Normally these ranges will reside above the Top-of-Low Usable-DRAM and below High BIOS and APIC address ranges. They MUST reside above the top of low memory (TOLUD) if they reside below 4 GB and MUST reside above top of upper memory (TOUUD) if they reside above 4 GB, or they will steal physical DRAM memory space. It is essential to support a separate Pre-fetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining. Note that the (G)MCH Device 1 memory range registers described above are used to allocate memory address space for any PCI Express devices sitting on PCI Express that require such a window. The PCICMD1 register can override the routing of memory accesses to PCI Express. Thus, the memory access enable bit must be set in the device 1 PCICMD1 register to enable the memory base/limit and pre-fetchable base/limit windows. The upper PMUBASE1/PMULIMIT1 registers have been implemented for PCI Express Specification compliance. The (G)MCH's 36 bit addressing locates MMIO space above 4 GB using these registers. # 3.7 Graphics Memory Address Ranges (Intel® 82Q965, 82Q963, 82G965 GMCH Only) The (G)MCH can be programmed to direct memory accesses to the IGD when addresses are within any of five ranges specified via registers in (G)MCH's Device 2 configuration space. - 1. The Memory Map Base Register (MMADR) is used to access graphics control registers. - 6. The Graphics Memory Aperture Base Register (GMADR) is used to access graphics memory allocated via the graphics translation table. - 7. The Graphics Translation Table Base Register (GTTADR) is used to access the translation table. - 8. The LT Graphics Memory Aperture Base Register (TGABAR) is used to access protected graphics memory allocated via the graphics translation table. - 9. The LT Graphics Translation Table Base Register (TGGTT) is used to access the protected translation table. These ranges can reside above the Top-of-Low-DRAM and below High BIOS and APIC address ranges or above Top of upper DRAM (TOUUD). They MUST reside above the top of memory (TOLUD) and below 4 GB or above TOUUD so they do not steal any physical DRAM memory space. GMADR is a Prefetchable range in order to apply the USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining. ### 3.8 System Management Mode (SMM) System Management Mode uses main memory for System Management RAM (SMM RAM). The (G)MCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of Memory Segment (TSEG). System Management RAM space provides a memory area that is available for the SMI handlers and code and data storage. This memory resource is normally hidden from the system OS so that the processor has immediate access to this memory space upon entry to SMM. (G)MCH provides three SMRAM options: - Below 1 MB option that supports compatible SMI handlers. - Above 1 MB option that allows new SMI handlers to execute with writeback cacheable SMRAM. - Optional TSEG area of 1 MB, 2 MB, or 8 MB in size. For the 82Q965, 82Q963, and 82G965 GMCH, the TSEG area lies below IGD stolen memory. The above 1 MB solutions require changes to compatible SMRAM handlers code to properly execute above 1 MB. Note: DMI Interface and PCI Express masters are not allowed to access the SMM space. #### 3.8.1 SMM Space Definition SMM space is defined by its **addressed** SMM space and its DRAM SMM space. The addressed SMM space is defined as the range of bus addresses used by the processor to access SMM space. DRAM SMM space is defined as the range of physical DRAM memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High and TSEG. The Compatible and TSEG SMM space is not remapped and therefore the addressed and DRAM SMM space is the same address range. Since the High SMM space is remapped the addressed and DRAM SMM space is a different address range. Note that the High DRAM space is the same as the Compatible Transaction Address space. Table 3-6 describes three unique address ranges. Table 3-6. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and 1-MB TSEG | SMM Space
Enabled | Transaction Address Space | DRAM Space (DRAM) | |----------------------|---|--| | Compatible | 000A_0000h to 000B_FFFFh | 000A_0000h to 000B_FFFFh | | High | FEDA_0000h to FEDB_FFFFh | 000A_0000h to 000B_FFFFh | | TSEG | (TOLUD - STOLEN ¹ - TSEG) to
(TOLUD - STOLEN ¹) | (TOLUD – STOLEN 1 – TSEG) to (TOLUD – STOLEN 1) | #### NOTES: 1. STOLEN memory is only for the 82Q965, 82Q963, and 82G965 GMCH. #### 3.8.2 SMM Space Restrictions If any of the following conditions are violated, the results of SMM accesses are unpredictable and may cause the system to hang: - 1. The Compatible SMM space **must not** be set up as cacheable. - 2. High or TSEG SMM transaction address space **must not** overlap address space assigned to system DRAM, or to any "PCI" devices (including DMI Interface, PCI-Express, and graphics devices). This is a BIOS responsibility. - 3. Both D_OPEN and D_CLOSE must not be set to 1 at the same time. - 4. When TSEG SMM space is enabled, the TSEG space **must not** be reported to the OS as available DRAM. This is a BIOS responsibility. - 5. Any address translated through the GMADR TLB must not target DRAM from A_0000h-F_FFFFh. #### 3.8.3 SMM Space Combinations When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1), the Compatible SMM space is effectively disabled. Processor-originated accesses to the Compatible SMM space are forwarded to PCI Express if VGAEN=1 (also depends on MDAP); otherwise, they are forwarded to the DMI Interface. PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space. Table 3-7. SMM Space Table | Global Enable
G_SMRAME | High Enable
H_SMRAM_EN | TSEG Enable
TSEG_EN | Compatible
(C) Range | High (H)
Range | TSEG (T)
Range | |---------------------------|---------------------------|------------------------|-------------------------|-------------------|-------------------| | 0 | Х | X | Disable | Disable | Disable | | 1 | 0 | 0 | Enable | Disable | Disable | | 1 | 0 | 1 | Enable | Disable | Enable | | 1 | 1 | 0 | Disabled | Enable | Disable | | 1 | 1 | 1 | Disabled | Enable | Enable | #### 3.8.4 SMM Control Combinations The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows software to write to the SMM ranges without being in SMM mode. BIOS software can use this bit to initialize SMM code at powerup. The D_LCK bit limits the SMM range access to only SMM mode accesses. The D_CLS bit causes SMM data accesses to be forwarded to the DMI Interface or PCI Express . The SMM software can use this bit to write to video memory while running SMM code out of DRAM. Table 3-8. SMM Control Table | G_SMRAME | D_LCK | D_CLS | D_OPEN | Processor in SMM Mode | SMM Code
Access | SMM Data
Access | |----------|-------|-------|--------|-----------------------|--------------------|--------------------| | 0 | х | Х | х | х | Disable | Disable | | 1 | 0 | Х | 0 | 0 | Disable | Disable | | 1 | 0 | 0 | 0 | 1 | Enable | Enable | | 1 | 0 | 0 | 1 | х | Enable | Enable | | 1 | 0 | 1 | 0 | 1 | Enable | Disable | | 1 | 0 | 1 | 1 | x | Invalid | Invalid | | 1 | 1 | Х | х | 0 | Disable | Disable | | 1 | 1 | 0 | х | 1 | Enable | Enable | | 1 | 1 | 1 | х | 1 | Enable | Disable | #### 3.8.5 SMM Space Decode and Transaction Handling Only the processor is allowed to access SMM space. PCI Express and DMI Interface originated transactions are not allowed to SMM space. The following tables indicate the action taken by the (G)MCH when the accesses to the various enabled SMM space occurs. # 3.8.6 Processor WB Transaction to an Enabled SMM Address Space Processor writeback transactions (REQa[1]#=0) to enabled SMM address space must be written to the associated SMM DRAM even though D_OPEN=0 and the transaction is not performed in SMM mode. This ensures SMM space cache coherency when cacheable extended SMM space is used. # 3.8.7 SMM Access Through GTT TLB (Intel® 82Q965, 82Q963, 82G965 GMCH Only) Accesses through GTT TLB address translation to enabled SMM DRAM space are not allowed. Writes will be routed to memory address 000C_0000h with byte enables deasserted and reads will be routed to memory address 000C_0000h. If a GTT TLB translated address hits enabled SMM DRAM space, an error is recorded. PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space directly or through the GTT TLB address translation. If a GTT TLB translated address hits enabled SMM DRAM space, an error is recorded. PCI Express and DMI Interface write accesses through GMADR range will be snooped. Assesses to GMADR linear range are supported. PCI Express and DMI interface tileY and tileX writes to GMADR are not supported. If, when translated, the resulting physical address is to enabled SMM DRAM space, the request will be remapped to address 000C_0000h with de-asserted byte enables.
PCI Express and DMI Interface read accesses to the GMADR range are not supported; therefore, will have no address translation concerns. PCI Express and DMI interface reads to GMADR will be remapped to address 000C_0000h. The read will complete with UR (unsupported request) completion status. GTT fetches are always decoded (at fetch time) to ensure not in SMM (actually, anything above base of TSEG or 640 KB-1 MB). Thus, they will be invalid and go to address 000C_0000h. This is not specific to PCI Express or DMI; it applies to processor or internal graphics engines. Also, since the GMADR snoop would not be directly to the SMM space, there would not be a writeback to SMM. In fact, the writeback would also be invalid (because it uses the same translation) and go to address 000C_0000h. ### 3.9 Memory Shadowing Any block of memory that can be designated as read-only or write-only can be "shadowed" into (G)MCH DRAM memory. Typically this is done to allow ROM code to execute more rapidly out of main DRAM. ROM is used as a read-only during the copy process while DRAM at the same time is designated write-only. After copying, the DRAM is designated read-only so that ROM is shadowed. Processor bus transactions are routed accordingly. ### 3.10 I/O Address Space The (G)MCH does not support the existence of any other I/O devices beside itself on the processor bus. The (G)MCH generates either DMI interface or PCI Express (82Q965, 82G965, 82P965 (G)MCH only) bus cycles for all processor I/O accesses that it does not claim. Within the host bridge, the (G)MCH contains two internal registers in the processor I/O space, Configuration Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA). These locations are used to implement configuration space access mechanism. The processor allows 64K+3 bytes to be addressed within the I/O space. The (G)MCH propagates the processor I/O address without any translation on to the destination bus and therefore provides addressability for 64K+3 byte locations. Note that the upper 3 locations can be accessed only during I/O address wraparound when processor bus HA16# address signal is asserted. HA16# is asserted on the processor bus whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HA16# is also asserted when an I/O access is made to 2 bytes from address 0FFFFh. A set of I/O accesses (other than ones used for configuration space access) are consumed by the internal graphics device, if it is enabled (82Q965, 82Q963, 82G965 GMCH only). The mechanisms for internal graphics I/O decode and the associated control is explained later. The I/O accesses (other than ones used for configuration space access) are forwarded normally to the DMI interface bus, unless they fall within the PCI Express I/O address range as defined by the mechanisms explained below. I/O writes are NOT posted. Memory writes to ICH8 or PCI Express are posted. For the 82Q965, 82G965, 82P965 (G)MCH, the PCICMD1 register can disable the routing of I/O cycles to the PCI Express. The (G)MCH responds to I/O cycles initiated on PCI Express or DMI with an UR status. Upstream I/O cycles and configuration cycles should never occur. If one does occur, the request will route as a read to memory address 000C_0000h so a completion is naturally generated (whether the original request was a read or write). The transaction will complete with an UR completion status. For Pentium 4 processors, I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from the processor as 1 transaction. The (G)MCH will break this into 2 separate transactions. I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries are assumed to be split into 2 transactions by the processor. # 3.10.1 PCI Express* I/O Address Mapping (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) The (G)MCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface when processor-initiated I/O cycle addresses are within the PCI Express I/O address range. This range is controlled via the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) registers in (G)MCH Device 1 configuration space. Address decoding for this range is based on the following concept. The top 4 bits of the respective I/O Base and I/O Limit registers correspond to address bits 15:12 of an I/O address. For the purpose of address decoding, the (G)MCH assumes that lower 12 address bits 11:0 of the I/O base are zero and that address bits 11:0 of the I/O limit address are FFFh. This forces the I/O address range alignment to 4 KB boundary and produces a size granularity of 4 KB. The (G)MCH positively decodes I/O accesses to PCI Express I/O address space as defined by the following equation: I/O_Base_Address ≤ Processor I/O Cycle Address ≤ I/O_Limit_Address The effective size of the range is programmed by the plug-and-play configuration software and it depends on the size of I/O space claimed by the PCI Express device. The (G)MCH also forwards accesses to the Legacy VGA I/O ranges according to the settings in the Device 1 configuration registers BCTRL (VGA Enable bit) and PCICMD1 (IOAE1 bit), unless a second adapter (monochrome) is present on the DMI interface/PCI (or ISA). The presence of a second graphics adapter is determined by the MDAP configuration bit. When MDAP is set, the (G)MCH will decode legacy monochrome I/O ranges and forward them to the DMI Interface. The I/O ranges decoded for the monochrome adapter are 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, and 3BFh. Note that the (G)MCH Device 1 I/O address range registers defined above are used for all I/O space allocation for any devices requiring such a window on PCI-Express. The PCICMD1 register can disable the routing of I/O cycles to PCI-Express. # 3.11 (G)MCH Decode Rules and Cross-Bridge Address Mapping VGAA = 000A_0000h - 000A_FFFFh MDA = 000B_0000h - 000B_7FFFh VGAB = 000B_8000h - 000B_FFFFh MAINMEM = 0100_0000h to TOLUD HIGHMEM = 4 GB to TOM RECLAIMMEM = RECLAIMBASE to RECLAIMLIMIT ### 3.11.1 Legacy VGA and I/O Range Decode Rules The legacy 128 KB VGA memory range 000A_0000h-000B_FFFFh can be mapped to IGD (Device 2), to PCI Express (Device 1), and/or to the DMI Interface depending on the programming of the VGA steering bits. Priority for VGA mapping is constant in that the (G)MCH always decodes internally mapped devices first. Internal to the 82Q965, 82Q963, and 82G965 GMCH, decode precedence is always given to IGD. The (G)MCH always positively decodes internally mapped devices, namely the IGD and PCI-Express. Subsequent decoding of regions mapped to PCI Express or the DMI Interface depends on the Legacy VGA configurations bits (VGA Enable and MDAP). § # 4 (G)MCH Register Description The (G)MCH contains two sets of software accessible registers, accessed via the Host processor I/O address space: Control registers and internal configuration registers. - Control registers are I/O mapped into the processor I/O space, which control access to PCI and PCI Express configuration space (see section entitled I/O Mapped Registers). - Internal configuration registers residing within the (G)MCH are partitioned into logical device register sets ("logical" since they reside within a single physical device). One register set is dedicated to Host Bridge functionality (i.e., DRAM configuration, other chipset operating parameters and optional features). For the 82Q965/82G965/82P965 (G)MCH, there is a register block dedicated to Host-PCI Express Bridge functions (controls PCI Express interface configurations and operating parameters). For the 82Q965/82Q963/82G965 GMCH, there is a register block for the internal graphics functions. The (G)MCH internal registers (I/O Mapped, Configuration and PCI Express Extended Configuration registers) are accessible by the Host processor. The registers that reside within the lower 256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONFIG_ADDRESS, which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field). Registers which reside in bytes 256 through 4095 of each device may only be accessed using memory mapped transactions in DWord (32-bit) quantities. Some of the (G)MCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note the software does not need to perform read, merge, and write operation for the configuration address register. In addition to reserved bits within a register, the (G)MCH contains address locations in the configuration space of the Host Bridge entity that are marked either "Reserved" or "Intel Reserved". The (G)MCH responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8-, 16-, or 32-bits in size). Writes to "Reserved" registers have no effect on the (G)MCH. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads from "Intel Reserved" registers may return a non-zero value. Upon a full reset, the (G)MCH sets its entire set of internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bringing up the
system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the (G)MCH registers accordingly. # 4.1 Register Terminology The following table shows the register-related terminology that is used. | Item | Description | | | | |------------|--|--|--|--| | RO | Read Only bit(s). Writes to these bits have no effect. | | | | | RS/WC | Read Set / Write Clear bit(s). These bits are set to `1' when read and then will continue to remain set until written. A write of `1' clears (sets to `0') the corresponding bit(s) and a write of `0' has no effect. | | | | | R/W | Read / Write bit(s). These bits can be read and written. | | | | | R/WC | Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write of `1' clears (sets to `0') the corresponding bit(s) and a write of `0' has no effect. | | | | | R/WC/S | Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express* related bits a cold reset is "Power Good Reset" as defined in the PCI Express* Specification). | | | | | R/W/K | Read / Write / Key bit(s). These bits can be read and written by software. Additionally this bit when set, prohibits some other bit field(s) from being writeable (bit fields become Read Only). | | | | | R/W/L | Read / Write / Lockable bit(s). These bits can be read and written. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only). | | | | | R/W/S | Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the PCI Express* Specification). | | | | | R/WSC | Read / Write Self Clear bit(s). These bits can be read and written. When the bit is `1', hardware may clear the bit to `0' based upon internal events, possibly sooner than any subsequent read could retrieve a `1'. | | | | | R/WSC/L | Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit is `1', hardware may clear the bit to `0' based upon internal events, possibly sooner than any subsequent read could retrieve a `1'. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only). | | | | | R/WO | Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can only be cleared by a Reset. | | | | | W | Write Only. Whose bits may be written, but will always-return zeros when read. They are used for write side effects. Any data written to these registers cannot be retrieved. | | | | | B/D/F/Type | Bus/Device/Function/Type. | | | | ## 4.2 Configuration Process and Registers #### 4.2.1 Platform Configuration Structure The DMI physically connects the (G)MCH and ICH8; thus, from a configuration standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the (G)MCH and the ICH8 appear to be on PCI bus 0. **Note:** The ICH8 internal LAN controller does not appear on bus 0; it appears on the external PCI bus (whose number is configurable). The system's primary PCI expansion bus is physically attached to the ICH8 and, from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge and therefore has a programmable PCI Bus number. The PCI Express Graphics Attach appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device resident on PCI bus 0. **Note:** A physical PCI bus 0 does not exist and that DMI and the internal devices in the (G)MCH and ICH8 logically constitute PCI Bus 0 to configuration software. This is shown in Figure 4-1. PCI Configuration Window in I/O Space Host-PCI Express Bridge Bus 0, Device 1 (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) Internal Graphics Controller Bus 0, Device 2 (Intel® 82Q965, 82Q963, 82G965 GMCH Only) Direct Media Interface (DMI) Figure 4-1. Conceptual Platform PCI Configuration Diagram The (G)MCH contains four PCI devices within a single physical component. The configuration registers for the three devices are mapped as devices residing on PCI bus 0. - **Device 0: Host Bridge/DRAM Controller.** Logically, this appears as a PCI device residing on PCI bus 0. Device 0 contains the standard PCI header registers, PCI Express base address register, DRAM control (including thermal/throttling control), and configuration for the DMI and other (G)MCH specific registers. - Device 1: Host-PCI Express Bridge (82Q965, 82G965, 82P965 (G)MCH only). Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0 and is compliant with PCI Express* Specification Rev 1.1. Device 1 contains the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers (including the PCI Express memory address mapping). It also contains Isochronous and Virtual Channel controls in the PCI Express extended configuration space. - Device 2: Internal Graphics Control (82Q965, 82Q963, 82G965 GMCH only). Logically, this appears as a PCI device residing on PCI bus 0. Physically, device 2 contains the configuration registers for 3D, 2D, and display functions. - Device 3: Manageability Engine Device. Logically, this appears as a PCI device residing on PCI bus 0; physically, device 3. ### 4.3 Configuration Mechanisms The processor is the originator of configuration cycles; thus, the FSB is the only interface in the platform where these mechanisms are used. Internal to the (G)MCH transactions received through both configuration mechanisms are translated to the same format. #### 4.3.1 Standard PCI Configuration Mechanism The following is the mechanism for translating processor I/O bus cycles to configuration cycles. The PCI specification defines a slot based "configuration space" that allows each device to contain up to 8 functions with each function containing up to 256 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the (G)MCH. The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address 0CF8h though 0CFBh) and CONFIG_DATA Register (at I/O address 0CFCh though 0CFFh). To reference a configuration register a DW I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the (G)MCH translating the CONFIG_ADDRESS into the appropriate configuration cycle. The (G)MCH is responsible for translating and routing the processor's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal (G)MCH configuration registers, DMI or PCI Express. ## 4.3.2 PCI Express* Enhanced Configuration Mechanism (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) PCI Express extends the configuration space to 4096 bytes per device/function as compared to 256 bytes allowed by the PCI Specification, Revision 2.3. PCI Express configuration space is divided into a PCI 2.3 compatible region consisting of the first 256B of a logical device's configuration space and a PCI Express extended region that consists of the remaining configuration space. The PCI compatible region can be accessed using either the Standard PCI configuration mechanism or using the PCI Express enhanced configuration mechanism described in this section. The extended configuration registers may only be accessed using the PCI Express enhanced configuration mechanism. To maintain compatibility with PCI configuration addressing mechanisms, system software must access the extended configuration space using 32-bit operations (32-bit aligned) only. These 32-bit operations include byte enables allowing only appropriate bytes within the DWord to be accessed. Locked transactions to the PCI Express memory-mapped configuration address space are not supported. All changes made using either access mechanism are equivalent. The PCI Express enhanced configuration mechanism uses a flat memory-mapped address space to access device configuration registers. This address space is reported by the system firmware to the operating system. The PCI EXPRESS*XBAR register defines the base address for the block of addresses below 4 GB for the configuration space associated with busses, devices, and functions that are potentially a part of the PCI Express root complex hierarchy. Control bits In the PCI EXPRESS*XBAR register limit the size of this reserved memory mapped space; 256 MB is the amount of address space required to reserve space for every bus, device, and function that could possibly exist. Options for 128 MB and
64 MB exist in order to free up those addresses for other uses. In these cases the number of busses and all of their associated devices and functions are limited to 128 or 64 busses respectively. The PCI Express Configuration Transaction Header includes an additional 4 bits (ExtendedRegisterAddress[3:0]) between the Function Number and Register Address fields to provide indexing into the 4 KB of configuration space allocated to each potential device. For PCI Compatible Configuration Requests, the Extended Register Address field must be all zeros. Figure 4-2. Memory Map to PCI Express* Device Configuration Space As with PCI devices, each device is selected based on decoded address information that is provided as a part of the address portion of Configuration Request packets. A PCI Express device will decode all address information fields (bus, device, function and extended address numbers) to provide access to the correct register. To access this space (steps 1, 2, 3 are performed only once by BIOS): - 1. Use the PCI compatible configuration mechanism to enable the PCI Express enhanced configuration mechanism by writing 1 to bit 0 of the PCI EXPRESS*XBAR register. - 2. Use the PCI compatible configuration mechanism to write an appropriate PCI Express base address into the PCI EXPRESS*XBAR register - Calculate the host address of the register you wish to set using (PCI Express base + (bus number * 1 MB) + (device number * 32 KB) + (function number * 4 KB) + (1 B * offset within the function) = host address) - 4. Use a memory write or memory read cycle to the calculated host address to write or read that register. ## 4.4 Routing Configuration Accesses The (G)MCH supports two PCI related interfaces: DMI and PCI Express (82Q965, 82G965, 82F965). The (G)MCH is responsible for routing PCI and PCI Express configuration cycles to the appropriate device that is an integrated part of the (G)MCH or to one of these two interfaces. Configuration cycles to the ICH8 internal devices and Primary PCI (including downstream devices) are routed to the ICH8 via DMI. Configuration cycles to both the PCI Express Graphics PCI compatibility configuration space and the PCI Express Graphics extended configuration space are routed to the PCI Express Graphics port device or associated link. Figure 4-3. GMCH Configuration Cycle Flow Chart ### 4.4.1 Internal Device Configuration Accesses The (G)MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0 the configuration cycle is targeting a PCI Bus 0 device. If the targeted PCI Bus 0 device exists in the (G)MCH and is not disabled, the configuration cycle is claimed by the appropriate device. #### 4.4.2 Bridge Related Configuration Accesses Configuration accesses on PCI Express or DMI are PCI Express configuration TLPs (Transaction Layer Packets). - Bus Number [7:0] is Header Byte 8 [7:0] - Device Number [4:0] is Header Byte 9 [7:3] - Function Number [2:0] is Header Byte 9 [2:0] And special fields for this type of TLP: - Extended Register Number [3:0] is Header Byte 10 [3:0] - Register Number [5:0] is Header Byte 11 [7:2] See the PCI Express specification for more information on both the PCI 2.3 compatible and PCI Express Enhanced configuration mechanism and transaction rules. ## 4.4.2.1.1 PCI Express* Configuration Accesses (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) When the Bus Number of a type 1 Standard PCI configuration cycle or PCI Express enhanced configuration access matches the Device 1 Secondary Bus Number a PCI Express type 0 configuration TLP is generated on the PCI Express link targeting the device directly on the opposite side of the link. This should be Device 0 on the bus number assigned to the PCI Express link (likely Bus 1). The device on other side of link must be Device 0. The (G)MCH will Master Abort any type 0 configuration access to a non-zero device number. If there is to be more than one device on that side of the link, there must be a bridge implemented in the downstream device. When the Bus Number of a type 1 Standard PCI configuration cycle or PCI Express enhanced configuration access is within the claimed range (between the upper bound of the bridge device's Subordinate Bus Number register and the lower bound of the bridge device's Secondary Bus Number register) but does not match the Device 1 Secondary Bus Number, a PCI Express type 1 configuration TLP is generated on the secondary side of the PCI Express link. PCI Express Configuration Writes: - Internally the host interface unit will translate writes to PCI Express extended configuration space to configuration writes on the backbone. - Writes to extended space are posted on the FSB, but non-posted on the PCI Express or DMI (i.e., translated to configuration writes) #### 4.4.2.1.2 DMI Configuration Accesses Accesses to disabled (G)MCH internal devices, bus numbers not claimed by the Host-PCI Express bridge, or PCI Bus 0 devices not part of the (G)MCH will subtractively decode to the ICH8 and consequently be forwarded over the DMI via a PCI Express configuration TLP. If the Bus Number is zero, the (G)MCH will generate a Type 0 configuration cycle TLP on DMI. If the Bus Number is non-zero, and falls outside the range claimed by the Host-PCI Express bridge, the (G)MCH will generate a Type 1 configuration cycle TLP on DMI. The ICH8 routes configurations accesses in a manner similar to the (G)MCH. The ICH8 decodes the configuration TLP and generates a corresponding configuration access. Accesses targeting a device on PCI Bus 0 may be claimed by an internal device. The ICH8 compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its PCI-to-PCI bridges to determine if the configuration access is meant for primary PCI, or some other downstream PCI bus or PCI Express link. Configuration accesses that are forwarded to the ICH8, but remain unclaimed by any device or bridge will result in a master abort. ### 4.5 I/O Mapped Registers The (G)MCH contains two registers that reside in the processor I/O address space – the Configuration Address (CONFIG_ADDRESS) register and the Configuration Data (CONFIG_DATA) register. The Configuration Address register enables/disables the configuration space and determines what portion of configuration space is visible through the configuration data window. #### 4.5.1 CONFIG_ADDRESS—Configuration Address Register I/O Address: 0CF8h Accessed as a DW Default Value: 00000000h Access: R/W Size: 32 bits CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DWord. A Byte or Word reference will "pass through" the Configuration Address register and DMI onto the primary PCI bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended. | Bit | Access & Default | Description | |-------|------------------|--| | 31 | R/W | Configuration Enable (CFGE) | | | 0b | 0 = Disable. Accesses to PCI configuration space are disabled. | | | | 1 = Enable. Accesses to PCI configuration space are enabled. | | 30:24 | | Reserved | | Bit | Access & Default | Description | |-------|------------------|---| | 23:16 | R/W
00h | Bus Number . If the Bus Number is programmed to 00h the target of the Configuration Cycle is a PCI Bus 0 agent. If this is the case and the (G)MCH is not the target (i.e., the device number is \geq 2), then a DMI Type 0 configuration cycle is generated. | | | | If the Bus Number is non-zero, and does not fall within the ranges enumerated by device 1's Secondary Bus Number or Subordinate Bus Number Register, then a DMI Type 1 configuration cycle is generated. | | | | If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number Register of device 1, a Type 0 PCI configuration cycle will be generated on PCI Express-G. | | | | If the Bus Number is non-zero, greater than the value in the Secondary Bus Number Register of device 1 and less than or equal to the value programmed into the Subordinate Bus Number Register of device 1, a Type 1 PCI configuration cycle will be generated on PCI Express-G. | | | | This field is mapped to byte 8 [7:0] of the request header format during PCI Express Configuration cycles and A[23:16] during the DMI Type 1 configuration cycles. | | 15:11 | R/W
00h | Device Number . This field selects one agent on the PCI bus selected by the Bus Number. When the Bus Number field is 00h, the (G)MCH decodes the Device Number field. The (G)MCH is always Device Number 0 for the Host bridge entity, Device Number 1 for the Host-PCI Express entity. Therefore, when the Bus Number =0 and the Device Number equals 0, 1, or 2, the internal (G)MCH devices are selected. | | | | This field is mapped to byte 6 [7:3] of the request header format during PCI Express Configuration cycles and A [15:11] during the DMI configuration cycles. | | 10:8 | R/W
000b | Function Number . This field allows the configuration registers of a particular function in a multi-function device to be accessed. The (G)MCH ignores configuration cycles to its internal devices if the function number is not equal to 0 or 1. | | | | This field is mapped to byte 6 [2:0] of the request header format during PCI Express Configuration cycles and A[10:8] during the DMI configuration cycles. | | 7:2 | R/W
00h | Register Number. This field selects one
register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register. | | | | This field is mapped to byte 7 [7:2] of the request header format during PCI Express Configuration cycles and A[7:2] during the DMI Configuration cycles. | | 1:0 | | Reserved | ## 4.5.2 CONFIG_DATA—Configuration Data Register I/O Address: 0CFCh Default Value: 00000000h Access: R/W Size: 32 bits CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS. | Bit | Access &
Default | Description | |------|----------------------|--| | 31:0 | R/W
0000
0000h | Configuration Data Window (CDW) . If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will produce a configuration transaction using the contents of CONFIG_ADDRESS to determine the bus, device, function, and offset of the register to be accessed. | § #### (G)MCH Register Description ## 5 Host Bridge/DRAM Controller Registers (Device 0, Function 0) This chapter provides register descriptions for the Host Bridge/DRAM Controller registers, MCHBAR registers, and MEBAR registers. ## 5.1 Host Bridge/DRAM Controller Configuration Register Details (Device 0, Function 0) The DRAM Controller registers are in Device 0 (D0), Function 0 (F0). Table 5-1 provides an address map of the D0:F0 registers listed by address offset in ascending order. **Warning:** Address locations that are not listed are considered Intel Reserved registers locations. Reads to Reserved registers may return non-zero values. Writes to reserved locations may cause system failures. All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in this component are simply not included in this document. The reserved/unimplemented space in the PCI configuration header space is not documented as such in this summary. Table 5-1. DRAM Controller Register Address Map (Device 0, Function 0) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|---------------------------------|--------------------------------|----------| | 00-01h | VID | Vendor Identification | 8086h | RO | | 02-03h | DID | Device Identification | 2980h | RO | | 04-05h | PCICMD | PCI Command | 0006h | RO, R/W | | 06-07h | PCISTS | PCI Status | 0090h | RO, R/WC | | 08h | RID | Revision Identification | See
register
description | RO | | 09-0Bh | СС | Class Code | 060000h | RO | | 0Dh | MLT | Master Latency Timer | 00h | RO | | 0Eh | HDR | Header Type | 00h | RO | | 2C-2Dh | SVID | Subsystem Vendor Identification | 0000h | R/WO | | 2E-2Fh | SID | Subsystem Identification | 0000h | R/WO | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|-------------------------|--|-----------------------|---------------------------| | 34-34h | CAPPTR | Capabilities Pointer | E0h | RO | | 40-47h PXPEPBAR | | PCI Express* Egress Port Base
Address (82Q965, 82G965, 82P965
(G)MCH Only) | 00000000
0000000h | R/W, RO | | 48-4Fh | MCHBAR | (G)MCH Memory Mapped Register
Range Base | 00000000
0000000h | R/W, RO | | 52-53h | GGC | GMCH Graphics Control Register
(82Q965, 82Q963, 82G965 GMCH
Only) | 0030h | RO,
R/W/L,
R/W | | 54-57h | DEVEN | Device Enable | 000003DBh | RO,
R/W/L | | 60-67h | PCI
EXPRESS*XB
AR | PCI Express Register Range Base
Address (82Q965, 82G965, 82P965
(G)MCH Only) | 00000000E
0000000h | RW/L
R/W/K,
R/W, RO | | 68-6Fh | DMIBAR | Root Complex Register Range Base
Address | 00000000
0000000h | R/W, RO | | 90-90h | PAM0 | Programmable Attribute Map 0 | 00h | RO, R/W | | 91h | PAM1 | Programmable Attribute Map 1 | 00h | RO, R/W | | 92h | PAM2 | Programmable Attribute Map 2 | 00h | RO, R/W | | 93h | PAM3 | Programmable Attribute Map 3 | 00h | RO, R/W | | 94h | PAM4 | Programmable Attribute Map 4 | 00h | RO, R/W | | 95h | PAM5 | Programmable Attribute Map 5 | 00h | RO, R/W | | 96h PAM6 | | Programmable Attribute Map 6 | 00h | RO, R/W | | 97h | LAC | Legacy Access Control | 00h | R/W, RO | | 98-99h | REMAPBASE | Remap Base Address Register | 03FFh | RO, R/W | | 9A-9Bh | REMAPLIMIT | Remap Limit Address Register | 0000h | RO, R/W | | 9D-9Dh | SMRAM | System Management RAM Control | 02h | RO,
R/W/L,
R/W/L/K | | 9E-9Eh | ESMRAMC | Extended System Management RAM
Control | 38h | R/W/L,
R/WC, RO | | A0-A1h | ТОМ | Top of Memory | 0001h | RO,
R/W/L | | A2-A3h TOUUD | | Top of Upper Usable DRAM | 0000h | R/W/L | | A4-ABh | GBSM | Graphics Base of Stolen Memory
(82Q965/82Q963/82G965 GMCH
Only) | 00000000
0000000h | RO,
R/W/L | | AC-AFh | TSEGMB | TSEG Memory Base | 00000000h | R/W/L,
RO | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|------------------------|------------------------------|---------------| | B0-B1h | TOLUD | Top of Low Usable DRAM | 0010h | R/W/L,
RO | | C8-C9h | ERRSTS | Error Status | 0000h | RO,
R/WC/S | | CA-CBh | ERRCMD | Error Command | 0000h | RO, R/W | | CC-CDh | SMICMD | SMI Command | 0000h | RO, RW | | DC-DFh | SKPD | Scratchpad Data | 00000000h | R/W | | E0-E9h | CAPID0 | Capability Identifier | 00000000
000010900
09h | RO | #### 5.1.1 VID—Vendor Identification B/D/F/Type: 0/0/0/PCI Address Offset: 00-01h Default Value: 8086h Access: RO Size: 16 bits This register combined with the Device Identification register uniquely identifies any PCI device. | Bit | Access & Default | Description | |------|------------------|---| | 15:0 | RO
8086h | Vendor Identification Number (VID): This field is the PCI standard identification for Intel. | #### 5.1.2 DID—Device Identification B/D/F/Type: 0/0/0/PCI Address Offset: 02-03h Default Value: 2980h Access: RO Size: 16 bits This register combined with the Vendor Identification register uniquely identifies any PCI device. | Bit | Access & Default | Description | |------|------------------|---| | 15:0 | RO
2980h | Device Identification Number (DID): This field is the identifier assigned to the (G)MCH core/primary PCI device. I | #### 5.1.3 PCICMD—PCI Command B/D/F/Type: 0/0/0/PCI Address Offset: 04-05h Default Value: 0006h Access: RO, R/W Size: 16 bits Since (G)MCH Device 0 does not physically reside on PCI_A many of the bits are not implemented. | Bit | Access & Default | Description | |-------|------------------|--| | 15:10 | RO
00h | Reserved | | 9 | RO
0b | Fast Back-to-Back Enable (FB2B): This bit controls whether or not the master can do fast back-to-back writes. Since device 0 is strictly a target, this bit is not implemented and is hardwired to 0. | | 8 | R/W
0b | SERR Enable (SERRE): This bit is a global enable bit for Device 0 SERR messaging. The (G)MCH does not have a SERR signal. The (G)MCH communicates the SERR condition by sending an SERR message over DMI to the ICH. | | | | 0 = Disable. The SERR message is Not generated by the (G)MCH for Device 0. | | | | 1 = Enable. The (G)MCH generates SERR messages over DMI for
specific Device 0 error conditions that are individually enabled in
the ERRCMD and DMIUEMSK registers. The error status is
reported in the ERRSTS, PCISTS, and DMIUEST registers. | | | | Note that this bit only controls SERR messaging for the Device 0. Device 1 has its own SERRE bits to control error reporting for error conditions occurring in that device. The control bits are used in a logical OR manner to enable the SERR DMI message mechanism. | | 7 | RO
0b | Address/Data Stepping Enable (ADSTEP): Not implemented, hardwired to a 0. | | 6 | R/W
0b | Parity Error Enable (PERRE): This bit controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set. 0 = Disable. 1 = Enable. | | 5 | RO
Ob | VGA Palette Snoop Enable (VGASNOOP): Not implemented, | | 4 | RO
0b | hardwired to a 0. Memory Write and Invalidate Enable (MWIE): The (G)MCH will never issue memory write and invalidate commands. This bit is therefore hardwired to 0. | | 3 | RO
0b | Reserved | | 2 | RO
1b | Bus Master Enable (BME): The (G)MCH is always enabled as a master on the backbone. This bit is hardwired to 1. | | 1 | RO
1b | Memory Access Enable (MAE): The (G)MCH always allows access to main memory. This bit is not implemented and is hardwired to 1. | | 0 | RO
0b | I/O Access Enable (IOAE): Not implemented, hardwired to a 0. | #### 5.1.4 PCISTS—PCI Status B/D/F/Type: 0/0/0/PCI Address Offset: 06-07h Default Value: 0090h Access: RO, R/WC Size: 16 bits This status register reports the occurrence of error events on Device 0's PCI interface. Since the (G)MCH Device 0 does not physically reside on PCI_A many of the bits are not implemented. | Bit | Access & Default | Description | |------|------------------
---| | 15 | RO
0b | Detected Parity Error (DPE): This bit is set when this Device receives a Poisoned TLP. | | 14 | R/WC
0b | Signaled System Error (SSE): Software clears this bit by writing a 1 to it. | | | | 1 = (G)MCH Device 0 generated a SERR message over DMI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD, ERRCMD, and DMIUEMSK registers. Device 0 error flags are read/reset from the PCISTS, ERRSTS, or DMIUEST registers. | | 13 | R/WC
0b | Received Master Abort Status (RMAS): Software clears this bit by writing a 1 to it. | | | | 1 = (G)MCH generated a DMI request that receives an Unsupported Request completion packet. | | 12 | R/WC
0b | Received Target Abort Status (RTAS): Software clears this bit by writing a 1 to it. | | | | 1 = (G)MCH generated a DMI request that receives a Completer Abort completion packet. | | 11 | RO
0b | Signaled Target Abort Status (STAS): Not implemented, hardwired to a 0. The (G)MCH will not generate a Target Abort DMI completion packet or Special Cycle. | | 10:9 | RO
00b | DEVSEL Timing (DEVT) : These bits are hardwired to 00. Device 0 does not physically connect to PCI_A. These bits are set to 00 (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the (G)MCH. | | 8 | R/WC
0b | Master Data Parity Error Detected (DPD): Software clears this bit by writing a 1 to it. | | | | 1 = DMI received a Poisoned completion from ICH8. | | | | NOTE: This bit can only be set when the Parity Error Enable bit in the PCI Command register is set. | | 7 | RO
1b | Fast Back-to-Back (FB2B): Hardwired to 1. Device 0 does not physically connect to PCI_A. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for PCI_A is not limited by the (G)MCH. | | 6 | RO
0b | Reserved | | 5 | RO
0b | 66 MHz Capable: Hardwired to 0. Does not apply to PCI Express. | | Bit | Access & Default | Description | |-----|------------------|---| | 4 | RO
1b | Capability List (CLIST): This bit is hardwired to 1 to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed via register CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset pointing to the start address within configuration space of this device where the Capability Identification register resides. | | 3:0 | RO
0000b | Reserved | #### 5.1.5 RID—Revision Identification B/D/F/Type: 0/0/0/PCI Address Offset: 8h Default Value: See table description Access: RO Size: 8 bits This register contains the revision number of the (G)MCH Device 0. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO | Revision Identification Number (RID): This is an 8-bit value that indicates the revision identification number for the (G)MCH Device 0. Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | #### 5.1.6 CC—Class Code B/D/F/Type: 0/0/0/PCI Address Offset: 09-0Bh Default Value: 060000h Access: RO Size: 24 bits This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface. | Bit | Access &
Default | Description | |-------|---------------------|--| | 23:16 | RO
06h | Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the (G)MCH. | | | | 06h = Bridge device. | | 15:8 | RO
00h | Sub-Class Code (SUBCC): This is an 8-bit value that indicates the category of Bridge into which the (G)MCH falls. | | | | 00h = Host Bridge. | | 7:0 | RO
00h | Programming Interface (PI): This is an 8-bit value that indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device. | #### 5.1.7 MLT—Master Latency Timer B/D/F/Type: 0/0/0/PCI Address Offset: Dh Default Value: 00h Access: RO Size: 8 bits Device 0 in the (G)MCH is not a PCI master. Therefore, this register is not implemented. | Bit | Access & Default | Description | |-----|------------------|-------------| | 7:0 | RO
00h | Reserved | #### 5.1.8 HDR—Header Type B/D/F/Type: 0/0/0/PCI Address Offset: Eh Default Value: 00h Access: RO Size: 8 bits This register identifies the header layout of the configuration space. No physical register exists at this location. | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
00h | PCI Header (HDR): This field always returns 0s to indicate that the (G)MCH is a single function device with standard header layout. | #### 5.1.9 SVID—Subsystem Vendor Identification B/D/F/Type: 0/0/0/PCI Address Offset: 2C-2Dh Default Value: 0000h Access: R/WO Size: 16 bits This register is used to identify the vendor of the subsystem. | Bit | Access & Default | Description | |------|------------------|---| | 15:0 | R/WO
0000h | Subsystem Vendor ID (SUBVID): This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only. | #### 5.1.10 SID—Subsystem Identification B/D/F/Type: 0/0/0/PCI Address Offset: 2E-2Fh Default Value: 0000h Access: R/WO Size: 16 bits This value is used to identify a particular subsystem. | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | R/WO
0000h | Subsystem ID (SUBID): This field should be programmed during BIOS initialization. After it has been written once, it becomes read only. | #### 5.1.11 CAPPTR—Capabilities Pointer B/D/F/Type: 0/0/0/PCI Address Offset: 34h Default Value: E0h Access: RO Size: 8 bits The CAPPTR register provides an offset that is the pointer to the location of the first device capability in the capability list. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
E0h | Capabilities Pointer (CAPPTR): This field is a pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPID0). | ## 5.1.12 PXPEPBAR—PCI Express* Egress Port Base Address (Intel® 82Q965/82G965/82P965 (G)MCH Only) B/D/F/Type: 0/0/0/PCI Address Offset: 40-47h Access: R/W, RO Size: 64 bits This is the base address for the PCI Express Egress Port MMIO Configuration space. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory-mapped space. On reset, the EGRESS port MMIO configuration space is disabled and must be enabled by writing a 1 to PXPEPBAREN [Dev 0, offset 40h, bit 0]. | Bit | Access &
Default | Description | |-------|---------------------|---| | 63:36 | RO
0000000h | Reserved | | 35:12 | R/W
000000h | PCI Express Egress Port MMIO Base Address (PXPEPBAR): This field corresponds to bits 35 to 12 of the base address PCI Express Egress Port MMIO configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within the first 4 GB of addressable memory space. System Software uses this base address to program the (G)MCH MMIO register set. All the bits in this register are locked in LT mode. | | 11:1 | RO
000h | Reserved | | 0 | R/W
Ob | PXPEPBAR Enable (PXPEPBAREN): 0 = Disable. PXPEPBAR does not claim any memory. 1 = Enable. PXPEPBAR
memory mapped accesses are claimed and decoded appropriately. | #### 5.1.13 MCHBAR—(G)MCH Memory-Mapped Register Range Base B/D/F/Type: 0/0/0/PCI Address Offset: 48–4Fh Access: R/W, RO Size: 64 bits This is the base address for the (G)MCH memory-mapped configuration space. There is no physical memory within this 16 KB window that can be addressed. The 16 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the (G)MCH MMIO memory-mapped configuration space is disabled and must be enabled by writing a 1 to MCHBAREN [Dev 0, offset 48h, bit 0]. | Bit | Access &
Default | Description | |-------|---------------------|---| | 63:36 | RO
0000000h | Reserved | | 35:14 | R/W
000000h | (G)MCH Memory Mapped Base Address (MCHBAR): This field corresponds to bits 35 to 14 of the base address (G)MCH memory-mapped configuration space. BIOS will program this register resulting in a base address for a 16 KB block of contiguous memory address space. This register ensures that a naturally aligned 16 KB space is allocated within the first 4 GB of addressable memory space. System Software uses this base address to program the (G)MCH memory-mapped register set. | | 13:1 | RO
0000h | Reserved | | 0 | R/W
0b | MCHBAR Enable (MCHBAREN): 0 = Disable. MCHBAR does not claim any memory 1 = Enable. MCHBAR memory-mapped accesses are claimed and decoded appropriately. | # 5.1.14 GGC—GMCH Graphics Control Register (Intel® 82Q965, 82Q963, 82G965 GMCH Only) B/D/F/Type: 0/0/0/PCI Address Offset: 52–53h Default Value: 0030h Access: RO, R/W/L, R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:7 | RO
000h | Reserved | | 6:4 | R/W/L
011b | Graphics Mode Select (GMS): This field is used to select the amount of main memory that is pre-allocated to support the internal graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled. | | | | 000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub-Class Code field within Device 2:Function 0 Class Code register is 80. | | | | 001 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer. | | | | 010 = Reserved | | | | 011 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer. | | | | 100 = Reserved | | | | 101 = Reserved | | | | 110 = Reserved | | | | 111 = Reserved | | | | NOTE: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set. | | 3:2 | RO
00b | Reserved | | 1 | R/W | IGD VGA Disable (IVD): | | | 0b | 0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles, the Sub-Class Code within Device 2 Class Code register is 00. | | | | 1 = Disable. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub- Class Code field within Device 2 function 0 Class Code register is 80h. | | 0 | RO
0b | Reserved | #### 5.1.15 **DEVEN—Device Enable** B/D/F/Type: 0/0/0/PCI Address Offset: 54–57h Default Value: 000003DBh Access: RO, R/W/L Size: 32 bits This register enables/disables of PCI devices and functions that are within the (G)MCH. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:10 | RO
0s | Reserved | | 9 | R/W/L
1b | ME Function 3 (D3F3EN): If Device 3, Function 0 is disabled and hidden, then Device 3, Function 3 is also disabled and hidden independent of the state of this bit. | | | | 0 = Disable. Bus 0, Device 3, Function 3 is disabled and hidden | | | | 1 = Enable. Bus 0, Device 3, Function 3 is enabled and visible. | | 8 | R/W/L
1b | ME Function 2 (D3F2EN): If Device 3, Function 0 is disabled and hidden, then Device 3, Function 2 is also disabled and hidden independent of the state of this bit. | | | | 0 = Disable. Bus 0, Device 3, Function 2 is disabled and hidden | | | | 1 = Enable. Bus 0, Device 3, Function 2 is enabled and visible. | | 7 | RO
1b | Reserved | | 6 | R/W/L
1b | ME Function 0 (D3F0EN) : If the (G)MCH does not have ME capability, then Device 3, Function 0 is disabled and hidden independent of the state of this bit. | | | | 0 = Disable. Bus 0, Device 3, Function 0 is disabled and hidden | | | | 1 = Enable. Bus 0, Device 3, Function 0 is enabled and visible. | | 5 | RO
0b | Reserved | | 4 | R/W/L | 82Q965/82Q963/82G965 GMCH | | | 1b | Internal Graphics Engine Function 1 (D2F1EN): If Device 2, Function 0 is disabled and hidden, then Device 2, Function 1 is also disabled and hidden independent of the state of this bit. | | | | 0 = Disable. Bus 0, Device 2, Function 1 is disabled and hidden | | | | 1 = Enable. Bus 0, Device 2, Function 1 is enabled and visible | | | | 82P965 MCH | | | | Reserved. | | Bit | Access &
Default | Description | |-----|---------------------|--| | 3 | R/W/L | 82Q965/82Q963/82G965 GMCH | | | 1b | Internal Graphics Engine Function 0 (D2F0EN): | | | | 0 = Disable. Bus 0, Device 2, Function 0 is disabled and hidden | | | | 1 = Enable. Bus 0, Device 2, Function 0 is enabled and visible | | | | 82P965 MCH | | | | Reserved. | | 2 | RO
0b | Reserved | | 1 | R/W/L | 82Q965/82G965/82P965 (G)MCH | | | 1b | PCI Express Port (D1EN): | | | | 0 = Disable. Bus 0, Device 1, Function 0 is disabled and hidden. | | | | 1 = Enable. Bus 0, Device 1, Function 0 is enabled and visible. | | | | 82Q963 GMCH | | | | Reserved. | | 0 | RO
1b | Host Bridge (DOEN): Hardwired to 1. Bus 0 Device 0, Function 0 can not be disabled. | ## 5.1.16 PCI EXPRESS*XBAR—PCI Express* Register Range Base Address (Intel® 82Q965, 82G965, 82P965 (G)MCH Only) B/D/F/Type: 0/0/0/PCI Address Offset: 60-67h Default Value: 00000000E0000000h Access: R/W/L, R/W/K, R/W, RO Size: 64 bits This is the base address for the PCI Express configuration space. This window of addresses contains the 4 KB of configuration space for each PCI Express device that can potentially be part of the PCI Express Hierarchy associated with the (G)MCH. There is not actual physical memory within this window of up to 256 MB that can be addressed. The actual length is determined by a field in this register. Each PCI Express Hierarchy requires a PCI Express BASE register. The (G)MCH supports one PCI Express hierarchy. The region reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. For example, MCHBAR reserves a 16 KB space and CHAPADR reserves a 4 KB space, both outside of PCI EXPRESS*XBAR space. They cannot be overlayed on the space reserved by PCI EXPRESS*XBAR for devices 0. On reset, this register is disabled and must be enabled by writing a 1 to the enable field in this register. This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register), above TOLUD and still within 64 bit addressable memory space. All other bits not decoded are read only and return a 0. The PCI Express Base Address cannot be less than the maximum address written to the top of physical memory register (TOLUD). Software must ensure that these ranges do not overlap with known ranges located above TOLUD. Software must ensure that the sum of length of enhanced configuration region + TOLUD + (other known ranges reserved above TOLUD) is not greater than the 64-bit addressable limit of 64 GB. In general system implementation and number of PCI/PCI express buses supported in the hierarchy will dictate the length of the region. | Bit | Access & Default | Description | |-------|------------------|--| | 63:36 | RO
0s | Reserved | | 35:28 | R/W
0Eh | PCI Express* Base Address (PCI EXPRESS*XBAR): This field corresponds to bits 31:28 of the base address for PCI Express enhanced configuration space. BIOS will program this register resulting in a base address for a contiguous memory address space; size is defined by bits 2:1 of this register. | | | | This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within 64-bit addressable memory space. The address bits decoded depend on the length of the region defined by this register. | | | | The address used to access the PCI Express configuration space for a specific device can be determined as follows: | | | | PCI Express Base Address + Bus Number * 1MB + Device
Number * 32KB + Function Number * 4KB | | | | The address used to access PCI Express configuration space for Device 1 in this component would be PCI Express Base Address + $0*1MB+1*32KB+0*4KB=PCI$ Express Base Address + $32KB$.
Remember that this address is the beginning of the 4 KB space that contains both the PCI compatible configuration space and the PCI Express extended configuration space. | | 27 | R/W/L
0b | 128 MB Base Address Mask (128ADMSK) : This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register. | | 26 | R/W/L
0b | 64 MB Base Address Mask (64ADMSK) : This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register. | | 25:3 | RO
000000h | Reserved | | 2:1 | R/W/K
00b | Length (LENGTH): This Field describes the length of this region (enhanced configuration space region/buses decoded). | | | | 00 = 256 MB (buses 0–255h). Bits 31:28 are decoded in the PCI Express Base Address field | | | | 01 = 128 MB (Buses 0–127h). Bits 31:27 are decoded in the PCI Express Base Address field. | | | | 10 = 64 MB (Buses 0-63h). Bits 31:26 are decoded in the PCI Express Base Address field.11 = Reserved | | Bit | Access &
Default | Description | |-----|---------------------|--| | 0 | R/W
Ob | PCI EXPRESS*XBAR Enable (PCI EXPRESS*XBAREN): 0 = Disable the PCI EXPRESS*XBAR register. Memory read and write transactions proceed as if there were no PCI EXPRESS*XBAR register. PCI EXPRESS*XBAR bits 31:26 are R/W with no functionality behind them. 1 = Enable the PCI EXPRESS*XBAR register. Memory read and write transactions whose address bits 31:26 match PCI EXPRESS*XBAR will be translated to configuration reads and writes within the (G)MCH. | #### 5.1.17 DMIBAR—Root Complex Register Range Base Address B/D/F/Type: 0/0/0/PCI Address Offset: 68-6Fh Access: R/W, RO Size: 64 bits This is the base address for the Root Complex configuration space. This window of addresses contains the Root Complex Register set for the PCI Express Hierarchy associated with the (G)MCH. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the Root Complex configuration space is disabled and must be enabled by writing a 1 to DMIBAREN. | Bit | Access &
Default | Description | | | |-------|---------------------|--|--|--| | 63:36 | RO
0s | Reserved | | | | 35:12 | R/W
0s | DMI Base Address (DMIBAR) : This field corresponds to bits 35:12 of the base address DMI configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within the first 64 GB of addressable memory space. System Software uses this base address to program the DMI register set. | | | | 11:1 | RO
0s | Reserved | | | | 0 | R/W
0b | DMIBAR Enable (DMIBAREN): 0 = DMIBAR is disabled and does not claim any memory 1 = DMIBAR memory mapped accesses are claimed and decoded appropriately | | | #### 5.1.18 PAMO—Programmable Attribute Map 0 B/D/F/Type: 0/0/0/PCI Address Offset: 90h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h– 0FFFFFh. The (G)MCH allows programmable memory attributes on 13 Legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) Registers are used to support these features. Cacheability of these areas is controlled via the MTRR registers in the P6 processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are: - RE Read Enable. When RE = 1, the processor read accesses to the corresponding memory segment are claimed by the (G)MCH and directed to main memory. Conversely, when RE = 0, the host read accesses are directed to PCI_A. - WE Write Enable. When WE = 1, the host write accesses to the corresponding memory segment are claimed by the (G)MCH and directed to main memory. Conversely, when WE = 0, the host write accesses are directed to PCI A. The RE and WE attributes permit a memory segment to be read only, write only, read/write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is read only. Each PAM Register controls two regions, typically 16 KB in size. **Note:** The (G)MCH may hang if a PCI Express Graphics Attach (82Q965/82Q963/82G965 GMCH Only) or DMI originated access to Read Disabled or Write Disabled PAM segments occur (due to a possible IWB to non-DRAM). For these reasons, the following critical restriction is placed on the programming of the PAM regions: At the time that a DMI or PCI Express Graphics Attach (82Q965/82Q963/82G965 GMCH Only) accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable. | Bit | Access & Default | Description | | | | |-----|------------------|---|--|--|--| | 7:6 | RO
00b | Reserved | | | | | 5:4 | R/W
00b | OF0000—OFFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0F0000h to 0FFFFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | | 3:0 | RO
0h | Reserved | | | | ## 5.1.19 PAM1—Programmable Attribute Map 1 B/D/F/Type: 0/0/0/PCI Address Offset: 91h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h-0C7FFFh. | Bit | Access & Default | Description | | | | |-----|------------------|---|--|--|--| | 7:6 | RO
00b | Reserved | | | | | 5:4 | R/W
00b | OC4000–OC7FFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C4000h to 0C7FFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | | 3:2 | RO
00b | Reserved | | | | | 1:0 | R/W
00b | OCOOOO—OC3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OCOOOOh to OC3FFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM | | | | ## 5.1.20 PAM2—Programmable Attribute Map 2 B/D/F/Type: 0/0/0/PCI Address Offset: 92h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h-0CFFFFh. | Bit | Access &
Default | Description | | | | |-----|---------------------|--|--|--|--| | 7:6 | RO
00b | Reserved | | | | | 5:4 | R/W
00b | OCCOOO-OCFFFF Attribute (HIENABLE): 00 = DRAM Disabled: All accesses are directed to DMI. 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | | 3:2 | RO
00b | Reserved | | | | | 1:0 | R/W
00b | OC8000–OCBFFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C8000h to 0CBFFFh. 00 = DRAM Disabled: All accesses are directed to DMI. 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11 = Normal DRAM Operation: All
reads and writes are serviced by DRAM. | | | | ## 5.1.21 PAM3—Programmable Attribute Map 3 B/D/F/Type: 0/0/0/PCI Address Offset: 93h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h- 0D7FFFh. | Bit | Access & Default | Description | | | |-----|------------------|---|--|--| | 7:6 | RO
00b | Reserved | | | | 5:4 | R/W
00b | OD4000–0D7FFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D4000h to 0D7FFFh. | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | 3:2 | RO
00b | Reserved | | | | 1:0 | R/W
00b | OD0000–OD3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D0000h to 0D3FFFh. | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | ## 5.1.22 PAM4—Programmable Attribute Map 4 B/D/F/Type: 0/0/0/PCI Address Offset: 94h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h– 0DFFFFh. | Bit | Access &
Default | Description | | |-----|---------------------|--|--| | 7:6 | RO
00b | Reserved | | | 5:4 | R/W
00b | ODCOOO-ODFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from ODCOOOh to ODFFFFh. | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | 3:2 | RO
00b | Reserved | | | 1:0 | R/W
00b | OD8000–ODBFFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from OD8000h to ODBFFFh. | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | ### 5.1.23 PAM5—Programmable Attribute Map 5 B/D/F/Type: 0/0/0/PCI Address Offset: 95h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-0E7FFFh. | Bit | Access & Default | Description | | | | |-----|------------------|--|--|--|--| | 7:6 | RO
00b | Reserved | | | | | 5:4 | R/W
00b | OE4000–0E7FFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | | 3:2 | RO
00b | Reserved | | | | | 1:0 | R/W
00b | OEOOOO—OE3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | ## 5.1.24 PAM6—Programmable Attribute Map 6 B/D/F/Type: 0/0/0/PCI Address Offset: 96h Default Value: 00h Access: RO, R/W Size: 8 bits This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h-0EFFFFh. | Bit | Access &
Default | Description | | | | |-----|---------------------|--|--|--|--| | 7:6 | RO
00b | Reserved | | | | | 5:4 | R/W
00b | OECOOO–OEFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | | 3:2 | RO
00b | Reserved | | | | | 1:0 | R/W
00b | OE8000–OEBFFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh. | | | | | | | 00 = DRAM Disabled: All accesses are directed to DMI. | | | | | | | 01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI. | | | | | | | 10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI. | | | | | | | 11 = Normal DRAM Operation: All reads and writes are serviced by DRAM. | | | | ### 5.1.25 LAC—Legacy Access Control B/D/F/Type: 0/0/0/PCI Address Offset: 97h Default Value: 00h Access: R/W, RO Size: 8 bits This 8-bit register controls a fixed DRAM hole from 15–16 MB. | Bit | Access & Default | Description | | |-----|------------------|--|--| | 7 | R/W
0b | Hole Enable (HEN): This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. | | | | | 0 =No memory hole. | | | | | 1 = Memory hole from 15 MB to 16 MB. | | | 6:1 | RO
00h | Reserved | | | Bit | Access &
Default | | | Description | | | |-----|---------------------|--|------------|--|--|--| | 0 | R/W
0b | MDA Present (MDAP): This bit works with the VGA Enable bits in the BCTRL register of Device 1 to control the routing of processor-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if device 1's VGA Enable bit is not set. | | | | | | | | | | nable bit is not set, then accesses to I/O address h are forwarded to DMI. | | | | | | If the VGA enable bit is set and MDA is not present, then accesses to I/O address range x3BCh-x3BFh are forwarded to PCI Express (82Q965, 82G965, 82P965 (G)MCH Only) if the address is within the corresponding IOBASE and IOLIMIT, otherwise they are forwarded to DMI. | | | | | | | | MDA resou | ırces are | defined as the following: | | | | | | Memory: | 0B0000 | h – 0B7FFFh | | | | | | I/O: | | BB5h, 3B8h, 3B9h, 3BAh, 3BFh,
ing ISA address aliases, A[15:10] are not used in
) | | | | | | | II be forw | that includes the I/O locations listed above, or their varded to the DMI even if the reference includes I/O above. | | | | | | The follow and VGA: | ing table | shows the behavior for all combinations of MDA | | | | | | VGAEN | MDAP | Description | | | | | | 0 | 0 | All References to MDA and VGA space are routed to DMI | | | | | | 0 | 1 | Invalid combination | | | | | | 1 | 0 | All VGA and MDA references are routed to PCI Express Graphics Attach (82Q965/82Q963/82G965 GMCH Only). | | | | | | 1 | 1 | All VGA references are routed to PCI Express
Graphics Attach (82Q965/82Q963/82G965 GMCH
Only). MDA references are routed to DMI. | | | | | | MAE (PCIO | CMD1[1]) | nory cycles can only be routed across the PEG when is set. VGA and MDA I/O cycles can only be routed DAE (PCICMD1[0]) is set. | | | ## 5.1.26 REMAPBASE—Remap Base Address Register B/D/F/Type: 0/0/0/PCI Address Offset: 98–99h Default Value: 03FFh Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
3FFh | Remap Base Address [35:26] (REMAPBASE): The value in this register defines the lower boundary of the
Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the Remap Base Address are assumed to be 0s. Thus, the bottom of the defined memory range will be aligned to a 64 MB boundary. When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled. Note: Bit 0 (Address Bit 26) must be a 0. | ### 5.1.27 REMAPLIMIT—Remap Limit Address Register B/D/F/Type: 0/0/0/PCI Address Offset: 9A-9Bh Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Remap Limit Address [35:26] (REMAPLMT): The value in this register defines the upper boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the remap limit address are assumed to be Fhs. Thus, the top of the defined range will be one less than a 64 MB boundary. | | | | When the value in this register is less than the value programmed into the Remap Base register, the Remap window is disabled. | | | | Note: bit 0 (address bit 26) must be a 0. | ### 5.1.28 SMRAM—System Management RAM Control B/D/F/Type: 0/0/0/PCI Address Offset: 9Dh Default Value: 02h Access: RO, R/W/L, R/W/L/K Size: 8 bits The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set. | Bit | Access & Default | Description | |-----|------------------|---| | 7 | RO
0b | Reserved | | 6 | R/W/L
0b | SMM Space Open (D_OPEN): When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. | | 5 | R/W/L
0b | SMM Space Closed (D_CLS): When D_CLS = 1 SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. | | 4 | R/W/L/K
0b | SMM Space Locked (D_LCK): When D_LCK is set to 1, then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function. | | 3 | R/W/L
0b | Global SMRAM Enable (G_SMRAME): If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode). To enable Extended SMRAM function this bit has be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes read only. | | 2:0 | RO
010b | Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space, otherwise the access is forwarded to DMI. Since the (G)MCH supports only the SMM space between A0000h and BFFFFh, this field is hardwired to 010. | # 5.1.29 ESMRAMC—Extended System Management RAM Control B/D/F/Type: 0/0/0/PCI Address Offset: 9Eh Default Value: 38h Access: R/W/L, R/WC, RO Size: 8 bits The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB. | Bit | Access & Default | Description | |-----|------------------|---| | 7 | R/W/L
0b | Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB) When G_SMRAME is 1 and H_SMRAME is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only. | | 6 | R/WC
0b | Invalid SMRAM Access (E_SMERR): This bit is set when the processor has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is software's responsibility to clear this bit. The software must write a 1 to this bit to clear it. | | 5 | RO
1b | SMRAM Cacheable (SM_CACHE): This bit is forced to 1 by the (G)MCH. | | 4 | RO
1b | L1 Cache Enable for SMRAM (SM_L1): This bit is forced to 1 by the (G)MCH. | | 3 | RO
1b | L2 Cache Enable for SMRAM (SM_L2): This bit is forced to 1 by the (G)MCH. | | Bit | Access & Default | Description | |-----|------------------|---| | 2:1 | R/W/L
00b | TSEG Size (TSEG_SZ): This field selects the size of the TSEG memory block if enabled. Memory from the top of DRAM space is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to DMI when the TSEG memory block is enabled. | | | | If Graphics stolen memory is placed above 4 GB, TSEG base is determined as if graphics stolen memory size is 0. | | | | 00 = 1 MB TSEG. (TOLUD - Graphics Stolen Memory Size - 1 MB) to (TOLUD - Graphics Stolen Memory Size). | | | | 01 = 2 MB TSEG. (TOLUD - Graphics Stolen Memory Size - 2 MB) to (TOLUD - Graphics Stolen Memory Size). | | | | 10 = 8 MB TSEG. (TOLUD - Graphics Stolen Memory Size - 8 MB) to (TOLUD - Graphics Stolen Memory Size). | | | | 11 = Reserved. | | | | Once D_LCK has been set, these bits becomes read only. | | | | NOTE: Graphics Stolen Memory is on the 82Q995, 82Q963, and 82G965 GMCH only. | | 0 | R/W/L
0b | TSEG Enable (T_EN): This bit enables SMRAM memory for Extended SMRAM space only. When G_SMRAME = 1 and TSEG_EN = 1, TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only. | # 5.1.30 TOM—Top of Memory B/D/F/Type: 0/0/0/PCI Address Offset: A0-A1h Default Value: 0001h Access: RO, R/W/L Size: 16 bits This register contains the size of physical memory. BIOS determines the memory size reported to the OS using this register. | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:10 | RO
00h | Reserved | | 9:0 | R/W/L
001h | Top of Memory (TOM): This register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O). These bits correspond to address bits 35:26 (64 MB granularity). Bits 25:0 are assumed to be 0. | # 5.1.31 TOUUD—Top of Upper Usable DRAM B/D/F/Type: 0/0/0/PCI Address Offset: A2-A3h Default Value: 0000h Access: R/W/L Size: 16 bits This 16 bit register defines the Top of Upper Usable DRAM. | Bit | Access & Default | Description | |------|------------------
---| | 15:0 | R/W/L
0000h | TOUUD (TOUUD): This register contains bits 35:20 of an address one byte above the maximum DRAM memory above 4 GB that is usable by the operating system. Configuration software must set this value to TOM minus all ME stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit 64 MB aligned since reclaim limit is 64 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards system memory if the incoming address is less than the value programmed in this register and greater than 4 GB. | # 5.1.32 GBSM—Graphics Base of Stolen Memory (Intel® 82G965, 82Q965, 82Q63Q GMCH Only) B/D/F/Type: 0/0/0/PCI Address Offset: A4-ABh Default Value: 0000000000000000h Access: RO, R/W/L Size: 64 bits This register contains the base address of stolen DRAM memory. **Note:** This register is locked and becomes read only when the D_LCK bit in the SMRAM register is set. | Bit | Access &
Default | Description | |-------|---------------------|--| | 63:32 | RO
00000000h | Reserved | | 31:20 | R/W/L
000h | Graphics Base of Stolen Memory (GBSM): This register contains bits 31:20 of the base address of stolen DRAM memory. BIOS determines the base of graphics stolen memory by subtracting the graphics stolen memory size (PCI Device 0, offset 52h, bits 6:4) from TOLUD (PCI Device 0, offset 9Ch, bits 7:2). | | 19:0 | RO
00000h | Reserved | # 5.1.33 TSEGMB—TSEG Memory Base B/D/F/Type: 0/0/0/PCI Address Offset: AC-AFh Default Value: 00000000h Access: R/W/L, RO Size: 32 bits This register contains the base address of TSEG DRAM memory. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:20 | R/W/L
000h | TESG Memory base (TSEGMB): This register contains bits 31:20 of the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory by subtracting the TSEG size (PCI Device 0, offset 9Eh, bits 2:1) and the graphics stolen memory size (PCI Device 0, offset 52h, bits 6:4) from TOLUD (PCI Device 0, offset 9Ch, bits 7:2). Once D_LCK has been set, these bits become read only. | | 19:0 | RO
00000h | Reserved | ### 5.1.34 TOLUD—Top of Low Usable DRAM B/D/F/Type: 0/0/0/PCI Address Offset: B0-B1h Default Value: 0010h Access: R/W/L, RO Size: 16 bits This 16 bit register defines the Top of Low Usable DRAM. TSEG and Graphics Stolen Memory (if below 4 GB) are within the DRAM space defined. From the top, (G)MCH optionally claims 1 to 64 MBs of DRAM for internal graphics if enabled and 1, 2, or 8 MB of DRAM for TSEG if enabled. # Programming Example (82Q965/92963Q/82G965 GMCH Only) C1DRB3 is set to 4 GB TSEG is enabled and TSEG size is set to 1 MB Internal Graphics is enabled, and Graphics Mode Select is set to 32 MB BIOS knows the OS requires 1 GB of PCI space. BIOS also knows the range from FECO_0000h to FFFF_FFFFh is not usable by the system. This 20 MB range at the very top of addressable memory space is lost to APIC and LT. According to the above equation, TOLUD is originally calculated to: $4~GB = 1_0000_0000h$ The system memory requirements are: 4GB (max addressable space) – 1GB (PCI space) – 20MB (lost memory) = 3GB – 128MB (minimum granularity) = B800 0000h Since B800_0000h (PCI and other system requirements) is less than 1_0000_0000h , TOLUD should be programmed to B80h. | Bit | Access & Default | Description | |------|------------------|---| | 15:4 | R/W/L
001h | Top of Low Usable DRAM (TOLUD): This register contains bits 31:20 of an address one byte above the maximum DRAM memory below 4 GB that is usable by the operating system. Address bits 31:20 programmed to 01h implies a minimum memory size of 1 MB. Configuration software must set this value to the smaller of the following 2 choices: maximum amount memory in the system minus ME stolen memory plus one byte or the minimum address allocated for PCI memory. Address bits 19:0 are assumed to be 0_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register. This register must be 64 MB aligned when reclaim is enabled. | | 3:0 | RO
0000b | Reserved | ### 5.1.35 ERRSTS—Error Status B/D/F/Type: 0/0/0/PCI Address Offset: C8-C9h Default Value: 0000h Access: RO, R/WC/S Size: 16 bits This register is used to report various error conditions via the SERR DMI messaging mechanism. A SERR DMI message is generated on a 0-to-1 transition of any of these flags (if enabled by the ERRCMD and PCICMD registers). These bits are set regardless of whether SERR is enabled and generated. After the error processing is complete, the error logging mechanism can be unlocked by clearing the appropriate status bit by software writing a 1 to it. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:13 | RO
000b | Reserved | | 12 | R/WC/S | (G)MCH Software Generated Event for SMI (GSGESMI): | | | 0b | 1 = The source of the SMI was a Device 2 Software Event. | | 11 | R/WC/S
0b | (G)MCH Thermal Sensor Event for SMI/SCI/SERR (GTSE): The status bit is set only if a message is sent based on Thermal event enables in Error command, SMI command and SCI command registers. A trip point can generate one of SMI, SCI, or SERR interrupts (two or more per event is invalid). Multiple trip points can generate the same interrupt, if software chooses this mode, subsequent trips may be lost. | | | | If this bit is already set, then an interrupt message will not be sent on a new thermal sensor event. | | | | 1 = (G)MCH Thermal Sensor trip has occurred and an SMI, SCI or SERR has been generated. | | 10 | RO
0b | Reserved | | 9 | R/WC/S | LOCK to non-DRAM Memory Flag (LCKF): | | | 0b | 1 = (G)MCH has detected a lock operation to memory space that did
not map into DRAM. | | 8 | RO
0b | Reserved | | 7 | R/WC/S | DRAM Throttle Flag (DTF): | | | 0b | 1 = Indicates that a DRAM Throttling condition occurred. | | | | 0 = Software has cleared this flag since the most recent throttling event. | | 6:0 | RO
000h | Reserved | # 5.1.36 ERRCMD—Error Command B/D/F/Type: 0/0/0/PCI Address Offset: CA-CBh Default Value: 0000h Access: RO, R/W Size: 16 bits This register controls the (G)MCH responses to various system errors. Since the (G)MCH does not have an SERR# signal, SERR messages are passed from the (G)MCH to the ICH8 over DMI. When a bit in this register is set, a SERR message will be generated on DMI whenever the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command register. | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:12 | RO
0h | Reserved | | 11 | R/W
0b | GMCH Thermal Sensor Event for SMI/SCI/SERR (GTSE): Indicates that a GMCH Thermal
Sensor trip has occurred and an SMI, SCI or SERR has been generated. The status bit is set only if a message is sent based on Thermal event enables in Error command, SMI command and SCI command registers. A trip point can generate one of SMI, SCI, or SERR interrupts (two or more per event is invalid). Multiple trip points can generate the same interrupt, if software chooses this mode, subsequent trips may be lost. If this bit is already set, then an interrupt message will not be sent on a new thermal sensor event. | | 10 | RO
0b | Reserved | | 9 | R/W
0b | LOCK to non-DRAM Memory Flag (LCKF): When this bit is set to 1, the GMCH has detected a lock operation to memory space that did not map into DRAM. | | 8:0 | RO
000h | Reserved | # 5.1.37 SMICMD—SMI Command B/D/F/Type: 0/0/0/PCI Address Offset: CC-CDh Default Value: 0000h Access: RO, R/W Size: 16 bits This register enables the Thermal Sensor trip on the Hot trip point to generate an SMI DMI special cycle. *Note:* Bit 11 of this register must be programmed to a 1. | Bit | Access & Default | Description | |-------|------------------|---| | 15:12 | RO
0h | Reserved | | | | SMI on GMCH Thermal Sensor Trip (TSTSMI): | | 11 | R/W
0b | 0 = Disable. Reporting of this condition via SMI messaging is disabled. | | | | 1 = Enable. A SMI DMI special cycle is generated by the MCH when
the thermal sensor trip requires a SMI. A thermal sensor trip
point cannot generate more than one special cycle. | | 10:0 | RO
000h | Reserved | # 5.1.38 SKPD—Scratchpad Data B/D/F/Type: 0/0/0/PCI Address Offset: DC-DFh Default Value: 00000000h Access: R/W Size: 32 bits This register holds 32 writable bits with no functionality behind them. It is for the convenience of BIOS and graphics drivers. | Bit | Access & Default | Description | |------|------------------|--| | 31:0 | R/W
0s | Scratchpad Data (SKPD): 1 DWord of data storage. | # 5.1.39 CAPIDO—Capability Identifier B/D/F/Type: 0/0/0/PCI Address Offset: E0-E9h Default Value: 0000000000001090009h Access: RO Size: 80 bits | Bit | Access &
Default | Description | |-------|--------------------------|--| | 79:26 | RO
000000000
0000h | Reserved | | 27:24 | RO
1h | CAPID Version (CAPIDV): This field has the value 0001b to identify the first revision of the CAPID register definition. | | 23:16 | RO
09h | CAPID Length (CAPIDL): This field has the value 09h to indicate the structure length (9 bytes). | | 15:8 | RO
00h | Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list. | | 7:0 | RO
09h | Capability I dentifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers. | # 5.2 MCHBAR Registers The MCHBAR registers are offset from the MCHBAR base address. Table 5-2 provides an address map of the registers listed by address offset in ascending order. Detailed register bit descriptions follow the table. Table 5-2. MCHBAR Register Address Map | Address
Offset | Symbol | Register Name | Default
Value | Access | |---------------------|--------------|---|-------------------|---------| | 111h | CHDECMISC | Channel Decode Miscellaneous | 00h | R/W | | 200-201h | C0DRB0 | Channel 0 DRAM Rank
Boundary Address 0 | 0000h | R/W, RO | | 202-203h | C0DRB1 | Channel 0 DRAM Rank
Boundary Address 1 | 0000h | R/W, RO | | 204-205h | C0DRB2 | Channel 0 DRAM Rank
Boundary Address 2 | 0000h | RO, R/W | | 206-207h | CODRB3 | Channel 0 DRAM Rank
Boundary Address 3 | 0000h | R/W, RO | | 208-209h | C0DRA01 | Channel 0 DRAM Rank 0,1
Attribute | 0000h | R/W | | 20A-20Bh | C0DRA23 | Channel 0 DRAM Rank 2,3
Attribute | 0000h | R/W | | 250-251h | C0CYCTRKPCHG | Channel 0 CYCTRK PCHG | 0000h | R/W | | 252-255h | C0CYCTRKACT | Channel 0 CYCTRK ACT | 00000000h | RO, R/W | | 256-257h | C0CYCTRKWR | TRKWR Channel 0 CYCTRK WR | | R/W | | 258-25Ah | C0CYCTRKRD | Channel 0 CYCTRK READ | 000000h | RO, R/W | | 25B-25Ch | C0CYCTRKREFR | Channel 0 CYCTRK REFR | 0000h | RO, R/W | | 260-263h | C0CKECTRL | Channel 0 CKE Control | 00000800h | R/W | | 269–26Eh COREFRCTRL | | Channel 0 DRAM Refresh
Control | 021830000
C30h | R/W, RO | | 29C-29Fh | C0ODTCTRL | Channel 0 ODT Control | 00100000h | RO, R/W | | 600-601h | C1DRB0 | Channel 1 DRAM Rank
Boundary Address 0 | 0000h | R/W, RO | | 602-603h | C1DRB1 | Channel 1 DRAM Rank
Boundary Address 1 | 0000h | RO, R/W | | 604-605h | C1DRB2 | Channel 1 DRAM Rank
Boundary Address 2 | 0000h | R/W, RO | | 606-607h | C1DRB3 | Channel 1 DRAM Rank
Boundary Address 3 | 0000h | R/W, RO | | 608-609h | C1DRA01 | Channel 1 DRAM Rank 0,1
Attributes | 0000h | R/W | | | 1 | T | Ţ | 1 | |-------------------|---------------------|--|-------------------|-------------------------| | Address
Offset | Symbol | Register Name | Default
Value | Access | | 60A-60Bh | C1DRA23 | Channel 1 DRAM Rank 2,3
Attributes | 0000h | R/W | | 650-651h | C1CYCTRKPCHG | Channel 1 CYCTRK PCHG | 0000h | R/W | | 652-655h | C1CYCTRKACT | Channel 1 CYCTRK ACT | 00000000h | RO, R/W | | 656-657h | C1CYCTRKWR | Channel 1 CYCTRK WR | 0000h | R/W, | | 658-65Ah | C1CYCTRKRD | Channel 1 CYCTRK READ | 000000h | R/W, RO | | 660-663h | C1CKECTRL | Channel 1 CKE Control | 00000800h | R/W | | 669-66Eh | C1REFRCTRL | Channel 1 DRAM Refresh
Control | 021830000
C30h | R/W, RO | | 69C-69Fh | C10DTCTRL | Channel 1 ODT Control | 00100000h | R/W, RO | | A00-A01h | EPC0DRB0 | ME Channel 0 DRAM Rank
Boundary Address 0 | 0000h | R/W, RO | | A02-A03h | EPC0DRB1 | ME Channel 0 DRAM Rank
Boundary Address 1 | 0000h | R/W, RO | | A04-A05h | EPC0DRB2 | ME Channel 0 DRAM Rank
Boundary Address 2 | 0000h | R/W, RO | | A06-A07h | EPC0DRB3 | ME Channel 0 DRAM Rank
Boundary Address 3 | 0000h | R/W, RO | | A08-A09h | EPC0DRA01 | ME Channel 0 DRAM Rank 0,1
Attribute | 0000h | R/W | | A0A-A0Bh | EPC0DRA23 | ME Channel 0 DRAM Rank 2,3
Attribute | 0000h | R/W | | A19-A1Ah | EPDCYCTRKWR
TPRE | MED CYCTRK WRT PRE | 0000h | R/W, RO | | A1C-A1Fh | EPDCYCTRKWR
TACT | MED CYCTRK WRT ACT | 00000000h | RO, R/W | | A20-A21h | EPDCYCTRKWR
TWR | MED CYCTRK WRT WR | 0000h | R/W, RO | | A24-A26h | EPDCYCTRKWR
TRD | MED CYCTRK WRT READ | 000000h | R/W, | | A98h | EPDSRCTL | MEDunit Self refresh control | 00h | R/W/SC,
R/W/L | | A28-A2Ch | EPDCKECONFIG
REG | MED CKE related configuration registers | 00E000000
0h | R/W | | A2Eh | EPMEMSPACE | ME Memory space configuration | 00h | R/W, RO | | CD8h | TSC1 | Thermal Sensor Control 1 | 00h | R/W/L,
R/W,
RS/WC | | CD9h | TSC2 | Thermal Sensor Control 2 | 00h | R/W/L, RO | | CDAh | TSS | Thermal Sensor Status | 00h | RO | | | | | | | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------|--|------------------|--------------------------| | CDCh-CDFh | TSTTP | Thermal Sensor Temperature
Trip Point | 00000000h | RO, R/W,
R/W/L | | CE2h | тсо | Thermal Calibration Offset | 00h | R/W/L/K,
R/W/L | | CE4h | THERM1 | Hardware Protection | 00h | R/W/L,
RO,
R/W/L/K | | CE6h | THERM3 | TCO Fuses | 00h | RS/WC,
RO | | CEA-CEBh | TIS | Thermal Interrupt Status | 0000h | RO, R/WC | | CF1h | TSMICMD | Thermal SMI Command | 00h | RO, R/W | | F14-F17h | PMSTS | Power Management Status | 00000000h | R/WC/S,
RO | #### **CHDECMISC—Channel Decode Miscellaneous** 5.2.1 0/0/0/MCHBAR B/D/F/Type: Address Offset: 111h Default Value: 00h R/W Access: Size: 8 bits BIOS Optimal Default 0h This register has Miscellaneous CHDEC/MAGEN configuration bits. | Bit | Access & Default | Description | |-----|------------------|---| | 7:7 | RO
0h | Reserved | | 6:5 | R/W | Enhanced Mode Select (ENHMODESEL): | | | 00b | 00 = Swap Enabled for Bank Selects and Rank Selects | | | | 01 = Reserved | | | | 10 = Swap Enabled for Bank Selects only | | | | 11 = Reserved | | 4 | RO
0b | Reserved | | 3 | R/W
0b | Ch1 Enhanced Mode (CH1 ENHMODE): This bit enables Enhanced addressing mode of operation is enabled for Ch 1. | | | | 0 = Disable. | | | | 1 = Enable. | | 2 | R/W
0b | ChO Enhanced Mode (CHO ENHMODE): This bit indicates that enhanced addressing mode of operation is enabled of Ch 0. | | | | 0 = Disable. | | | | 1 = Enable. | | 1 | R/W
0b | Flex Memory (FLXMEM): This bit disables Flex mode memory configuration. | | | | 0 = Disable. | | | | 1 = Enable. | | 0 | R/W
0b | ME Present (EPPRSNT): This bit indicates whether ME UMA is present in the system. | | | | 0 = Not Present. | | | | 1 = Present. | # 5.2.2 CODRBO—Channel O DRAM Rank Boundary Address O B/D/F/Type: 0/0/0/MCHBAR Address Offset: 200-201h Default Value: 0000h Access: R/W, RO Size: 16 bits The DRAM Rank Boundary Registers define the upper boundary address of each DRAM rank with a granularity of 64 MB. Each rank has its own single-word DRB register. These registers are used to determine which chip select will be active for a given address. Channel and rank map: ``` Ch 0, Rank 0 = 200h Ch 0, Rank 1 = 202h Ch 0, Rank 2 = 204h Ch 0, Rank 3 = 206h Ch 1, Rank 0 = 600h Ch 1, Rank 1 = 602h Ch 1, Rank 2 = 604h Ch 1, Rank 3 = 606h ``` #### **Programming Guide** If Channel 0 is empty, all of the CODRBs are programmed with 00h. ``` C0DRB0 = Total memory in Ch
0, Rank 0 (in 64 MB increments) C0DRB1 = Total memory in Ch 0, Rank 0 + Ch 0, Rank 1 (in 64 MB increments) ... If Channel 1 is empty, all of the C1DRBs are programmed with 00h C1DRB0 = Total memory in Ch 1, Rank 0 (in 64 MB increments) C1DRB1 = Total memory in Ch 1, Rank 0 + Ch 1, Rank 1 (in 64 MB increments) ``` #### For Flex Memory Mode C1DRB0, C1DRB1, and C1DRB2: They are also programmed similar to non-Flex mode. Only exception is, the DRBs corresponding to the top most populated rank and higher ranks in Channel 1 must be programmed with the value of the total Channel 1 population plus the value of total Channel 0 population (C0DRB3). Example: If only Ranks 0 and 1 are populated in Ch1 in Flex mode, then: ``` C1DRB0 = Total memory in Ch 1, Rank 0 (in 64MB increments) C1DRB1 = C0DRB3 + Total memory in Ch 1, Rank 0 + Ch 1, Rank 1 (in 64 MB increments) (Rank 1 is the topmost populated rank) C1DRB2 = C1DRB1 C1DRB3 = C1DRB1 C1DRB3: C1DRB3 = C0DRB3 + Total memory in Channel 1. ``` | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel O Dram Rank Boundary Address O (CODRBAO): This register defines the DRAM rank boundary for rank0 of Channel O (64 MB granularity) = R0 | | | | R0 = Total Rank 0 memory size is 64 MB | | | | R1 = Total Rank 1 memory size is 64 MB | | | | R2 = Total Rank 2 memory size is 64 MB | | | | R3 = Total Rank 3 memory size is 64 MB | # 5.2.3 CODRB1—Channel O DRAM Rank Boundary Address 1 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 202–203h Default Value: 0000h Access: R/W, RO Size: 16 bits See CODRBO register for programming information. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel O Dram Rank Boundary Address 1 (CODRBA1): This register defines the DRAM rank boundary for rank1 of Channel 0 (64 MB granularity) | | | | = (R1 + R0) | | | | R0 = Total Rank 0 memory size is 64 MB | | | | R1 = Total Rank 1 memory size is 64 MB | | | | R2 = Total Rank 2 memory size is 64 MB | | | | R3 = Total Rank 3 memory size is 64 MB | # 5.2.4 CODRB2—Channel O DRAM Rank Boundary Address 2 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 204–205h Default Value: 0000h Access: RO, R/W Size: 16 bits See CODRBO register for programming information. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel O DRAM Rank Boundary Address 2 (CODRBA2): This register defines the DRAM rank boundary for rank2 of Channel 0 (64 MB granularity) | | | | = (R2 + R1 + R0) | | | | R0 = Total Rank 0 memory size is 64 MB | | | | R1 = Total Rank 1 memory size is 64 MB | | | | R2 = Total Rank 2 memory size is 64 MB | | | | R3 = Total Rank 3 memory size is 64 MB | # 5.2.5 CODRB3—Channel O DRAM Rank Boundary Address 3 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 206–207h Default Value: 0000h Access: R/W, RO Size: 16 bits See CODRBO register for programming information. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel O DRAM Rank Boundary Address 3 (CODRBA3): This register defines the DRAM rank boundary for rank3 of Channel 0 (64 MB granularity) | | | | = (R3 + R2 + R1 + R0) | | | | R0 = Total Rank 0 memory size is 64 MB | | | | R1 = Total Rank 1 memory size is 64 MB | | | | R2 = Total Rank 2 memory size is 64 MB | | | | R3 = Total Rank 3 memory size is 64 MB | ### 5.2.6 CODRA01—Channel O DRAM Rank 0,1 Attribute B/D/F/Type: 0/0/0/MCHBAR Address Offset: 208–209h Default Value: 0000h Access: R/W Size: 16 bits The DRAM Rank Attribute Registers define the page sizes/number of banks to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the CxDRA registers describes the page size of a pair of ranks. Channel and rank map: Ch 0, Rank 0, 1= 208h-209h Ch 0, Rank 2, 3 = 20Ah-20Bh Ch 1, Rank 0, 1= 608h-609h Ch 1, Rank 2, 3= 60Ah-60Bh DRA[7:0] = "00" means Cfg 0 , DRA[7:0] = "01" means Cfg 1 DRA[7:0] = "09" means Cfg 9 and so on. **Table 5-3. DRAM Rank Attribute Register Programming** | Cfg | Tech | DDRx | Depth | Width | Row | Col | Bank | Row
Size | Page
Size | |-----|-------|------|-------|-------|-----|-----|------|-------------|--------------| | 0 | 256Mb | 2 | 32M | 8 | 13 | 10 | 2 | 256 MB | 8K | | 1 | 256Mb | 2 | 16M | 16 | 13 | 9 | 2 | 128 MB | 4K | | 2 | 512Mb | 2 | 64M | 8 | 14 | 10 | 2 | 512 MB | 8k | | 3 | 512Mb | 2 | 32M | 16 | 13 | 10 | 2 | 256 MB | 8k | | 4 | 512Mb | 3 | 64M | 8 | 13 | 10 | 3 | 512 MB | 8k | | 5 | 512Mb | 3 | 32M | 16 | 12 | 10 | 3 | 256 MB | 8k | | 6 | 1 Gb | 2,3 | 128M | 8 | 14 | 10 | 3 | 1 GB | 8k | | 7 | 1 Gb | 2,3 | 64M | 16 | 13 | 10 | 3 | 512 MB | 8k | | Bit | Access
&
Default | Description | |------|------------------------|--| | 15:8 | R/W
00h | Channel O DRAM Rank-1 Attributes (CODRA1): This field defines DRAM pagesize/number-of-banks for rank1 for given channel. See Table 5-3 for programming. | | 7:0 | R/W
00h | Channel O DRAM Rank-O Attributes (CODRAO): This field defines DRAM page size/number-of-banks for rank0 for given channel. See Table 5-3 for programming. | # 5.2.7 CODRA23—Channel O DRAM Rank 2,3 Attribute B/D/F/Type: 0/0/0/MCHBAR Address Offset: 20A-20Bh Default Value: 0000h Access: R/W Size: 16 bits See C0DRA01 register for programming information. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | R/W
00h | Channel O DRAM Rank-3 Attributes (CODRA3): This register defines DRAM pagesize/number-of-banks for rank3 for given channel. See Table 5-3 for programming. | | 7:0 | R/W
00h | Channel O DRAM Rank-2 Attributes (CODRA2): This register defines DRAM pagesize/number-of-banks for rank2 for given channel. See Table 5-3 for programming. | # 5.2.8 COCYCTRKPCHG—Channel 0 CYCTRK Precharge B/D/F/Type: 0/0/0/MCHBAR Address Offset: 250-251h Default Value: 0000h Access: R/W Size: 16 bits This register provides Channel 0 CYCTRK Precharge. | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:11 | R/W
00000b | ACT To PRE Delayed (COsd_cr_act_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the ACT and PRE commands to the same rank-bank. This field corresponds to t _{RAS} in the DDR specification. | | 10:6 | R/W
00000b | Write To PRE Delayed (COsd_cr_wr_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank. This register corresponds to t_{WR} in the DDR specification. | | 5:2 | R/W
0000b | READ To PRE Delayed (COsd_cr_rd_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank. | | 1:0 | R/W
00b | PRE To PRE Delayed (COsd_cr_pchg_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between two PRE commands to the same rank. | # 5.2.9 COCYCTRKACT—Channel 0 CYCTRK ACT B/D/F/Type: 0/0/0/MCHBAR Address Offset: 252–255h Default Value: 00000000h Access: RO, R/W Size: 32 bits This register provides Channel 0 CYCTRK Activate. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:28 | RO
0h | Reserved | | 27:22 | R/W
000000b | ACT Window Count (COsd_cr_act_windowcnt): This field indicates the window duration (in DRAM clocks) during which the controller counts the # of activate commands that are launched to a particular rank. If the number of activate commands launched within this window is greater than 4, then a check is implemented to block launch of further activates to this rank for the rest of the duration of this window. | | 21 | R/W
0b | Max ACT Check (COsd_cr_maxact_dischk): This bit enables the check that ensures that there are no more than four activates to a particular rank in a given window. | | | | 0 = Disable | | | | 1 = Enable. | | 20:17 | R/W
0000b | ACT to ACT Delayed (COsd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. This field corresponds to t_{RRD} in the DDR Specification. | | 16:13 | R/W
0000b | PRE to ACT
Delayed (COsd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank. This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same rank. This field corresponds to $t_{\rm RP}$ in the DDR specification. | | 12:9 | R/W
0h | ALLPRE to ACT Delay (COsdO_cr_preall_act): From the launch of a precharge all command wait for this many memory clocks before launching an Activate command. This field corresponds to t_{PALL_RP} . | | 8:0 | R/W
000000000b | REF to ACT Delayed (COsd_cr_rfsh_act) : This configuration register indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. This field corresponds to t_{RFC} in the DDR specification. | # 5.2.10 COCYCTRKWR—Channel O CYCTRK WR B/D/F/Type: 0/0/0/MCHBAR Address Offset: 256–257h Default Value: 0000h Access: R/W Size: 16 bits This register provides Channel 0 CYCTRK WR control. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:12 | R/W
0h | ACT To Write Delay (COsd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank. This field corresponds to $t_{\text{RCD_wr}}$ in the DDR specification. | | 11:8 | R/W
0h | Same Rank Write To Write Delayed (COsd_cr_wrsr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank. | | 7:4 | R/W
0h | Different Rank Write to Write Delay (COsd_cr_wrdr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to different ranks. This field corresponds to tween two DDR specification. | | 3:0 | R/W
0h | READ To WRTE Delay (Cosd_cr_rd_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. This field corresponds to t_{RD_WR} . | ### 5.2.11 COCYCTRKRD—Channel O CYCTRK READ B/D/F/Type: 0/0/0/MCHBAR Address Offset: 258–25Ah Default Value: 000000h Access: RO, R/W Size: 24 bits This register provides Channel 0 CYCTRK RD control. | Bit | Access &
Default | Description | |-------|---------------------|--| | 23:20 | RO
0h | Reserved | | 19:16 | R/W
0h | Min ACT To READ Delayed (COsd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank. This field corresponds to t_{RCD_rd} in the DDR specification. | | 15:11 | R/W
00000b | Same Rank Write To READ Delayed (COsd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. This field corresponds to t _{WTR} in the DDR Specification. | | Bit | Access &
Default | Description | |------|---------------------|---| | 10:8 | R/W
000b | Different Ranks Write To READ Delayed (COsd_cr_wrdr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to different ranks. This field corresponds to twR_RD in the DDR specification. | | 7:4 | R/W
0000b | Same Rank Read To Read Delayed (COsd_cr_rdsr_rd): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank. | | 3:0 | R/W
0000b | Different Ranks Read To Read Delayed (COsd_cr_rddr_rd): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to different ranks. This field corresponds to t_{RD_RD} . | # 5.2.12 COCYCTRKREFR—Channel 0 CYCTRK REFR B/D/F/Type: 0/0/0/MCHBAR Address Offset: 25B-25Ch Default Value: 0000h Access: RO, R/W Size: 16 bits This register provides Channel 0 CYCTRK Refresh. | Bit | Access &
Default | Description | |-------|-----------------------|--| | 15:13 | RO
000b | Reserved. | | 12:9 | R/W
0000b | Same Rank PALL to REF Delayed (COsd_cr_pchgall_rfsh): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and REF commands to the same rank. | | 8:0 | R/W
000000000
b | Different Rank REF to REF Delayed (COsd_cr_rfsh_rfsh): This field indicates the minimum allowed spacing (in DRAM clocks) between two REF commands to same ranks. | # 5.2.13 COCKECTRL—Channel O CKE Control B/D/F/Type: 0/0/0/MCHBAR Address Offset: 260-263h Default Value: 00000800h Access: R/W Size: 32 bits This register provides CKE controls for Channel 0. | Bit | Access & Default | Description | |-------|------------------|--| | 31:30 | R/W
00b | Number of Clocks from Internal ODT Command Start that ODT Read Safe will be Asserted (sdO_cr_odt_rdsafe): Number of clocks from internal ODT command start that ODT Read Safe will be asserted. | | 29:28 | R/W
00b | Number of Clocks from Internal ODT Command Start that ODT Write Safe will be Asserted (sd0_cr_odt_wrsafe): Number of clocks from internal ODT command start that ODT Write Safe will be asserted. | | 27 | R/W
0b | Start the Self-Refresh Exit Sequence (sd0_cr_srcstart): This bit indicates the request to start the self-refresh exit sequence. | | 26:24 | R/W
000b | CKE Pulse Width Requirement in High Phase (sd0_cr_cke_pw_hl_safe): This configuration register indicates CKE pulse width requirement in high phase. This field corresponds to tCKE (high) in the DDR specification. | | 23 | R/W
0b | Rank 3 Population (sd0_cr_rankpop3): | | | | 0 = Not populated
1 = Populated | | 22 | R/W | Rank 2 Population (sd0_cr_rankpop2): | | | 0b | 0 = Not populated
1 = Populated | | 21 | R/W | Rank 1 Population (sd0_cr_rankpop1): | | | 0b | 0 = Not populated
1 = Populated | | 20 | R/W | Rank 0 Population (sd0_cr_rankpop0): | | | 0b | 0 = Not populated
1 = Populated | | 19:17 | R/W
000b | CKE Pulse Width Requirement in Low Phase (sd0_cr_cke_pw_lh_safe): This configuration register indicates CKE pulse width requirement in low phase. This field corresponds to t_{CKE} (low) in the DDR specification. | | 16 | R/W
0b | Enable CKE Toggle for PDN Entry/Exit (sd0_cr_pdn_enable): This bit indicates that the toggling of CKEs (for PDN entry/exit) is enabled. | | 15 | R/W
0b | Read ODT Not Always Safe (sd0_cr_rdodtnas): Internal Read ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Read Safe register field. | | Bit | Access &
Default | Description | |-------|-----------------------|--| | 14 | R/W
0b | Write ODT Not Always Safe (sd0_cr_wrodtnas): Internal Write ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Write Safe register field. | | 13:10 | R/W
0010b | Minimum Power Down exit to Non-Read Command Spacing (sdO_cr_txp): This field indicates the minimum number of clocks to wait following assertion of CKE before issuing a non-read command. | | | | 1010-1111 = Reserved | | | | 0010-1001 = 2-9 clocks | | | | 0000-0001 = Reserved | | 9:1 | R/W
000000000
b | Self Refresh Exit Count (sd0_cr_slfrfsh_exit_cnt): This field indicates the Self refresh exit count. (Program to 255). This field corresponds to t_{XSNR}/t_{XSRD} in the DDR specification. | | 0 | R/W
0b | Indicates only 1 DIMM Populated (sd0_cr_singledimmpop): This bit, when set, indicates that only 1 DIMM is populated. | # 5.2.14 COREFRCTRL—Channel O DRAM Refresh Control B/D/F/Type: 0/0/0/MCHBAR Address Offset: 269–26Eh Default Value: 021830000C30h Access: R/W, RO Size: 48 bits This register provides settings to configure the DRAM refresh controller. | Bit | Access &
Default | | Description | |-------|---------------------|--|--| | 47:42 | RO
00h | Reserved | | | 41:37 | R/W
10000b | amount of refresh_ | et Window (DIRQUIET): This field indicates the tick events to wait before the service of rcompult mode of independent rank refresh. | | 36:32 | R/W
11000b | indicates the amour | uiet Window (INDIRQUIET): This field nt of refresh_tick events to wait before the service non-default mode of independent rank refresh. | | 31:27 | R/W
00110b | refresh_tick events | MPWAIT): This field indicates the amount of to wait before the service of rcomp request in findependent rank refresh. | | 26 | RO
0b | Reserved: | | | 25 | R/W
0b | counter to count du
refreshes are not er | Enable (REFCNTEN): This bit enables the refresh ring times that DRAM is not in self-refresh, but nabled.
Such a condition may occur due to the DIMMs following a DRAM controller switch. | | | | where Refresh is en | ct when Refresh is enabled (i.e., there is no mode labled but the counter does not run). Thus, in 23 REFEN, the modes are: | | | | REFEN:REFCNTEN | Description | | | | 0:0 | Normal refresh disable | | | | 0:1 | Refresh disabled, but counter is accumulating refreshes. | | | | 1:X | Normal refresh enable | | 24 | R/W
0b | all the ranks are ref $0 = All$ the ranks ar | (ALLRKREF): This bit enables (by default) that reshed in a staggered/atomic fashion. e refreshed in a staggered/atomic fashion. shed in an independent fashion. | | 23 | R/W | Refresh Enable (R | · | | | 0b | 0 = Disabled | • | | | | 1 = Enabled | | | 22 | R/W
0b | DDR Initialization initialization is comp | Done (INITDONE): This bit indicates that DDR plete. | | | | 0 = Not Done | | | | | 1= Done | | | Bit | Access &
Default | Description | |-------|----------------------------|--| | 21:20 | RO
00b | Reserved | | 19:18 | R/W
00b | DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_panic flag is set. 00 = 5 01 = 6 10 = 7 11 = 8 | | 17:16 | R/W
00b | DRAM Refresh High Watermark (REFHIGHWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set. 00 = 3 01 = 4 10 = 5 11 = 6 | | 15:14 | R/W
00b | DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set. 00 = 1 01 = 2 10 = 3 11 = 4 | | 13:0 | R/W
001100001
10000b | Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies this results in the following values: 266 MHz -> 820 hex 333 MHz -> A28 hex 400 MHz -> C30 hex | # 5.2.15 COODTCTRL—Channel 0 ODT Control B/D/F/Type: 0/0/0/MCHBAR Address Offset: 29C-29Fh Default Value: 00100000h Access: RO, R/W Size: 32 bits This register provides ODT controls. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:24 | RO
00h | Reserved | | 23:20 | R/W
0001b | MCH ODT Latency (sd0_cr_modtl): Delay from CS# to (G)MCH ODT assertion. | | | | 0000 = Reserved | | | | 0001-1100 = 1-12clocks | | | | 1101-1111 = Reserved | | 19:17 | R/W
000 | CAS latency (sd0_cr_casl): Reserved (for CAS Latency) This field indicates the CAS latency of the memory population. This field is also termed as SDRAM to CAS latency. | | | | 000 = 3 memory clocks | | | | 001 = 4 memory clocks | | | | | | | | 111 = 10 memory clocks | | 16:0 | RO
00h | Reserved | # 5.2.16 C1DRB0—Channel 1 DRAM Rank Boundary Address 0 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 600-601h Default Value: 0000h Access: R/W, RO Size: 16 bits The operation of this register is detailed in the CODRBO register description. | Bit | Access & Default | Description | |-------|------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel 1 DRAM Rank Boundary Address 0 (C1DRBA0): See C0DRB0 register. In Flex mode this is the topmost populated rank in Channel 1; program this value to be cumulative of Ch0 DRB3. | # 5.2.17 C1DRB1—Channel 1 DRAM Rank Boundary Address 1 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 602–603h Default Value: 0000h Access: RO, R/W Size: 16 bits The operation of this register is detailed in the CODRBO register description. | Bit | Access & Default | Description | |-------|------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel 1 DRAM Rank Boundary Address 1 (C1DRBA1): See C0DRB1 register. In Flex mode this is the topmost populated rank in Channel 1; program this value to be cumulative of Ch0 DRB3. | # 5.2.18 C1DRB2—Channel 1 DRAM Rank Boundary Address 2 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 604–605h Default Value: 0000h Access: R/W, RO Size: 16 bits The operation of this register is detailed in the CODRBO register description. | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 15:10 | RO
000000b | Reserved | | | 9:0 | R/W
000h | Channel 1 DRAM Rank Boundary Address 2 (C1DRBA2): See C0DRB2 register. In Flex mode this is the topmost populated rank in Channel 1; program this value to be cumulative of Ch0 DRB3. | | # 5.2.19 C1DRB43—Channel 1 DRAM Rank Boundary Address 3 B/D/F/Type: 0/0/0/MCHBAR Address Offset: 606–607h Default Value: 0000h Access: R/W, RO Size: 16 bits The operation of this register is detailed in the CODRBO register description. | Bit | Access & Default | Description | | |-------|------------------|--|--| | 15:10 | RO
000000b | Reserved | | | 9:0 | R/W
000h | Channel 1 DRAM Rank Boundary Address 3 (C1DRBA3): See C0DRB3 register. In Flex mode this is the topmost populated rank in Channel 1; program this value to be cumulative of Ch0 DRB3 | | # 5.2.20 C1DRA01—Channel 1 DRAM Rank 0,1 Attributes B/D/F/Type: 0/0/0/MCHBAR Address Offset: 608–609h Default Value: 0000h Access: R/W Size: 16 bits The operation of this register is detailed in the CODRA01 register description. | Bit | Access &
Default | Description | |------|---------------------|---| | 15:8 | R/W
00h | Channel 1 DRAM Rank-1 Attributes (C1DRA1): See C0DRA1 register. | | 7:0 | R/W
00h | Channel 1 DRAM Rank-0 Attributes (C1DRA0): See C0DRA0 register. | # 5.2.21 C1DRA23—Channel 1 DRAM Rank 2,3 Attributes B/D/F/Type: 0/0/0/MCHBAR Address Offset: 60A-60Bh Default Value: 0000h Access: R/W Size: 16 bits The operation of this register is detailed in the description for register C0DRA01. | Bit | Access & Default | Description | | |------|------------------|---|--| | 15:8 | R/W
00h | Channel 1 DRAM Rank-3 Attributes (C1DRA3): See C0DRA3 register. | | | 7:0 | R/W
00h | Channel 1 DRAM Rank-2 Attributes (C1DRA2): See C0DRA2 register. | | # 5.2.22 C1CYCTRKPCHG—Channel 1 CYCTRK PreCharge B/D/F/Type: 0/0/0/MCHBAR Address Offset: 650–651h Default Value: 0000h Access: R/W Size: 16 bits This register provides control for Channel 1 CYCTRK Precharge. | Bit | Access & Default | Description | | |-------|------------------|---|--| | 15:11 | R/W
00000b | ACT To PRE Delayed (C1sd_cr_act_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and PRE commands to the same rank-bank. This field corresponds to t _{RAS} in the DDR Specification. | | | 10:6 | R/W
00000b | Write To PRE Delayed (C1sd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank. This field corresponds to t_{WR} in the DDR Specification. | | | 5:2 | R/W
0000b | READ To PRE Delayed (C1sd_cr_rd_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank. | | | 1:0 | R/W
00b | PRE To PRE Delayed (C1sd_cr_pchg_pchg): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between two PRE commands to the same rank. | | # 5.2.23 C1CYCTRKACT—Channel 1 CYCTRK ACT B/D/F/Type: 0/0/0/MCHBAR Address Offset: 652–655h Default Value: 00000000h Access: RO, R/W Size: 32 bits This register provides control for Channel 1 CYCTRK ACT. | Bit | Access & Default | Description | | |-------|-----------------------|--|--| | 31:28 | RO
0h | Reserved | | | 27:22 | R/W
000000b | ACT Window Count (C1sd_cr_act_windowcnt): This field indicates the window duration (in DRAM clocks) during which the controller counts the # of activate commands that are launched to a particular rank. If the number of activate commands launched within this window is greater than 4, then a check is implemented to block launch of further activates to this rank for the rest of the duration of this window. | | | 21 | R/W
0b | Max ACT Check (C1sd_cr_maxact_dischk): This field enables the check that ensures that there are no more than four activates to a particular rank in
a given window. | | | | | 0 = Disable | | | | | 1 = Enable | | | 20:17 | R/W
0000b | ACT to ACT Delayed (C1sd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. This field corresponds to t_{RRD} in the DDR specification. | | | 16:13 | R/W
0000b | PRE to ACT Delayed (C1sd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank:12:9R/W0000bPRE-ALL to ACT Delayed (C1sd_cr_preall_act):This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the PRE-ALL and ACT commands to the same rank. This field corresponds to tRP in the DDR specification. | | | 12:9 | R/W
0h | ALLPRE to ACT Delay (C1sd_cr_preall_act): From the launch of a precharge all command wait for this many memory clocks before launching an Activate command. This field corresponds to t_{PALL_RP} . | | | 8:0 | R/W
00000000
0b | REF to ACT Delayed (C1sd_cr_rfsh_act) : This configuration register indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. This field corresponds to t_{RFC} in the DDR specification. | | ### 5.2.24 C1CYCTRKWR—Channel 1 CYCTRK Write B/D/F/Type: 0/0/0/MCHBAR Address Offset: 656–657h Default Value: 0000h Access: R/W Size: 16 bits This register provides Channel 1 CYCTRK Write control. | Bit | Access & Default | Description | | |-------|------------------|---|--| | 15:12 | R/W
0h | ACT To Write Delay (C1sd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank This field corresponds to t_{RCD_wr} in the DDR Specification. | | | 11:8 | R/W
0h | Same Rank Write To Write Delayed (C1sd_cr_wrsr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank. | | | 7:4 | R/W
0h | Different Rank Write to Write Delay (C1sd_cr_wrdr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to different ranks. This field corresponds to t_{WR_WR} in the DDR specification. | | | 3:0 | R/W
0h | READ To WRTE Delay (C1sd_cr_rd_wr): This configuration register indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. This field corresponds to $t_{RD\ WR}$. | | # 5.2.25 C1CYCTRKRD—Channel 1 CYCTRK Read B/D/F/Type: 0/0/0/MCHBAR Address Offset: 658–65Ah Default Value: 000000h Access: R/W, RO Size: 24 bits This register provides Channel 1 CYCTRK Read control. | Bit | Access &
Default | Description | | |-------|---------------------|--|--| | 23:20 | RO
0h | Reserved | | | 19:16 | R/W
0h | Min ACT To READ Delayed (C1sd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank. This field corresponds to t_{RCD_rd} in the DDR Specification | | | 15:11 | R/W
00000b | Same Rank Write To READ Delayed (C1sd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. This field corresponds to twrr in the DDR specification. | | | Bit | Access &
Default | Description | | |------|---------------------|--|--| | 10:8 | R/W
000b | Different Ranks Write To READ Delayed (C1sd_cr_wrdr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to different ranks. This field corresponds to t_{WR_RD} in the DDR specification. | | | 7:4 | R/W
0000b | Same Rank Read To Read Delayed (C1sd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank. | | | 3:0 | R/W
0000b | Different Ranks Read To Read Delayed (C1sd_cr_rddr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to different ranks. This field corresponds to t_{RD_RD} . | | # 5.2.26 C1CKECTRL—Channel 1 CKE Control B/D/F/Type: 0/0/0/MCHBAR Address Offset: 660–663h Default Value: 00000800h Access: R/W Size: 32 bits This register provides Channel 1 CKE control. | Bit | Access &
Default | Description | | |-------|---------------------|--|--| | 31:30 | R/W
00b | Number of clocks from internal ODT command start that ODT Read Safe will be asserted (sd1_cr_odt_rdsafe): This field determines the number of clocks from internal ODT command start that ODT Read Safe will be asserted. | | | 29:28 | R/W
00b | Number of clocks from internal ODT command start that ODT Read Safe will be asserted (sd1_cr_odt_wrsafe): This field determines the number of clocks from internal ODT command start that ODT Write Safe will be asserted. | | | 27 | R/W
0b | start the self-refresh exit sequence (sd1_cr_srcstart): This bit indicates the request to start the self-refresh exit sequence. | | | 26:24 | R/W
000b | CKE pulse width requirement in high phase (sd1_cr_cke_pw_hl_safe): This field indicates CKE pulse width requirement in high phase. This field corresponds to tcke (high) in the DDR specification. | | | 23 | R/W | Rank 3 Population (sd1_cr_rankpop3): | | | | 0b | 0 = Rank 3 not populated | | | | | 1 = Rank 3 populated | | | 22 | R/W | Rank 2 Population (sd1_cr_rankpop2): | | | | 0b | 0 = Rank 2 not populated | | | | | 1 = Rank 2 populated | | | Bit | Access &
Default | Description | | |-------|-----------------------|--|--| | 21 | R/W | Rank 1 Population (sd1_cr_rankpop1): | | | | 0b | 0 = Rank 1 not populated | | | | | 1 = Rank 1 populated | | | 20 | R/W | Rank 0 Population (sd1_cr_rankpop0): | | | | 0b | 0 = Rank 0 not populated | | | | | 1 = Rank 0 populated | | | 19:17 | R/W
000b | CKE pulse width requirement in low phase (sd1_cr_cke_pw_lh_safe): This field indicates CKE pulse width requirement in low phase. This field corresponds to t_{CKE} (low) in the DDR specification. | | | 16 | R/W
0b | Enable CKE toggle for PDN entry/exit (sd1_cr_pdn_enable): This configuration bit indicates that the toggling of CKEs (for PDN entry/exit) is enabled. | | | 15 | R/W
0b | Read ODT Not Always Safe (sd1_cr_rdodtnas): Internal Read ODT to CS is not always safe. Setting this bit selects the delay (programmable) in the ODT Read Safe register field. | | | 14 | R/W | Write ODT Not Always Safe (sd1_cr_wrodtnas): Internal Write ODT to CS is not always safe. Setting this bit selects the delay | | | | 0b | (programmable) in the ODT Write Safe register field. | | | 13:10 | R/W
0010b | Minimum Power down Exit to Non-Read command spacing (sd1_cr_txp): This field indicates the minimum number of clocks to wait following assertion of CKE before issuing a non-read command. | | | | | 0000-0001=Reserved. | | | | | 0010-1001=2-9 clocks | | | | | 1010-1111= Reserved. | | | 9:1 | R/W
000000000
b | Self refresh exit count (sd1_cr_slfrfsh_exit_cnt): This field indicates the Self refresh exit count. (Program to 255). This field corresponds to t_{XSNR}/t_{XSRD} in the DDR specification. | | | 0 | R/W
0b | Indicates only 1 DIMM populated (sd1_cr_singledimmpop): This field indicates the that only 1 DIMM is populated. | | # 5.2.27 C1REFRCTRL—Channel 1 DRAM Refresh Control B/D/F/Type: 0/0/0/MCHBAR Address Offset: 669-66Eh Default Value: 021830000C30h Access: R/W, RO Size: 48 bits This register provides settings to configure the DRAM refresh controller. | Bit | Access &
Default | Description | | | |-------|---------------------|--|---|--| | 47:42 | RO
00h | Reserved | | | | 41:37 | R/W
10000b | Direct Rcomp Quiet Window (DIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh. | | | | 36:32 | R/W
11000b | Indirect Rcomp Quiet Window (INDIRQUIET): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh. | | | | 31:27 | R/W
00110b | Rcomp Wait (RCOMPWAIT): This configuration setting indicates the amount of refresh_tick events to wait before the service of rcomp request in non-default mode of independent rank refresh. | | | | 26 | RO
0b | Reserved: | | | | 25 | R/W
0b | Refresh Counter Enable (REFCNTEN): This bit is used to enable the refresh counter to count during times that DRAM is not in self-refresh, but refreshes are not enabled. Such a condition may
occur due to need to reprogram DIMMs following DRAM controller switch. | | | | | | This bit has no effect when Refresh is enabled (i.e. there is no mode where Refresh is enabled but the counter does not run) So, in conjunction with bit 23 REFEN, the modes are: | | | | | | REFEN:REFCNTEN | Description | | | | | 0:0 | Normal refresh disable | | | | | 0:1 | Refresh disabled, but counter is accumulating refreshes | | | | | 1:X | Normal refresh enable | | | 24 | R/W
0b | All Rank Refresh (ALLRKREF): This bit enables (by default) that all the ranks are refreshed in a staggered/atomic fashion. If set, the ranks are refreshed in an independent fashion. | | | | 23 | R/W | Refresh Enable (REFEN): Refresh is enabled. | | | | | 0b | 0 = Disabled | | | | | | 1 = Enabled | | | | | | T | |-------|----------------------------|--| | Bit | Access &
Default | Description | | 22 | R/W
0b | DDR Initialization Done (INITDONE) : This bit indicates that DDR initialization is complete. | | | | 0 = Not Done | | | | 1 = Done | | 21:20 | RO
0b | Reserved | | 19:18 | R/W
00b | DRAM Refresh Panic Watermark (REFPANICWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_panic flag is set. | | | | 00 = 5
01 = 6
10 = 7
11 = 8 | | 17:16 | R/W
00b | DRAM Refresh High Watermark (REFHIGHWM) : When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set. | | | | 00 = 3
01 = 4
10 = 5
11 = 6 | | 15:14 | R/W
00b | DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set. | | | | 00 = 1
01 = 2
10 = 3
11 = 4 | | 13:0 | R/W
001100001
10000b | Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies this results in the following values: | | | | 266 MHz -> 820h
333 MHz -> A28h
400 MHz -> C30h | # 5.2.28 C1ODTCTRL—Channel 1 ODT Control B/D/F/Type: 0/0/0/MCHBAR Address Offset: 69C-69Fh Default Value: 00100000h Access: R/W, RO Size: 32 bits This register provides ODT controls. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:24 | RO
00h | Reserved | | 23:20 | R/W
0001b | MCH ODT Latency (sd1_cr_modtl): Delay from CS# to (G)MCH ODT assertion. | | | | 0000 = Reserved | | | | 0001-1100 = 1-12 clocks | | | | 1101-1111 = Reserved | | 19:17 | R/W
000b | CAS latency (sd1_cr_casl) : This field indicates the CAS latency of the memory population. | | | | 000 = 3 memory clocks | | | | 001 = 4 memory clocks | | | | | | | | 111 = 10 memory clocks | | | | Also, termed as SDRAM to CAS latency. | | 16:0 | RO
00h | Reserved | # 5.2.29 EPC0DRB0—ME Channel 0 DRAM Rank Boundary Address 0 B/D/F/Type: 0/0/0/MCHBAR Address Offset: A00-A01h Default Value: 0000h Access: R/W, RO Size: 16 bits | Bit | Access & Default | Description | |-------|------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel 0 Dram Rank Boundary Address 0 (C0DRBA0): | # 5.2.30 EPC0DRB1—ME Channel 0 DRAM Rank Boundary Address 1 B/D/F/Type: 0/0/0/MCHBAR Address Offset: A02-A03h Default Value: 0000h Access: R/W, RO Size: 16 bits See the CODRBO register for programming details. | Bit | Access & Default | Description | |-------|------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel 0 Dram Rank Boundary Address 1 (CODRBA1): | # 5.2.31 EPCODRB2—ME Channel 0 DRAM Rank Boundary Address 2 B/D/F/Type: 0/0/0/MCHBAR Address Offset: A04-A05h Default Value: 0000h Access: R/W, RO Size: 16 bits See the CODRBO register for programming details. | Bit | Access & Default | Description | |-------|------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel 0 DRAM Rank Boundary Address 2 (C0DRBA2): | # 5.2.32 EPCODRB3—ME Channel 0 DRAM Rank Boundary Address 3 B/D/F/Type: 0/0/0/MCHBAR Address Offset: A06-A07h Default Value: 0000h Access: R/W, RO Size: 16 bits See CODRBO register for programming details. | Bit | Access & Default | Description | |-------|------------------|---| | 15:10 | RO
000000b | Reserved | | 9:0 | R/W
000h | Channel 0 DRAM Rank Boundary Address 3 (C0DRBA3): | #### 5.2.33 EPCODRA01—ME Channel O DRAM Rank 0,1 Attribute B/D/F/Type: 0/0/0/MCHBAR Address Offset: A08-A09h Default Value: 0000h Access: R/W, Size: 16 bits The DRAM Rank Attribute Registers define the page sizes/number of banks to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the CxDRA registers describes the page size of a pair of ranks. Channel and rank map: Ch0, Rank0, 1 = 108h-109h Ch0, Rank2, 3 = 10Ah-10Bh Ch1, Rank0, 1 = 188h-189h Ch1, Rank2, 3 = 18Ah-18Bh | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | R/W
00h | Channel O DRAM Rank-1 Attributes (CODRA1): This field defines DRAM pagesize/number-of-banks for rank1 for given channel | | 7:0 | R/W
00h | Channel O DRAM Rank-O Attributes (CODRAO): This field defines DRAM pagesize/number-of-banks for rank0 for given channel | #### 5.2.34 EPCODRA23—ME Channel O DRAM Rank 2,3 Attribute B/D/F/Type: 0/0/0/MCHBAR Address Offset: A0A-A0Bh Default Value: 0000h Access: R/W Size: 16 bits See C0DRA01 register for programming details. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | R/W
00h | Channel O DRAM Rank-3 Attributes (CODRA3): This field defines DRAM pagesize/number-of-banks for rank3 for given channel | | 7:0 | R/W
00h | Channel O DRAM Rank-2 Attributes (CODRA2): This field defines DRAM pagesize/number-of-banks for rank2 for given channel | | 26 | R/W
0b | DDR Initialization Done (INITDONE): This bit indicates that DDR initialization is complete. | | | | 0 = Not Done | | | | 1 = Done | | 25:0 | RO
0000h | Reserved | ## 5.2.35 EPDCYCTRKWRTPRE—MED CYCTRK WRT PRE B/D/F/Type: 0/0/0/MCHBAR Address Offset: A19-A1Ah Default Value: 0000h Access: R/W, RO Size: 16 bits This is the EPD CYCTRK WRT PRE Status register. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:11 | R/W
00000b | ACT To PRE Delayed (COsd_cr_act_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and PRE commands to the same rank-bank | | 10:6 | R/W
00000b | Write To PRE Delayed (C0sd_cr_wr_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and PRE commands to the same rank-bank | | 5:2 | R/W
0000b | READ To PRE Delayed (C0sd_cr_rd_pchg): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and PRE commands to the same rank-bank | | 1:0 | RO
00b | Reserved: | #### 5.2.36 EPDCYCTRKWRTACT—MED CYCTRK WRT ACT B/D/F/Type: 0/0/0/MCHBAR Address Offset: A1C-A1Fh Default Value: 00000000h Access: RO, R/W Size: 32 bits This is the MED CYCTRK WRT ACT Status register. | Bit | Access &
Default | Description | |-------|-----------------------|---| | 31:21 | RO
000h | Reserved | | 20:17 | R/W
0000b | ACT to ACT Delayed (COsd_cr_act_act[): This field indicates the minimum allowed spacing (in DRAM clocks) between two ACT commands to the same rank. | | 16:13 | R/W
0000b | PRE to ACT Delayed (COsd_cr_pre_act): This field indicates the minimum allowed spacing (in DRAM clocks) between the PRE and ACT commands to the same rank-bank: | | 12:9 | RO
0h | Reserved | | 8:0 | R/W
00000000
0b | REF to ACT Delayed (COsd_cr_rfsh_act): This field indicates the minimum allowed spacing (in DRAM clocks) between REF and ACT commands to the same rank. | # 5.2.37 EPDCYCTRKWRTWR—MED CYCTRK WRT WR B/D/F/Type: 0/0/0/MCHBAR Address Offset: A20-A21h Default Value: 0000h Access: R/W, RO Size: 16 bits This is the EPD CYCTRK WRT WR status register. | Bit | Access & Default | Description | |-------|------------------|--| | 15:12 | R/W
0h | ACT To Write Delay (COsd_cr_act_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and WRITE commands to the same rank-bank. | | 11:8 | R/W
0h | Same Rank Write To Write Delayed (COsd_cr_wrsr_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between two WRITE commands to the same rank. | | 7:4 | RO
0h | Reserved | | 3:0 | R/W
0h | READ To WRTE Delay (COsd_cr_rd_wr): This field indicates the minimum allowed spacing (in DRAM clocks) between the READ and WRITE commands. | # 5.2.38
EPDCYCTRKWRTRD—MED CYCTRK WRT READ B/D/F/Type: 0/0/0/MCHBAR Address Offset: A24-A26h Default Value: 000000h Access: R/W Size: 24 bits BIOS Optimal Default 000h This is the MED CYCTRK WRT RD status register. | Bit | Access & Default | Description | |-------|------------------|--| | 23:23 | RO
0h | Reserved | | 22:20 | R/W
000b | MEDunit DQS Slave DLL Enable to Read Safe (EPDSDLL2RD): This field provides the setting for Read command safe from the point of enabling the slave DLLs. | | 19:18 | RO
0h | Reserved | | 17:14 | R/W
0h | Min ACT To READ Delayed (COsd_cr_act_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the ACT and READ commands to the same rank-bank | | 13:9 | R/W
00000b | Same Rank Write To READ Delayed (COsd_cr_wrsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between the WRITE and READ commands to the same rank. | | 8:6 | RO
0h | Reserved | | 5:3 | R/W
000b | Same Rank Read To Read Delayed (COsd_cr_rdsr_rd): This field indicates the minimum allowed spacing (in DRAM clocks) between two READ commands to the same rank. | | 2:0 | RO
0h | Reserved | # 5.2.39 EPDCKECONFIGREG—MED CKE Related Configuration Register B/D/F/Type: 0/0/0/MCHBAR Address Offset: A28-A2Ch Default Value: 00E0000000h Access: R/W Size: 40 bits BIOS Optimal Default 0h This is the CKE related configuration register for MED. | Bit | Access & Default | Description | |-------|------------------|---| | 39:35 | R/W
00000b | MEDunit TXPDLL Count (EPDTXPDLL) : This field specifies the delay from precharge power down exit to a command that requires the DRAM DLL to be operational. The commands are read/write. | | 34:32 | R/W
000b | MEDunit TXP Count (EPDCKETXP): This field specifies the timing requirement for Active power down exit or fast exit pre-charge power down exit to any command or slow exit pre-charge power down to Non-DLL (rd/wr/odt) command. | | 31:29 | R/W
111b | Mode Select (sd0_cr_sms): This field setting indicates the mode in which the controller is operating in. | | | | 111 = Normal mode of operation, else special mode of operation. | | 28:27 | R/W
00b | MEDunit EMRS Command Select. (EPDEMRSSEL): This field provides EMRS mode to select BANK address. | | | | 01 = EMRS | | | | 10 = EMRS2 | | | | 11 = EMRS3 | | 26:24 | R/W
000b | CKE Pulse Width Requirement in High Phase (sd0_cr_cke_pw_hl_safe): This field indicates CKE pulse width requirement in high phase | | 23:20 | R/W
0h | One-hot Active Rank Population (ep_scr_actrank): This field indicates the active rank in a one hot manner | | 19:17 | R/W
000b | CKE Pulse Width Requirement in Low Phase (sd0_cr_cke_pw_lh_safe): This field indicates CKE pulse width requirement in low phase | | 16:15 | RO
0h | Reserved | | 14 | R/W
0b | MEDunit MPR mode (EPDMPR): MPR Read Mode 1 = MPR mode 0 = Normal mode | | | | U = NOTITIAL THOUGE | | Bit | Access & Default | Description | |-------|-----------------------|--| | 13 | R/W
0b | MEDunit Power Down enable for ODT Rank (EPDOAPDEN): This bit enables the ODT ranks to dynamically enter power down. | | | | 0 = Disable active power down. | | | | 1 = Enable active power down. | | 12 | R/W
0b | MEDunit Power Down Enable for Active Rank (EPDAAPDEN): This bit enables the active rank to dynamically enter power down. | | | | 0 = Disable active power down. | | | | 1 = Enable active power down. | | 11:10 | RO
0h | Reserved | | 9:1 | R/W
00000000
0b | Self Refresh Exit Count (sd0_cr_slfrfsh_exit_cnt): This field indicates the Self refresh exit count. (Program to 255) | | 0 | R/W
0b | Indicates Only 1 DIMM Populated (sd0_cr_singledimmpop): This field indicates that only 1 DIMM is populated. | # 5.2.40 MEMEMSPACE—ME Memory Space configuration B/D/F/Type: 0/0/0/MCHBAR Address Offset: A2Eh Default Value: 00h Access: R/W, RO Size: 8 bits This register provides settings to enable the ME memory space and define the size of ${\sf EP}$ memory if enabled. | Bit | Access & Default | Description | |-----|------------------|--| | 7:5 | RO
000b | Reserved | | 4:0 | R/W
00000b | ME-UMA(Sx) Region Size (EXRS): These bits are written by firmware to indicate the desired size of ME-UMA(Sx) memory region. This is done prior to bring up core power and allowing BIOS to initialize memory. Within channel 0 DDR, the physical base address for ME-UMA(Sx) will be determined by: ME-UMA(Sx)BASE = C0DRB3 - EXRS. This forces the ME-UMA(Sx) region to always be positioned at the top of the memory populated in channel 0. The approved sizes for ME-UMA(Sx) are values between 0000b (0MB, no ME-UMA(Sx) region) and 10000b (16MB ME-UMA(Sx) region) | # 5.2.41 EPDREFCONFIG—ME DRAM Refresh Configuration B/D/F/Type: 0/0/0/MCHBAR Address Offset: A30-A33h Default Value: 40000C30h Access: R/W, RO Size: 32 bits This register provides settings to configure the MED refresh controller. | Bit | Access & Default | | Description | |-------|------------------|--|---| | 31 | RO
0b | Reserved | | | 30:29 | R/W
10b | (EPDREF4SR): This that need to be adde | ount Addition for Self Refresh Exit. field indicates the number of additional refreshes and to the refresh request count after exiting self are is to add 2 refreshes. | | | | 00 = Add 0 Refreshe
01 = Add 1 Refreshe
10 = Add 2 Refreshe
11 = Add 3 Refreshe | S
S | | 28 | R/W
0b | refresh counter to co
but refreshes are not | nable (REFCNTEN): This bit is used to enable the
bunt during times that DRAM is not in self-refresh,
t enabled. Such a condition may occur due to need
following DRAM controller switch. | | | | where Refresh is ena | when Refresh is enabled (i.e., there is no mode
abled but the counter does not run). Thus, in
23 REFEN, the modes are: | | | | REFEN:REFCNTEN | Description | | | | 0:0 | Normal refresh disable | | | | 0:1 | Refresh disabled, but counter is accumulating refreshes. | | | | 1:X | Normal refresh enable | | 27 | R/W | Refresh Enable (Ri | EFEN): | | | 0b | 0 = Disabled
1 = Enabled | | | 26 | R/W
0b | DDR Initialization initialization is compl | Done (INITDONE): This bit indicates that DDR ete. | | | | 0 = Not Done
1 = Done | | | 25:22 | RO
0000b | Reserved | | | Bit | Access &
Default | Description | |-------|----------------------------|--| | 21:18 | R/W
0000b | DRAM Refresh High Watermark (REFHIGHWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_high flag is set. | | | | 0000 = 0 $0001 = 1$ | | | | 1000 = 8 | | 17:14 | R/W
0000b | DRAM Refresh Low Watermark (REFLOWWM): When the refresh count exceeds this level, a refresh request is launched to the scheduler and the dref_low flag is set. | | | | 0000 = 0 $0001 = 1$ | | | | 1000 = 8 | | 13:0 | R/W
00110000
110000b | Refresh Counter Time Out Value (REFTIMEOUT): Program this field with a value that will provide 7.8 us at the memory clock frequency. At various memory clock frequencies this results in the following values: | | | | 266 MHz -> 820h
333 MHz -> A28h
400 MHz -> C30h | ## 5.2.42 TSC1—Thermal Sensor Control 1 B/D/F/Type: 0/0/0/MCHBAR Address Offset: CD8h Default Value: 00h Access: RW/L, R/W, RS/WC Size: 8 bits This register controls the operation of the thermal sensor. Bits 7:1 of this register are reset to their defaults by CLPWROK. Bit 0 is reset to its default by PLTRST#. | Bit | Access & Default | Description | |-----|------------------|--| | 7 | R/W/L
0b | Thermal Sensor Enable (TSE) : This bit enables power to the thermal sensor. Lockable via TCO bit 7. | | | | 0 = Disabled | | | | 1 = Enabled | | 6 | RO
0b | Reserved | | Bit | Access & Default | Description | |-----|------------------|---| | 5:2 | R/W
0000b | Digital Hysteresis Amount (DHA): This field determines whether no offset, 1 LSB, 2 15 are used for hysteresis for the trip points. | | | | 0000 = digital hysteresis disabled, no offset added to trip temperature | | | | 0001 = offset is 1 LSB added to each trip temperature when tripped | | | | | | | | 0110 = ~3.0 °C (Recommended setting) | | |
 | | | | 1110 = added to each trip temperature when tripped | | | | 1111 = added to each trip temperature when tripped | | 1 | RO
0b | Reserved | | 0 | RS/WC | In Use (IU): Software semaphore bit. | | | 0b | After a full MCH RESET, a read to this bit returns a 0. | | | | After the first read, subsequent reads will return a 1. | | | | A write of a 1 to this bit will reset the next read value to 0. | | | | Writing a 0 to this bit has no effect. | | | | Software can poll this bit until it reads a 0, and will then own the usage of the thermal sensor. | | | | This bit has no other effect on the hardware, and is only used as a semaphore among various independent software threads that may need to use the thermal sensor. | | | | Software that reads this register but does not intend to claim exclusive access of the thermal sensor must write a one to this bit if it reads a 0, in order to allow other software threads to claim it. | #### TSC2—Thermal Sensor Control 2 5.2.43 0/0/0/MCHBAR B/D/F/Type: Address Offset: CD9h Default Value: 00h Access: R/W/L, RO Size: 8 bits This register controls the operation of the thermal sensor. All bits in this register are reset to their defaults by CLPWROK. | Bit | Access & Default | Description | |-----|------------------|--| | 7:4 | RO
0h | Reserved | | 3:0 | R/W/L
0h | Thermometer Mode Enable and Rate (TE): These bits enable the thermometer mode functions and set the Thermometer controller rate. The trip points (Catastrophic and Hot) will all operate using the programmed trip points and Thermometer mode rate. | | | | NOTE: During boot, all other thermometer mode registers (except lock bits) should be programmed appropriately before enabling the Thermometer Mode. Lockable via TCO bit 7. | | | | | | | | 0000 = Disabled. Thermometer mode disabled | | | | 0100 = Enabled, 2048 clock mode (normal Thermometer mode operation) - provides ~7.68 us settling time @ 266 MHz - provides ~6.14 us settling time @ 333 MHz - provides ~5.12 us settling time @ 400 MHz | | | | 0101 = Enabled, 3072 clock mode | | | | 0110 = Enabled, 4096 clock mode | | | | 0111 = Enabled, 6144 clock mode - provides ~23.1 us settling time @ 266 MHz - provides ~18.5 us settling time @ 333 MHz - provides ~15.4 us settling time @ 400 MHz | | | | all other permutations reserved | | | | NOTE: The settling time for DAC and Thermal Diode is between 2 us and 5 us. To meet this requirement the SE value must be programmed to be 5 micro-seconds or more. Recommendation is to use 0100h setting. | ## 5.2.44 TSS—Thermal Sensor Status B/D/F/Type: 0/0/0/MCHBAR Address Offset: CDAh Default Value: 00h Access: RO Size: 8 bits This register provides trip point and other status of the thermal sensor. All bits in this register are reset to their defaults by CLPWROK. | Bit | Access &
Default | Description | |-----|---------------------|--| | 7 | RO
0b | Catastrophic Trip Indicator (CTI): 1 = Internal thermal sensor temperature is above the catastrophic setting. | | 6 | RO
0b | Hot Trip Indicator (HTI): 1 = Internal thermal sensor temperature is above the Hot setting. | | 5:0 | RO
00000b | Reserved | # 5.2.45 TSTTP—Thermal Sensor Temperature Trip Point B/D/F/Type: 0/0/0/MCHBAR Address Offset: CDC-CDFh Default Value: 00000000h Access: RO, R/W, R/W/L Size: 32 bits This register sets the target values for the trip points. All bits in this register are reset to their defaults by CLPWROK. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
00h | Reserved | | 15:8 | R/W/L
00h | Hot Trip Point Setting (HTPS): This field sets the target value for the Hot trip point. | | | | Lockable via TCO bit 7. | | 7:0 | R/W/L
00h | Catastrophic Trip Point Setting (CTPS): This field sets the target for the Catastrophic trip point. See also TST[Direct DAC Connect Test Enable]. | | | | Lockable via TCO bit 7. | #### **TCO—Thermal Calibration Offset** 5.2.46 0/0/0/MCHBAR B/D/F/Type: Address Offset: CE2h Default Value: 00h R/W/L/K, R/W/L Access: Size: 8 bits Bit 7 reset to its default by PLTRST#. Bits 6:0 reset to their defaults by CLPWROK. | Bit | Access & Default | Description | |-----|------------------|---| | 7 | R/W/L/K
0b | Thermal Sensor Lock Bit (TSLB): This bit, when written to a 1, locks the Catastrophic programming interface, including bits 7:0 of this register and bits 15:0 of TSTTP, bits 1,7 of TSC 1, bits 3:0 of TSC 2, bits 4:0 of TSC 3, and bits 0,7 of TST. This bit may only be set to a 0 by a hardware reset (PLTRST#). Writing a 0 to this bit has no effect. | | 6:0 | R/W/L
00h | Calibration Offset (CO): This field contains the current calibration offset for the Thermal Sensor DAC inputs. The calibration offset is a twos complement signed number which is added to the temperature counter value to help generate the final value going to the thermal sensor DAC. This register is loaded by the HW from fuses that are blown during test. | | | | This field is Read/Write, but should be kept at its default value as programmed by the fuses in the part. | | | | Note for TCO operation: While this is a seven-bit field, the 7th bit is sign extended to 9 bits for TCO operation. The range of 00h to 3Fh corresponds to 0_0000_0000h to 0_0011_1111h. The range of 41h to 7Fh corresponds to 1 1100 001 (i.e., negative 3fh) to 1_1111_1111h (i.e., negative 1), respectively. | #### 5.2.47 THERM1—Hardware Protection B/D/F/Type: 0/0/0/MCHBAR Address Offset: CE4h Default Value: 00h Access: R/W/L, RO, R/W/L/K Size: 8 bits All bits in this register are reset to their defaults by PLTRST#. | Bit | Access &
Default | Description | |-----|---------------------|--| | 7:4 | RO
0000b | Reserved | | 3 | R/W/L
0b | Halt on Catastrophic (HOC): 0 = Continue to toggle clocks when the catastrophic sensor trips. 1 = All clocks are disabled when the catastrophic sensor trips. A system reset is required to bring the system out of a halt from the thermal sensor. | | 2:1 | RO
00b | Reserved | | 0 | R/W/L/K
0b | Hardware Protection Lock Bit (HTL): This bit locks bits 7:0 of this register. 0 = The register bits are unlocked. 1 = The register bits are locked. It may only be set to a 0 by a hardware reset. Writing a 0 to this bit has no effect. | #### 5.2.48 TIS—Thermal Interrupt Status B/D/F/Type: 0/0/0/MCHBAR Address Offset: CEA-CEBh Default Value: 0000h Access: RO, R/W/C Size: 16 bits This register is used to report if the temperature is rising or falling past the Hot Trip Point. After an SMI# is asserted by the Hot Trip Point, SW can examine the current state of the thermal zones by examining the TSS. Software must write a 1 to clear the status bits in this register. Following scenario is possible: An interrupt is initiated on a rising temperature trip, the appropriate DMI cycles are generated, and eventually the software services the interrupt and sees a rising temperature trip as the cause in the status bits for the interrupts. Assume that the software then clears the local interrupt status bit in the TIS register for that trip event. It is possible at this point that a falling temperature trip event occurs before the software has had the time to clear the global interrupts status bit. But since software has already looked at the status register before this event happened, software may not clear the local status flag for this event. Therefore, after the global interrupt is cleared by software, software must look at the instantaneous status in the TSS register. All bits in this register are reset to their defaults by PLTRST#. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:10 | RO
00h | Reserved | | 9 | R/WC
0b | Was Catastrophic Thermal Sensor Interrupt Event (WCTSIE):
Software must write a 1 to clear this status bit. | | | | 0 = No trip for this event | | | | 1 = Catastrophic Thermal Sensor trip based on a higher to lower temperature transition thru the trip point | | 8 | R/WC
0b | Was Hot Thermal Sensor Interrupt Event (WHTSIE): Software must write a 1 to clear this status bit. | | | | 0 = No trip for this event | | | | 1 = Hot Thermal Sensor trip based on a higher to lower temperature transition thru the trip point | | 7:5 | RO
000b | Reserved | | 4 | R/WC
0b | Catastrophic Thermal Sensor Interrupt Event (CTSIE): Software must write a 1 to clear this status bit. | | | | 0 = No trip for this event. | | | | 1 = Catastrophic Thermal Sensor trip event occurred based on a lower to higher temperature transition thru the trip point. | | 3 | R/WC
0b | Hot Thermal Sensor Interrupt Event (HTSIE): Software must write a 1 to clear this status bit. | | | | 0 = No trip for
this event. | | | | 1 = Hot Thermal Sensor trip event occurred based on a lower to
higher temperature transition thru the trip point. | | 2:0 | RO
000b | Reserved | #### 5.2.49 TSMICMD—Thermal SMI Command B/D/F/Type: 0/0/0/MCHBAR Address Offset: CF1h Default Value: 00h Access: RO, R/W Size: 8 bits This register selects specific errors to generate a SMI DMI special cycle, as enabled by the Device 0 SMI Error Command Register [SMI on MCH Thermal Sensor Trip]. All bits in this register are reset to their defaults by PLTRST#. | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:2 | RO
000h | Reserved | | 1 | R/W
0b | SMI on (G)MCH Hot Thermal Sensor Trip (SMGHTST): 0 = Disable reporting of this condition via SMI messaging. 1 = Does not mask the generation of an SMI# DMI special cycle on a Hot thermal sensor trip. | | 0 | RO
0b | Reserved | # 5.2.50 PMSTS—Power Management Status B/D/F/Type: 0/0/0/MCHBAR Address Offset: F14-F17h Default Value: 00000000h Access: R/WC/S, RO Size: 32 bits This register is reset by PWROK only. | Bit | Access & Default | Description | |------|------------------|--| | 31:9 | RO
00000h | Reserved | | 8 | R/WC/S
0b | Warm Reset Occurred (WRO): This bit is set when a ResetWarn is received, and cleared by PWROK=0. | | | | 0 = No Warm Reset occurred. | | | | 1 = Warm Reset occurred. | | | | BIOS Requirement: BIOS can check and clear this bit when executing POST code. This way BIOS knows that if the bit is set, then the PMSTS bits [1:0] must also be set, and if not BIOS needs to power-cycle the platform. | | Bit | Access & Default | Description | |-----|------------------|---| | 7:2 | RO
00h | Reserved | | 1 | R/WC/S
0b | Channel 1 in Self-Refresh (C1SR): This bit is set by power management hardware after Channel 1 is placed in self refresh as a result of a Power State or a Reset Warn sequence. | | | | Cleared by Power management hardware before starting Channel 1 self refresh exit sequence initiated by a power management exit. | | | | Cleared by the BIOS by writing a "1" in a warm reset (Reset# asserted while PWROK is asserted) exit sequence. | | | | 0 = Channel 1 not ensured to be in self refresh. | | | | 1 = Channel 1 in Self Refresh. | | 0 | R/WC/S
0b | Channel O in Self-Refresh (COSR): This bit is set by power management hardware after Channel O is placed in self refresh as a result of a Power State or a Reset Warn sequence. | | | | Cleared by Power management hardware before starting Channel 0 self refresh exit sequence initiated by a power management exit. | | | | Cleared by the BIOS by writing a "1" in a warm reset (Reset#
asserted while PWROK is asserted) exit sequence. | | | | 0 = Channel 0 not ensured to be in self refresh. | | | | 1 = Channel 0 in Self Refresh. | # 5.3 MEBAR Registers Table 5-4. MEBAR Register Address Map | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|-------------------------------------|-----------------------|----------| | 44-47h | EPESD | ME Element Self Description | 00000201h | RO, R/WO | | 50-53h | EPLE1D | Controller Link Entry 1 Description | 01000000h | RO, R/WO | | 58-57h | EPLE1A | Controller Link Entry 1 Address | 00000000
0000000h | RO, R/WO | | 60-63h | EPLE2D | Controller Link Entry 2 Description | 02000002h | RO, R/WO | | 68-6Fh | EPLE2A | Controller Link Entry 2 Address | 000000000
0008000h | RO | # 5.3.1 EPESD—ME Element Self Description B/D/F/Type: 0/0/0/PXPEPBAR Address Offset: 44–47h Default Value: 00000201h Access: RO, R/WO Size: 32 bits This register provides information about the root complex element containing this Link Declaration Capability. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:24 | RO
00h | Port Number (PN): This field specifies the port number associated with this element with respect to the component that contains this element. A value of 00h indicates to configuration software that this is the default egress port. | | 23:16 | R/WO
00h | Component ID (CID): This field identifies the physical component that contains this Root Complex Element. | | 15:8 | RO
02h | Number of Link Entries (NLE): This field indicates the number of link entries following the Element Self Description. This field reports 2 link entries (one each for PEG and DMI). | | 7:4 | RO
0h | Reserved | | 3:0 | RO
1h | Element Type (ET): This field indicates the type of the Root Complex Element. Value of 1 h represents a port to system memory. | # 5.3.2 EPLE1D—Controller Link Entry 1 Description B/D/F/Type: 0/0/0/PXPEPBAR Address Offset: 50–53h Default Value: 01000000h Access: RO, R/WO Size: 32 bits This register provides the first part of a link entry that declares an internal link to another Root Complex Element. | Bit | Access &
Default | Description | |--------|---------------------|---| | 31:24 | RO
01h | Target Port Number (TPN): This field specifies the port number associated with the element targeted by this link entry (DMI). The target port number is with respect to the component that contains this element as specified by the target component ID. | | 23:16 | R/WO
00h | Target Component ID (TCID): This field identifies the physical or logical component that is targeted by this link entry. | | 15:2 | RO
0000h | Reserved | | 1 | RO
0b | Link Type (LTYP): This bit indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB. | | 0 R/WO | | Link Valid (LV): | | | 0b | 0 = Link Entry is not valid and will be ignored. | | | | 1 = Link Entry specifies a valid link. | # 5.3.3 EPLE1A—Controller Link Entry 1 Address B/D/F/Type: 0/0/0/PXPEPBAR Address Offset: 58–5Fh Access: RO, R/WO Size: 64 bits This register provides the second part of a link entry that declares an internal link to another Root Complex Element. | Bit | Access &
Default | Description | |-------|---------------------|--| | 63:32 | RO
00000000h | Reserved | | 31:12 | R/WO
00000h | Link Address (LA): This field contains the memory-mapped base address of the RCRB that is the target element (DMI) for this link entry. | | 11:0 | RO
000h | Reserved | # 5.3.4 EPLE2D—Controller Link Entry 2 Description B/D/F/Type: 0/0/0/PXPEPBAR Address Offset: 60-63h Default Value: 02000002h Access: RO, R/WO Size: 32 bits This register provides the first part of a link entry that declares an internal link to another Root Complex Element. | Bit | Access & Default | Description | |-------|------------------|---| | 31:24 | RO
02h | Target Port Number (TPN): This field specifies the port number associated with the element targeted by this link entry (PEG). The target port number is with respect to the component that contains this element as specified by the target component ID. | | 23:16 | R/WO
00h | Target Component ID (TCID): This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved. Component IDs start at 1. This value is a mirror of the value in the Component ID field of all elements in this component. | | 15:2 | RO
0000h | Reserved | | 1 | RO
1b | Link Type (LTYP): This bit is hardwired to I indicating that the link points to configuration space of the integrated device that controls the x16 root port. | | | | The link address specifies the configuration address (segment, bus, device, function) of the target root port. | | 0 | R/WO | Link Valid (LV): | | | 0b | 0 = Link entry is not valid and will be ignored. | | | | 1 = Link entry specifies a valid link. | # 5.3.5 EPLE2A—Controller Link Entry 2 Address B/D/F/Type: 0/0/0/PXPEPBAR Address Offset: 68-6Fh Default Value: 0000000000008000h Access: RO Size: 64 bits This register provides the second part of a link entry that declares an internal link to another Root Complex Element. | Bit | Access &
Default | Description | |-------|----------------------|--| | 63:28 | RO
000000000
h | Reserved | | 27:20 | RO
00h | Bus Number (BUSN): | | 19:15 | RO
00001b | Device Number (DEVN): Target for this link is PCI Express x16 port (Device 1). (82Q965, 82G965, 82P965 (G)MCH Only) | | 14:12 | RO
000b | Function Number (FUNN): | | 11:0 | RO
000h | Reserved | § # 6 PCI
Express* Registers (Device 1, Function 0) (Intel® 820965/82G965/82P965 Only) Device 1 contains the controls associated with the PCI Express x16 root port that is the intended to attach as the point for external graphics. It also functions as the virtual PCI-to-PCI bridge. **Warning:** When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless the register value is stable. The PCI Express* Specification defines two types of reserved bits. #### Reserved and Preserved: - Reserved for future R/W implementations; software must preserve value read for writes to bits. - Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits. Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved. **Note:** Most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first Disable the link, then program the registers, and then reenable the link (which will cause a full-retrain with the new settings). Table 6-1. PCI Express* Register Address Map (Device 1, Function 0) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------|-------------------------|--------------------------------|----------| | 00-01h | VID1 | Vendor Identification | 8086h | RO | | 02-03h | DID1 | Device Identification | 2981h | RO | | 04-05h | PCICMD1 | PCI Command | 0000h | RO, R/W | | 06-07h | PCISTS1 | PCI Status | 0010h | RO, R/WC | | 08h | RID1 | Revision Identification | See
register
description | RO | | 09-0Bh | CC1 | Class Code | 060400h | RO | | 0Ch | CL1 | Cache Line Size | 00h | R/W | # (Intel® 82Q965/82G965/82P965 Only) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|-----------|--|------------------|------------------| | 0Eh | HDR1 | Header Type | 01h | RO | | 18h | PBUSN1 | Primary Bus Number | 00h | RO | | 19h | SBUSN1 | Secondary Bus Number | 00h | R/W | | 1Ah | SUBUSN1 | Subordinate Bus Number | 00h | R/W | | 1Ch | IOBASE1 | I/O Base Address | F0h | R/W, RO | | 1Dh | IOLIMIT1 | I/O Limit Address | 00h | R/W, RO | | 1E-1Fh | SSTS1 | Secondary Status | 0000h | R/WC, RO | | 20-21h | MBASE1 | Memory Base Address | FFF0h | R/W, RO | | 22-22h | MLIMIT1 | Memory Limit Address | 0000h | R/W, RO | | 24-25h | PMBASE1 | Prefetchable Memory Base Address | FFF1h | R/W, RO | | 26-27h | PMLIMIT1 | Prefetchable Memory Limit Address | 0001h | R/W, RO | | 28-2Bh | PMBASEU1 | Prefetchable Memory Base Address | 00000000h | R/W | | 2C-2Fh | PMLIMITU1 | Prefetchable Memory Limit Address | 00000000h | R/W | | 34h | CAPPTR1 | Capabilities Pointer | 88h | RO | | 3Ch | INTRLINE1 | Interrupt Line | 00h | R/W | | 3Dh | INTRPIN1 | Interrupt Pin | 01h | RO | | 3E-3Fh | BCTRL1 | Bridge Control | 0000h | RO, R/W | | 80-83h | PM_CAPID1 | Power Management Capabilities | C8039001h | RO | | 84-87h | PM_CS1 | Power Management Control/Status | 00000000h | RO, R/W/S
R/W | | 88-8Bh | SS_CAPID | Subsystem ID and Vendor ID Capabilities | 0000800Dh | RO | | 8C-8Fh | SS | Subsystem ID and Subsystem
Vendor ID | 00008086h | R/WO | | 90-91h | MSI_CAPID | Message Signaled Interrupts
Capability ID | A005h | RO | | 92-93h | MC | Message Control | 0000h | R/W, RO | | 94-97h | MA | Message Address | 00000000h | R/W, RO | | 98-99h | MD | Message Data | 0000h | R/W | | A0-A1h | PEG_CAPL | PCI Express-G Capability List | 0010h | RO | | A2-A3h | PEG_CAP | PCI Express-G Capabilities | 0141h | RO, R/WO | | A4-A7h | DCAP | Device Capabilities | 00008000h | RO | | A8-A9h | DCTL | Device Control | 0000h | RO, R/W | | AA-ABh | DSTS | Device Status | 0000h | RO, R/WC | | AC-AFh | LCAP | Link Capabilities | 02014D01h | RO, R/WO | # PCI Express* Registers (Device 1, Function 0) (Intel® 82Q965/82G965/82P965 Only) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------|---|-----------------------|--------------------| | B0-B1h | LCTL | Link Control | 0000h | RO, R/W,
R/W/SC | | B2-B3h | LSTS | Link Status | 1001h | RO | | B4-B7h | SLOTCAP | Slot Capabilities | 00040000h | R/WO, RO | | B8-B9h | SLOTCTL | Slot Control | 01C0h | RO, R/W | | BA-BBh | SLOTSTS | Slot Status | 0000h | RO, R/WC | | BC-BDh | RCTL | Root Control | 0000h | RO, R/W | | C0-C3h | RSTS | Root Status | 00000000h | RO, R/WC | | EC-EFh | PEGLC | PCI Express-G Legacy Control | 00000000h | R/W, RO | | 100-103h | VCECH | Virtual Channel Enhanced
Capability Header | 14010002h | RO | | 104-107h | PVCCAP1 | Port VC Capability Register 1 | 00000000h | RO | | 108-10Bh | PVCCAP2 | Port VC Capability Register 2 | 00000000h | RO | | 10C-10Dh | PVCCTL | Port VC Control | 0000h | RO, R/W | | 110-113h | VC0RCAP | VC0 Resource Capability | 00000000h | RO | | 114-117h | VC0RCTL | VC0 Resource Control | 800000FFh | RO, R/W | | 11A-11Bh | VC0RSTS | VC0 Resource Status | 0002h | RO | | 140-143h | RCLDECH | Root Complex Link Declaration
Enhanced | 00010005h | RO | | 144-147h | ESD | Element Self Description | 02000100h | RO, R/WO | | 150-153h | LE1D | Link Entry 1 Description | 00000000h | RO, R/WO | | 158-15Fh | LE1A | Link Entry 1 Address | 000000000
0000000h | RO, R/WO | | 218-21Fh | PEGSSTS | PCI Express-G Sequence Status | 000000000
0000FFFh | RO | # 6.1 PCI Express* Configuration Register Details (Device 1, Function 0) #### 6.1.1 VID1—Vendor Identification B/D/F/Type: 0/1/0/PCI Address Offset: 0-1h Default Value: 8086h Access: RO Size: 16 bits This register, combined with the Device Identification register, uniquely identify any PCI device. | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | RO
8086h | Vendor Identification (VID1): PCI standard identification for Intel. | #### 6.1.2 DID1—Device Identification B/D/F/Type: 0/1/0/PCI Address Offset: 2-3h Default Value: 2981h Access: RO Size: 16 bits This register, combined with the Vendor Identification register, uniquely identifies any PCI device. | Bit | Access &
Default | Description | |------|---------------------|---| | 15:8 | RO
29h | Device Identification Number (DID1(UB)) : Identifier assigned to the (G)MCH device 1 (virtual PCI-to-PCI bridge, PCI Express Graphics port). | | 7:4 | RO
7h | Device Identification Number (DID1(HW)) : Identifier assigned to the (G)MCH device 1 (virtual PCI-to-PCI bridge, PCI Express Graphics port). | | 3:0 | RO
1h | Device Identification Number (DID1(LB)) : Identifier assigned to the (G)MCH device 1 (virtual PCI-to-PCI bridge, PCI Express Graphics port). | # 6.1.3 PCICMD1—PCI Command B/D/F/Type: 0/1/0/PCI Address Offset: 4-5h Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:11 | RO
00h | Reserved | | 10 | R/W
0b | INTA Assertion Disable (INTAAD): This bit only affects interrupts generated by the device (PCI INTA from a PME or Hot Plug event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD assert and de-assert messages. | | | | 0 = This device is permitted to generate INTA interrupt messages. | | | | 1 = This device is prevented from generating interrupt messages. Any INTA emulation interrupts already asserted must be deasserted when this bit is set. | | 9 | RO
0b | Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired to 0. | | 8 | R/W
0b | SERR# Message Enable (SERRE1): This bit controls Device 1 SERR# messaging. The (G)MCH communicates the SERR# condition by sending a SERR message to the ICH. This bit, when set, enables reporting of non-fatal and fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI-Express specific bits in the Device Control Register. | | | | 0 = The SERR message is generated by the (G)MCH for Device 1 only under conditions enabled individually through the Device Control register. | | | | 1 = The (G)MCH is enabled to generate SERR messages that will be
sent to the ICH for specific Device 1 error conditions
generated/detected on the primary side of the virtual PCI to PCI
bridge (not those received by the secondary side). The status of
SERRs generated is reported in the PCISTS1 register. | | 7 | RO
0b | Reserved: Hardwired to 0. | | 6 | R/W
0b | Parity Error Response Enable (PERRE): This bit controls whether the Master Data Parity Error bit in the PCI Status register can bet set. | | | | 0 = Disable. Master Data Parity Error bit in PCI Status register can NOT be set. | | | | 1 = Enable. Master Data Parity Error bit in PCI Status register CAN be set. | | 5 | RO
0b | VGA Palette Snoop (VGAPS): Hardwired to 0. | # (intel® 82Q965/82G965/82P965 Only) | Bit | Access &
Default | Description | |-----|---------------------
--| | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Hardwired to 0. | | 3 | RO
0b | Special Cycle Enable (SCE): Hardwired to 0. | | 2 | R/W
0b | Bus Master Enable (BME): This bit controls the ability of the PEG port to forward Memory and I/O Read/Write Requests in the upstream direction. This bit does not affect forwarding of Completions from the primary interface to the secondary interface. | | | | 0 = This device is prevented from making memory or I/O requests to its primary bus. Note that according to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, I/O writes/reads, peer writes/reads, and MSIs will all be treated as invalid cycles. Writes are forwarded to memory address with byte enables deasserted. Reads will be forwarded to memory address and will return Unsupported Request status (or Master abort) in its completion packet. | | | | 1 = This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available. | | 1 | R/W | Memory Access Enable (MAE): | | | 0b | 0 = Disable. All of device 1's memory space is disabled. | | | | 1 = Enable the Memory and Pre-fetchable memory address ranges
defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1
registers. | | 0 | R/W
0b | IO Access Enable (IOAE): | | | | 0 = Disable. All of device 1's I/O space is disabled. | | | | 1 = Enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers. | #### 6.1.4 PCISTS1—PCI Status B/D/F/Type: 0/1/0/PCI Address Offset: 6-7h Default Value: 0010h Access: RO, R/WC Size: 16 bits This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge in the (G)MCH. | Bit | Access & Default | Description | |------|------------------|--| | 15 | RO
0b | Detected Parity Error (DPE): Hardwired to 0. Parity (generating poisoned TLPs) is not supported on the primary side of this device. | | 14 | R/WC
0b | Signaled System Error (SSE): This bit is set when this Device sends an SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is '1'. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field. | | 13 | RO
0b | Received Master Abort Status (RMAS): Hardwired to 0. The concept of a master abort does not exist on primary side of this device. | | 12 | RO
0b | Received Target Abort Status (RTAS): Hardwired to 0. The concept of a target abort does not exist on primary side of this device. | | 11 | RO
0b | Signaled Target Abort Status (STAS) : Hardwired to 0. The concept of a target abort does not exist on primary side of this device. | | 10:9 | RO
00b | DEVSELB Timing (DEVT): This device is not the subtractively decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode. | | 8 | RO
0b | Master Data Parity Error (PMDPE): Because the primary side of the PEG's virtual PCI-to-PCI bridge is integrated with the (G)MCH functionality, there is no scenario where this bit will get set. | | 7 | RO
0b | Fast Back-to-Back (FB2B): Hardwired to 0. | | 6 | RO
0b | Reserved | | 5 | RO
0b | 66/60 MHz capability (CAP66): Hardwired to 0. | | 4 | RO
1b | Capabilities List (CAPL): Hardwired to 1 to indicate that a capabilities list is present. | | 3 | RO
0b | INTA Status (INTAS): This bit indicates that an interrupt message is pending internally to the device. Only PME and Hot Plug sources feed into this status bit (not PCI INTA-INTD assert and de-assert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit. | | 2:0 | RO
000b | Reserved | #### 6.1.5 RID1—Revision Identification B/D/F/Type: 0/1/0/PCI Address Offset: 8h Default Value: See table Access: RO Size: 8 bits This register contains the revision number of the (G)MCH device 1. These bits are read only and writes to this register have no effect. | В | it | Access &
Default | Description | |----|----|---------------------|--| | 7: | 0: | RO
00h | Revision Identification Number (RID1): This is an 8-bit value that indicates the revision identification number for the (G)MCH Device 0. Refer to the Intel® 965 Express Chipset Specification Update for the value of the Revision ID register. | #### 6.1.6 CC1—Class Code B/D/F/Type: 0/1/0/PCI Address Offset: 9-Bh Default Value: 060400h Access: RO Size: 24 bits This register identifies the basic function of the device, a more specific sub-class, and a register- specific programming interface. | | | 9. 4 | |-------|---------------------|---| | Bit | Access &
Default | Description | | 23:16 | RO
06h | Base Class Code (BCC): This field indicates the base class code for this device. This code has the value 06h, indicating a Bridge device. | | 15:8 | RO
04h | Sub-Class Code (SUBCC): This field indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge. | | 7:0 | RO
00h | Programming Interface (PI): This field indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device. | #### 6.1.7 CL1—Cache Line Size B/D/F/Type: 0/1/0/PCI Address Offset: Ch Default Value: 00h Access: R/W Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | R/W
00h | Cache Line Size (Scratch pad): This field is implemented by PCI Express devices as a read/write field for legacy compatibility purposes but has no impact on any PCI Express device functionality. | # 6.1.8 HDR1—Header Type B/D/F/Type: 0/1/0/PCI Address Offset: Eh Default Value: 01h Access: RO Size: 8 bits This register identifies the header layout of the configuration space. No physical register exists at this location. | Bit | Access &
Default | Description | |-----|---------------------|--| | 7:0 | RO
01h | Header Type Register (HDR): This field returns 01h to indicate that this is a single function device with bridge header layout. | # 6.1.9 PBUSN1—Primary Bus Number B/D/F/Type: 0/1/0/PCI Address Offset: 18h Default Value: 00h Access: RO Size: 8 bits This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI bus 0. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Primary Bus Number (BUSN): Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since device 1 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0. | ## 6.1.10 SBUSN1—Secondary Bus Number B/D/F/Type: 0/1/0/PCI Address Offset: 19h Default Value: 00h Access: R/W Size: 8 bits This register identifies the bus number assigned to the second bus side of the "virtual" bridge (i.e., to PCI Express-G). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | R/W
00h | Secondary Bus Number (BUSN): This field is programmed by configuration software with the bus number assigned to PCI Express. | #### 6.1.11 SUBUSN1—Subordinate Bus Number B/D/F/Type: 0/1/0/PCI Address Offset: 1Ah Default Value: 00h Access: R/W Size: 8 bits This register identifies the subordinate bus (if any) that resides at the level below PCI Express-G. This number is programmed by the PCI configuration software to allow mapping of configuration
cycles to PCI Express-G. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | R/W
00h | Subordinate Bus Number (BUSN): This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the device 1 bridge. When only a single PCI device resides on the PCI Express-G segment, this register will contain the same value as the SBUSN1 register. | #### 6.1.12 IOBASE1—I/O Base Address B/D/F/Type: 0/1/0/PCI Address Offset: 1Ch Default Value: F0h Access: R/W, RO Size: 8 bits This register controls the processor to PCI Express-G I/O access routing based on the following formula: IO_BASE ≤ address ≤ IO_LIMIT Only the upper 4 bits are programmable. For the purpose of address decode address bits 11:0 are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4 KB boundary. | Bit | Access & Default | Description | |-----|------------------|---| | 7:4 | R/W
Fh | I/O Address Base (IOBASE): This field corresponds to address bits 15:12 of the I/O addresses passed by bridge 1 to PCI Express-G. | | 3:0 | RO
0h | Reserved | ## 6.1.13 IOLIMIT1—I/O Limit Address B/D/F/Type: 0/1/0/PCI Address Offset: 1Dh Default Value: 00h Access: R/W, RO Size: 8 bits This register controls the processor to PCI Express-G I/O access routing based on the following formula: $IO_BASE \le address \le IO_LIMIT$ Only the upper 4 bits are programmable. For the purpose of address decode, address bits 11:0 are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block. | Bit | Access & Default | Description | |-----|------------------|---| | 7:4 | R/W
0h | I/O Address Limit (IOLIMIT): This field corresponds to address bits 15:12 of the I/O address limit of device 1. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device. | | 3:0 | RO
0h | Reserved | # 6.1.14 SSTS1—Secondary Status B/D/F/Type: 0/1/0/PCI Address Offset: 1E-1Fh Default Value: 0000h Access: R/WC, RO Size: 16 bits SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., PCI Express-G side) of the "virtual" PCI-PCI bridge in the (G)MCH. | Bit | Access & Default | Description | |------|------------------|---| | 15 | R/WC
0b | Detected Parity Error (DPE): This bit is set by the Secondary Side for a Type 1 Configuration Space header device whenever it receives a Poisoned TLP, regardless of the state of the Parity Error Response Enable bit in the Bridge Control register. | | 14 | R/WC
0b | Received System Error (RSE): This bit is set when the Secondary Side for a Type 1 configuration space header device receives an ERR_FATAL or ERR_NONFATAL. | | 13 | R/WC
0b | Received Master Abort (RMA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status. | | 12 | R/WC
0b | Received Target Abort (RTA): This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status. | | 11 | RO
0b | Signaled Target Abort (STA): Hardwired to 0. The (G)MCH does not generate Target Aborts (the (G)MCH will never complete a request using the Completer Abort Completion status). | | 10:9 | RO
00b | DEVSEL# Timing (DEVT): Hardwired to 0. | | 8 | R/WC
0b | Master Data Parity Error (SMDPE): When set, this bit indicates that the (G)MCH received across the link (upstream) a Read Data Completion Poisoned TLP (EP=1). This bit can only be set when the Parity Error Enable bit in the Bridge Control register is set. | | 7 | RO
0b | Fast Back-to-Back (FB2B): Hardwired to 0. | | 6 | RO
0b | Reserved | | 5 | RO
0b | 66/60 MHz capability (CAP66): Hardwired to 0. | | 4:0 | RO
00000b | Reserved | ## 6.1.15 MBASE1—Memory Base Address B/D/F/Type: 0/1/0/PCI Address Offset: 20-21h Default Value: FFF0h Access: R/W, RO Size: 16 bits This register controls the processor to PCI Express non-prefetchable memory access routing based on the following formula: $MEMORY_BASE \leq address \leq MEMORY_LIMIT$ The upper 12 bits of the register are read/write and correspond to the upper 12 address bits 31:20 of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits 19:0 are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary. | Bit | Access &
Default | Description | |------|---------------------|--| | 15:4 | R/W
FFFh | Memory Address Base (MBASE): This field corresponds to address bits 31:20 of the lower limit of the memory range that will be passed to PCI Express-G. | | 3:0 | RO
0h | Reserved | ## 6.1.16 MLIMIT1—Memory Limit Address B/D/F/Type: 0/1/0/PCI Address Offset: 22–23h Default Value: 0000h Access: R/W, RO Size: 16 bits This register controls the processor to PCI Express-G non-prefetchable memory access routing based on the following formula: $MEMORY_BASE \le address \le MEMORY_LIMIT$ The upper 12 bits of the register are read/write and correspond to the upper 12 address bits 31:20 of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode address bits 19:0 are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block. **Note:** Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI Express-G address ranges (typically where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor- PCI Express memory access performance. **Note:** Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the (G)MCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not assured. | Bit | Access & Default | Description | |------|------------------|--| | 15:4 | R/W
000h | Memory Address Limit (MLIMIT): This field corresponds to address bits 31:20 of the upper limit of the address range passed to PCI Express. | | 3:0 | RO
0h | Reserved | #### 6.1.17 PMBASE1—Prefetchable Memory Base Address B/D/F/Type: 0/1/0/PCI Address Offset: 24–25h Default Value: FFF1h Access: R/W, RO Size: 16 bits This register, in conjunction with the corresponding Upper Base Address register, controls the processor to PCI Express-G prefetchable memory access routing based on the following formula: PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT The upper 12 bits of this register are read/write and correspond to address bits 31:20 of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits 39:32 of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits 19:0 are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary. | Bit | Access & Default | Description | |------|------------------|--| | 15:4 | R/W
FFFh | Prefetchable Memory Base Address (MBASE): This field corresponds to address bits 31:20 of the lower limit of the memory range that will be passed to PCI Express. | | 3:0 | RO
1h | 64-bit Address Support: This field indicates that the upper 32 bits of the prefetchable memory region base address are contained in the Prefetchable Memory base Upper Address register at 28h. | #### 6.1.18 PMLIMIT1—Prefetchable Memory Limit Address B/D/F/Type: 0/1/0/PCI Address Offset: 26-27h Default Value: 0001h Access: R/W, RO Size: 16 bits This register in conjunction with the corresponding Upper
Limit Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula: PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT The upper 12 bits of this register are read/write and correspond to address bits 31:20 of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits 39:32 of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits 19:0 are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective. | Bit | Access & Default | Description | |------|------------------|--| | 15:4 | R/W
000h | Prefetchable Memory Address Limit (PMLIMIT): This field corresponds to address bits 31:20 of the upper limit of the address range passed to PCI Express. | | 3:0 | RO
1h | 64-bit Address Support : Indicates that the upper 32 bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address register at 2Ch | #### 6.1.19 PMBASEU1—Prefetchable Memory Base Address B/D/F/Type: 0/1/0/PCI Address Offset: 28–2Bh Default Value: 00000000h Access: R/W Size: 32 bits The functionality associated with this register is present in the PEG design implementation. This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula: PREFETCHABLE MEMORY BASE ≤ address ≤ PREFETCHABLE MEMORY LIMIT The upper 12 bits of this register are read/write and correspond to address bits 31:20 of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits 39:32 of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits 19:0 are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary. | Bit | Access & Default | Description | |------|------------------|---| | 31:0 | R/W
00000000h | Prefetchable Memory Base Address (MBASEU): This field corresponds to address bits 63:32 of the lower limit of the prefetchable memory range that will be passed to PCI Express. | #### 6.1.20 PMLIMITU1—Prefetchable Memory Limit Address B/D/F/Type: 0/1/0/PCI Address Offset: 2C-2Fh Default Value: 00000000h Access: R/W Size: 32 bits The functionality associated with this register is present in the PEG design implementation. This register, in conjunction with the corresponding Upper Limit Address register, controls the processor to PCI Express-G prefetchable memory access routing based on the following formula: PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT The upper 12 bits of this register are read/write and correspond to address bits 31:20 of the 40- bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits 39:32 of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits 19:0 are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective. | Bit | Access &
Default | Description | |------|---------------------|---| | 31:0 | R/W
00000000h | Prefetchable Memory Address Limit (MLIMITU): This field corresponds to address bits 63:32 of the upper limit of the prefetchable memory range that will be passed to PCI Express. | #### 6.1.21 CAPPTR1—Capabilities Pointer B/D/F/Type: 0/1/0/PCI Address Offset: 34h Default Value: 88h Access: RO Size: 8 bits The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
88h | First Capability (CAPPTR1): The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability. | #### 6.1.22 INTRLINE1—Interrupt Line B/D/F/Type: 0/1/0/PCI Address Offset: 3Ch Default Value: 00h Access: R/W Size: 8 bits This register contains interrupt line routing information. The device itself does not use this value; rather, it is used by device drivers and operating systems to determine priority and vector information. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | R/W
00h | Interrupt Connection (INTCON): This field is used to communicate interrupt line routing information. | #### 6.1.23 INTRPIN1—Interrupt Pin B/D/F/Type: 0/1/0/PCI Address Offset: 3Dh Default Value: 01h Access: RO Size: 8 bits This register specifies which interrupt pin this device uses. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
01h | Interrupt Pin (INTPIN): As a single function device, the PCI Express device specifies INTA as its interrupt pin. 01h=INTA. | # 6.1.24 BCTRL1—Bridge Control B/D/F/Type: 0/1/0/PCI Address Offset: 3E-3Fh Default Value: 0000h Access: RO, R/W Size: 16 bits This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges. The BCTRL1 register provides additional control for the secondary interface (i.e., PCI Express-G) as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge in the (G)MCH (e.g., VGA compatible address ranges mapping). | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:12 | RO
0h | Reserved | | 11 | RO
0b | Discard Timer SERR# Enable (DTSERRE): Not Applicable or Implemented. Hardwired to 0. | | 10 | RO
0b | Discard Timer Status (DTSTS): Not Applicable or Implemented. Hardwired to 0. | | 9 | RO
0b | Secondary Discard Timer (SDT): Not Applicable or Implemented. Hardwired to 0. | | 8 | RO
0b | Primary Discard Timer (PDT): Not Applicable or Implemented. Hardwired to 0. | | 7 | RO
0b | Fast Back-to-Back Enable (FB2BEN): Not Applicable or Implemented. Hardwired to 0. | | 6 | R/W
0b | Secondary Bus Reset (SRESET): 0 = No secondary bus reset initiated 1 = Initiates a hot reset on the corresponding PCI Express Port. This will force the LTSSM to transition to the Hot Reset state (via Recovery) from L0, L0s, or L1 states. | | 5 | RO
0b | Master Abort Mode (MAMODE): Does not apply to PCI Express. Hardwired to 0. | | 4 | R/W
0b | VGA 16-bit Decode (VGA16D): Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge. | | | | 0 = Execute 10-bit address decodes on VGA I/O accesses. | | | | 1 = Execute 16-bit address decodes on VGA I/O accesses. | | Dia | A C | Description | |-----|---------------------|---| | Bit | Access &
Default | Description | | 3 | R/W
0b | VGA Enable (VGAEN): This bit controls the routing of processor-initiated transactions targeting VGA compatible I/O and memory address ranges. | | | | 0 = Disable | | | | 1 = Enable | | 2 | R/W
Ob | ISA Enable (ISAEN): This bit is needed to exclude legacy resource decode to route ISA resources to legacy decode path. Modifies the response by the (G)MCH to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers. | | | | 0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express-G. | | | | 1 = (G)MCH does not forward to PCI Express-G any I/O transactions addressing the last 768 bytes in each 1 KB block, even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. | | 1 | R/W | SERR Enable (SERREN): | | | 0b | 0 = No forwarding of error messages from secondary side to
primary side that could result in an SERR. | | | | 1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register. | | 0 | R/W
0b | Parity Error Response Enable (PEREN): This bit controls whether the Master Data Parity Error bit in the Secondary Status register is set when the (G)MCH receives across the link (upstream) a Read Data Completion Poisoned TLP | | | | 0 = Master Data Parity Error bit in Secondary Status register can NOT be set. | | | | 1 = Master Data Parity Error bit in Secondary Status register CAN be set. | # 6.1.25 PM_CAPID1—Power Management Capabilities B/D/F/Type: 0/1/0/PCI Address Offset: 80-83h Default Value: C8039001h Access: RO Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:27 | RO
19h | PME Support (PMES): This field indicates the power states in which this device may indicate PME wake via PCI Express messaging. D0, D3hot, and D3cold. This device is not required to do anything to support D3hot and D3cold; it simply must report that those states are supported. Refer to the PCI Power Management 1.1 specification for encoding explanation and other power management details. | | 26 | RO
0b | D2 Power State Support (D2PSS) : Hardwired to 0 to indicate that the D2 power management state is NOT supported. | | 25 | RO
0b | D1 Power State Support (D1PSS) : Hardwired to 0 to indicate that the D1 power management state is NOT supported. | | 24:22 | RO
000b | Auxiliary Current (AUXC): Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements. | | 21 | RO
0b | Device Specific I nitialization (DSI): Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it. | | 20 | RO
0b | Auxiliary Power Source (APS): Hardwired to 0. | | 19 | RO
0b | PME Clock (PMECLK): Hardwired to 0 to indicate this device does NOT support PMEB generation. | | 18:16 | RO
011b | PCI PM CAP Version (PCIPMCV): A value of 011b indicates that this function complies with revision 1.2 of the PCI Power Management Interface Specification. | | 15:8 | RO
90h | Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h | | 7:0 | RO
01h | Capability ID (CID): Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers. | # 6.1.26 PM_CS1—Power Management Control/Status B/D/F/Type: 0/1/0/PCI Address Offset: 84-87h Default Value: 00000000h Access: RO, R/W/S, R/W Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:16 | RO
0000h | Reserved: | | 15 | RO
0b | PME Status (PMESTS): This bit indicates that this device does not support PMEB generation from D3cold. | | 14:13 | RO
00b | Data Scale (DSCALE): This field indicates that this device does not support the power management data register. | | 12:9 | RO
0h | Data Select (DSEL): This field indicates that this device does not support the power management data register. | | 8 | R/W/S
0b | PME Enable (PMEE): This bit indicates that this device does not generate PME# assertion from any D-state. | | | | 0 = PME# generation not possible from any D State | | | | 1 = PME# generation enabled from any D State | | | | The setting of this bit has no effect on hardware. | | | _ | See PM_CAP[15:11] | | 7:2 | RO
00h | Reserved | | Bit | Access &
Default | Description | |-----|---------------------|--| | 1:0 | R/W
00b | Power State (PS): This field indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. | | | | 00 = D0 | | | | 01 = D1 (Not supported in this device.) | | | | 10 = D2 (Not supported in this device.) | | | | 11 = D3 | | | | Support of D3cold does not require any special action. | | | | While in the D3hot state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully-functional. | | | | When the Power State is other than D0, the bridge will Master Abort (i.e., not claim) any downstream cycles (with exception of type 0 configuration cycles). Consequently, these unclaimed cycles will go down DMI and come back up as Unsupported Requests, which the (G)MCH logs as Master Aborts in Device 0 PCISTS[13] | | | | There is no additional hardware functionality required to support these Power States. | # 6.1.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities B/D/F/Type: 0/1/0/PCI Address Offset: 88-8Bh Default Value: 0000800Dh Access: RO Size: 32 bits This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
0000h | Reserved | | 15:8 | RO
80h | Pointer to Next Capability (PNC): This contains a pointer to the next item in the capabilities list which is the PCI Power Management capability. | | 7:0 | RO
0Dh | Capability ID (CID): Value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge. | # 6.1.28 SS—Subsystem ID and Subsystem Vendor ID B/D/F/Type: 0/1/0/PCI Address Offset: 8C-8Fh Default Value: 00008086h Access: R/WO Size: 32 bits System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and a hardware reset. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | R/WO
0000h | Subsystem ID (SSID): This field indicates the particular subsystem and is assigned by the vendor. | | 15:0 | R/WO
8086h | Subsystem Vendor ID (SSVID): This field indicates the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group. | # 6.1.29 MSI_CAPID—Message Signaled Interrupts Capability ID B/D/F/Type: 0/1/0/PCI Address Offset: 90–91h Default Value: A005h Access: RO Size: 16 bits When a device supports MSI, it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | RO
A0h | Pointer to Next Capability (PNC): This field contains a pointer to the next item in the capabilities list which is the PCI Express capability. | | 7:0 | RO
05h | Capability ID (CID): This field contains 05h that identifies this linked list item (capability structure) as being for MSI registers. | #### 6.1.30 MC—Message Control B/D/F/Type: 0/1/0/PCI Address Offset: 92–93h Default Value: 0000h Access: R/W, RO Size: 16 bits System software can modify bits in this register, but the device is prohibited from doing so. If the device writes the same message multiple times, only one of those messages is ensured to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
00h | Reserved | | 7 | RO
0b | 64-bit Address Capable (64AC): Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address. | | 6:4 | R/W
000b | Multiple Message Enable (MME) : System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. | | | | The encoding is the same as for the MMC field below. | | 3:1 | RO
 000b | Multiple Message Capable (MMC): System software reads this field to determine
the number of messages being requested by this device. | | | | 000 = 1 (Number of Messages Requested) | | | | All other values are reserved. | | Bit | Access & Default | Description | |-----|------------------|---| | 0 | R/W
0b | MSI Enable (MSIEN): This bit controls the ability of this device to generate MSIs. | | | | 0 = Disable. MSI will not be generated. | | | | 1 = Enable. MSI will be generated when PME or HotPlug messages are
received by the (G)MCH. INTA will not be generated and INTA
Status (PCISTS1[3]) will not be set. | # 6.1.31 MA—Message Address B/D/F/Type: 0/1/0/PCI Address Offset: 94-97h Default Value: 00000000h Access: R/W, RO Size: 32 bits | Bit | Access & Default | Description | |------|------------------|--| | 31:2 | R/W
00000000h | Message Address (MA): System software uses this field to assign an MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address. | | 1:0 | RO
00b | Force DWord Align (FDWA): Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary. | # 6.1.32 MD—Message Data B/D/F/Type: 0/1/0/PCI Address Offset: 98–99h Default Value: 0000h Access: R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:0 | R/W
0000h | Message Data (MD): This field is the base message data pattern assigned by system software and used to handle an MSI from the device. When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0. The lower 16 bits are supplied by this register. | # 6.1.33 PEG_CAPL—PCI Express* Capability List B/D/F/Type: 0/1/0/PCI Address Offset: A0-A1h Default Value: 0010h Access: RO Size: 16 bits This register enumerates the PCI Express capability structure. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | RO
00h | Pointer to Next Capability (PNC): This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported via this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration Space. | | 7:0 | RO
10h | Capability ID (CID): This field identifies this linked list item (capability structure) as being for PCI Express registers. | # 6.1.34 PEG_CAP—PCI Express* Capabilities B/D/F/Type: 0/1/0/PCI Address Offset: A2-A3h Default Value: 0141h Access: RO, R/WO Size: 16 bits This register indicates PCI Express device capabilities. | Bit | Access & Default | Description | |-------|------------------|--| | 15:14 | RO | Reserved | | 13:9 | RO
00b | Interrupt Message Number (IMN): Not Applicable or Implemented. Hardwired to 0. | | 8 | R/WO
1b | Slot Implemented (SI): | | | | 0 = The PCI Express Link associated with this port is connected to an integrated component or is disabled. | | | | 1 = The PCI Express Link associated with this port is connected to a slot. | | 7:4 | RO
4h | Device/Port Type (DPT): Hardwired to 4h to indicate root port of PCI Express Root Complex. | | 3:0 | RO
1h | PCI Express Capability Version (PCI EXPRESS*CV): Hardwired to 1h as it is the first version. | # 6.1.35 DCAP—Device Capabilities B/D/F/Type: 0/1/0/PCI Address Offset: A4-A7h Default Value: 00008000h Access: RO Size: 32 bits This register indicates PCI Express device capabilities. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:16 | RO
0000h | Reserved | | 15 | RO
1b | Role Based Error Reporting (RBER): Hardwired to 1 indicating that this device implements the functionality defined in the Error Reporting ECN as required by the PCI Express 1.1 spec. | | 14:6 | RO
000h | Reserved: | | 5 | RO
0b | Extended Tag Field Supported (ETFS): Hardwired to 0 indicating support for 5-bit Tags as a Requestor. | | 4:3 | RO
00b | Phantom Functions Supported (PFS): Not Applicable or Implemented. Hardwired to 0. | | 2:0 | RO
000b | Max Payload Size (MPS): Hardwired to indicate 128B maximum supported payload for Transaction Layer Packets (TLP). | #### 6.1.36 DCTL—Device Control B/D/F/Type: 0/1/0/PCI Address Offset: A8-A9h Default Value: 0000h Access: RO, R/W Size: 16 bits This register provides control for PCI Express device specific capabilities. The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
000h | Reserved | | 7:5 | R/W
000b | Max Payload Size (MPS): Hardware ignores this field. It is writeable only to support compliance testing. | | | | 000 = 128B maximum supported payload for Transaction Layer Packets (TLP). As a receiver, the Device must handle TLPs as large as the set value; as transmitter, the Device must not generate TLPs exceeding the set value. | | | | All other encodings are reserved. | | 4 | RO
0b | Reserved for Enable Relaxed Ordering | | 3 | R/W
0b | Unsupported Request Reporting Enable (URRE): 0 = Disable. 1 = Enable. Allows signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register when detecting an unmasked Unsupported Request (UR). An ERR_CORR is signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL or ERR_NONFATAL is sent to the Root Control register when an uncorrectable non-Advisory UR is received with the severity bit set in the Uncorrectable Error Severity register. | | 2 | R/W
0b | Fatal Error Reporting Enable (FERE): 0 = Disable 1 = Enables signaling of ERR_FATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting. | | 1 | R/W
0b | Non-Fatal Error Reporting Enable (NERE): 0 = Disable 1 = Enables signaling of ERR_NONFATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting. | | Bit | Access & Default | Description | |-----|------------------|--| | 0 | R/W
0b | Correctable Error Reporting Enable (CERE): 0 = Disable 1 = Enables signaling of ERR_CORR to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting. | #### 6.1.37 DSTS—Device Status B/D/F/Type: 0/1/0/PCI Address Offset: AA-ABh Default Value: 0000h Access: RO, R/WC Size: 16 bits This register reflects status corresponding to controls in the Device Control register. The error reporting bits are in reference to errors detected by this device, not errors messages received across the link. | Bit | Access & Default | Description | |------|------------------|--| | 15:6 | RO
000h | Reserved and Zero: For future R/WC/S implementations; software must use 0 for writes to bits. | | 5 | RO | Transactions Pending (TP): | | | 0b | 0 = All pending transactions (including completions for any
outstanding non-posted requests on any used virtual channel)
have been completed. | | | | 1 = Device has transaction(s) pending (including completions for any
outstanding non-posted requests for all used Traffic Classes). | | 4 | RO
0b | Reserved | | 3 | R/WC | Unsupported Request Detected (URD): | | | 0b | 0 = Unsupported request Not detected. | | | | 1 = Device
received an Unsupported Request. Errors are logged in this
register regardless of whether error reporting is enabled or not in
the Device Control Register. | | | | Additionally, the Non-Fatal Error Detected bit or the Fatal Error Detected bit is set according to the setting of the Unsupported Request Error Severity bit. In production systems setting the Fatal Error Detected bit is not an option as support for AER will not be reported. | # (intel® 82Q965/82G965/82P965 Only) | Bit | Access & Default | Description | |-----|------------------|---| | 2 | R/WC | Fatal Error Detected (FED): | | | 0b | 0 = Fatal error Not detected. | | | | 1 = Fatal error(s) were detected. Errors are logged in this register
regardless of whether error reporting is enabled or not in the
Device Control register. When Advanced Error Handling is
enabled, errors are logged in this register regardless of the
settings of the uncorrectable error mask register. | | 1 | R/WC | Non-Fatal Error Detected (NFED): | | | 0b | 0 = Non-Fatal error Not detected. | | | | 1 = Non-fatal error(s) were detected. Errors are logged in this register
regardless of whether error reporting is enabled or not in the
Device Control register. | | | | When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the uncorrectable error mask register. | | 0 | R/WC | Correctable Error Detected (CED): | | | 0b | 0 = Correctable error Not detected. | | | | 1 = Correctable error(s) were detected. Errors are logged in this
register regardless of whether error reporting is enabled or not in
the Device Control register. | | | | When Advanced Error Handling is enabled, errors are logged in this register regardless of the settings of the correctable error mask register. | # 6.1.38 LCAP—Link Capabilities B/D/F/Type: 0/1/0/PCI Address Offset: AC-AFh Default Value: 02014D01h Access: RO, R/WO Size: 32 bits This register Indicates PCI Express device specific capabilities. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:24 | RO
02h | Port Number (PN): This field indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description[31:24]. | | 23:21 | RO
000b | Reserved | | 20 | RO
0b | Data Link Layer Link Active Reporting Capable (DLLLARC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For a hot-plug capable Downstream Port (as indicated by the Hot-Plug Capable field of the Slot Capabilities register), this bit must be set to 1b. | | | | For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b. | | 19 | RO
0b | Surprise Down Error Reporting Capable (SDERC): For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of detecting and reporting a Surprise Down error condition. | | | | For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b. | | 18 | RO
0b | Clock Power Management (CPM): A value of 1b in this bit indicates that the component tolerates the removal of any reference clock(s) when the link is in the L1 and L2/3 Ready link states. A value of 0b indicates the component does not have this capability and that reference clock(s) must not be removed in these link states. | | | | This capability is applicable only in form factors that support "clock request" (CLKREQ#) capability. | | | | For a multi-function device, each function indicates its capability independently. Power Management configuration software must only permit reference clock removal if all functions of the multifunction device indicate a 1b in this bit. | | 17:15 | R/WO
010b | L1 Exit Latency (L1ELAT): This field indicates the length of time this port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 us to less than 4 us. | | | | Both bytes of this register that contain a portion of this field must be written simultaneously in order to prevent an intermediate (and undesired) value from ever existing. | # Intel® 82Q965/82G965/82P965 Only) | Bit | Access &
Default | Description | |-------|---------------------|---| | 14:12 | RO
100b | LOs Exit Latency (LOSELAT): This field indicates the length of time this Port requires to complete the transition from LOs to LO. | | | | 000 = Less than 64 ns | | | | 001 = 64ns to less than 128ns | | | | 010 = 128ns to less than 256 ns | | | | 011 = 256ns to less than 512ns | | | | 100 = 512ns to less than 1us | | | | 101 = 1 us to less than 2 us | | | | 110 = 2 us - 4 us | | | | 111 = More than 4 us | | | | The actual value of this field depends on the common Clock Configuration bit (LCTL[6]) and the Common and Non-Common clock L0s Exit Latency values in PEGL0SLAT (Offset 22Ch) | | 11:10 | R/WO
11b | Active State Link PM Support (ASLPMS): BIOS Requirement: Desktop chipsets do not support ASPM L1, so BIOS should program this field to 01. | | 9:4 | RO
10h | Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link. | | 3:0 | RO
1h | Max Link Speed (MLS): Hardwired to indicate 2.5 Gb/s. | #### 6.1.39 LCTL—Link Control B/D/F/Type: 0/1/0/PCI Address Offset: B0-B1h Default Value: 0000h Access: RO, R/W, R/W/SC Size: 16 bits BIOS Optimal Default 0h This register allows control of PCI Express link. | Bit | Access &
Default | Description | |------|---------------------|---| | 15:9 | RO
0000000b | Reserved | | 8 | RO
0b | Enable Clock Power Management (ECPM): Applicable only for form factors that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as follows | | | | 0 = Disable. Clock power management is disabled and device must hold CLKREQ# signal low. (default) | | | | 1 = Enable. Device is permitted to use CLKREQ# signal to power
manage link clock according to protocol defined in appropriate
form factor specification. | | | | Components that do not support Clock Power Management (as indicated by a 0b value in the Clock Power Management bit of the Link Capabilities Register) must hardwire this bit to 0b. | | 7 | R/W | Extended Synch (ES): | | | 0b | 0 = Standard Fast Training Sequence (FTS). | | | | 1= Forces the transmission of additional ordered sets when exiting the L0s state and when in the Recovery state. | | | | This mode provides external devices (e.g., logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters L0 and resumes communication. | | | | This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns. | | 6 | R/W
0b | Common Clock Configuration (CCC): The state of this bit affects the L0s Exit Latency reported in LCAP[14:12] and the N_FTS value advertised during link training. See PEGL0SLAT at offset 22Ch. | | | | 0 = This component and the component at the opposite end of this Link are operating with asynchronous reference clock. | | | | 1 = This component and the component at the opposite end of this Link are operating with a distributed common reference clock. | | 5 | R/W/SC
0b | Retrain Link (RL): This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0). | | | | 0 = Normal operation. | | | | 1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or L1 states to the Recovery state. | # Intel® 82Q965/82G965/82P965 Only) | Bit | Access &
Default | Description | |-----|---------------------|---| | 4 | R/W
0b | Link Disable (LD): Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state. | | | | 0 = Normal operation | | | | 1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via Recovery) from L0, L0s, or L1 states. Link retraining happens automatically on 0-to-1 transition, just like when coming out of reset. | | 3 | RO
0b | Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte. | | 2 | RO
0b | Reserved. | | 1:0 | R/W
00b | Active State PM (ASPM): This field controls the level of active state power management supported on the given link. | | | | 00 = Disabled
01 = L0s Entry Supported
10 = Reserved
11 = L0s and L1 Entry Supported | #### 6.1.40 LSTS—Link Status B/D/F/Type: 0/1/0/PCI Address Offset: B2-B3h Default Value: 1001h Access: RO Size: 16 bits This register indicates PCI Express link status. | Bit | Access &
Default | Description | |-------|------------------|--| | 15:14 | RO
00b | Reserved and Zero: For future R/WC/S implementations; software must use 0 for writes to bits. | | 13 | RO
0b | Data Link Layer Link Active (Optional) (DLLLA): This bit indicates the status of the Data Link Control and Management State Machine. It returns a 1b to indicate the DL_Active state, 0b otherwise. | | | | This bit must be implemented if the corresponding Data Link Layer Active Capability bit is implemented. Otherwise, this bit must be hardwired to 0b. | | 12 | RO | Slot Clock Configuration (SCC): | | | 1b | 0 = The device uses an independent clock irrespective of the presence of a reference on the connector. | | | | 1 = The device uses the same physical reference clock that the
platform provides on the connector. | | 11 | RO
0b | Link Training (LTRN): This bit indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete. | | 10 | RO
0b | Undefined: The value read from this bit is undefined. In previous versions of this specification, this bit was used to indicate a Link Training Error. System software must ignore the value read from this bit. System software is permitted to write any value to this bit. | | 9:4 | RO
00h | Negotiated Width (NW): This bit indicates negotiated link width. This field is valid only when the link is in the L0, L0s, or L1 states (after link width negotiation is successfully completed). | | | | 00h = Reserved
01h = X1
02h = Reserved
04h = Reserved
08h = Reserved
10h = X16 | | | | All other encodings are reserved. | | 3:0 | RO
1h | Negotiated Speed (NS): This field indicates negotiated link speed. | | | | 1h = 2.5 Gb/s | | | | All other encodings are reserved. | # 6.1.41 SLOTCAP—Slot Capabilities B/D/F/Type: 0/1/0/PCI Address Offset: B4-B7h Default Value: 00040000h Access: R/WO, RO Size: 32 bits PCI Express Slot related registers allow for the support of Hot Plug. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:19 | R/WO
0000h | Physical Slot Number (PSN): This field indicates the physical slot number attached to this Port. | | 18 | R/WO | No Command Completed Support (NCCS): | | | 1b | 1 = This slot does not generate software notification when an issued command is completed by the Hot-Plug Controller. This bit is only permitted to be set to 1b if the hotplug capable port is able to accept writes to all fields of the Slot Control register without delay between successive writes. | | 17 | RO
0b | Reserved: Reserved for Electromechanical Interlock Present (EIP). | | 16:15 | R/WO
00b | Slot Power Limit Scale (SPLS): This field specifies the scale used for the Slot Power Limit Value. | | | | 00 = 1.0x
01 = 0.1x
10 = 0.01x
11 = 0.001x | | | | If this field is written, the link sends a Set_Slot_Power_Limit message. | | 14:7 | R/WO
00h | Slot Power Limit Value (SPLV): In combination with the Slot Power Limit Scale value, this field specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. | | | | If this field is written, the link sends a Set_Slot_Power_Limit message. | | 6 | RO | Hot-plug Capable (HPC): | | | 0b | 0 = Not Hot-plug capable | | | | 1 = Slot is capable of supporting hot-lug operations. | | 5 | RO
0b | Hot-plug Surprise (HPS): | | | UD | 0 = No Hot-plug surprise | | | | 1 = An adapter present in this slot might be removed from the system without any prior notification. This is a form factor specific capability. This bit is an indication to the operating system to allow for such removal without impacting continued software operation. | | Bit | Access &
Default | Description | |-----|---------------------|---| | 4 | RO | Power Indicator Present (PIP): | | | 0b | 0 = No power indicator | | | | 1 = A Power Indicator is electrically controlled by the chassis for this slot. | | 3 | RO | Attention Indicator Present (AIP): | | | 0b | 0 = No Attention indicator | | | | 1 = An Attention Indicator is electrically controlled by the chassis. | | 2 | RO | MRL Sensor Present (MSP): | | | 0b | 0 = No MRL sensor | | | | 1 = MRL Sensor is implemented on the chassis for this slot. | | 1 | RO | Power Controller Present (PCP): | | | 0b | 0 = No power controller | | | | 1 = A software programmable Power Controller is implemented for
this slot/adapter (depending on form factor). | | 0 | RO | Attention Button Present (ABP): | | | 0b | 0 = No attention button | | | | 1 = An Attention Button for this slot is electrically controlled by the chassis. | # 6.1.42 SLOTCTL—Slot Control B/D/F/Type: 0/1/0/PCI Address Offset: B8-B9h Default Value: 01C0h Access: RO, R/W Size: 16 bits PCI Express Slot related registers allow for the support of Hot Plug. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:13 | RO
000b | Reserved | | 12 | RO
0b | Data Link Layer State Changed Enable (DLLSCE): If the Data Link Layer Link Active capability is implemented, when set to 1b, this field enables software notification when Data Link Layer Link Active field is changed. | | 11 | RO
0b | Electromechanical Interlock Control (EIC): If an Electromechanical Interlock is implemented, a write of 1b to this field causes the state of the interlock to toggle. A write of 0b to this field has no effect. A read to this register always returns a 0. | | 10 | RO
0b | Power Controller Control (PCC): If a Power Controller is implemented, this field when written sets the power state of the slot per the defined encodings. Reads of this field must reflect the value from the latest write, even if the corresponding hotplug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. | | | | Depending on the form factor, the power is turned on/off either to the slot or within the adapter. Note that in some cases the power controller may autonomously remove slot power or not respond to a power-up request based on a detected fault condition, independent of the Power Controller Control setting. | | | | 0 = Power On | | | | 1 = Power Off | | | | If the Power Controller Implemented field in the Slot Capabilities register is set to 0b, then writes to this field have no effect and the read value of this field is undefined. | | 9:8 | RO
01b | Power Indicator Control (PIC): If a Power Indicator is implemented, writes to this field set the Power Indicator to the written state. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. | | | | 00 = Reserved
01 = On
10 = Blink
11 = Off | | Bit | Access &
Default | Description | |-----|---------------------|--| | 7:6 | RO
11b | Attention Indicator Control (AIC): If an Attention Indicator is implemented, writes to this field set the Attention Indicator to the written state. | | | | Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. If the indicator is electrically controlled by chassis, the indicator is controlled directly by the downstream port through implementation specific mechanisms. | | | | 00 = Reserved
01 = On
10 = Blink
11 = Off | | 5 | RO | Hot-plug Interrupt Enable (HPIE): | | | 0b | 0 = Disable | | | | 1 = Enables generation of an interrupt on enabled hot-plug events
Default value of this field is 0b. If the Hot Plug Capable field in
the Slot Capabilities register is set to 0b, this bit is permitted to
be read-only with a value of 0b. | | 4 | RO
0b | Command Completed Interrupt Enable (CCI): If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), when set to 1b, this bit enables software
notification when a hot-plug command is completed by the Hot-Plug Controller. | | | | If Command Completed notification is not supported, this bit must be hardwired to 0b. | | 3 | R/W | Presence Detect Changed Enable (PDCE): | | | 0b | 0 = Disable | | | | 1 = Enables software notification on a presence detect changed event. | | 2 | RO
0b | MRL Sensor Changed Enable (MSCE): If the MRL Sensor Present field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b. | | | | 0 = Disable (default) | | | | 1 = Enables software notification on a MRL sensor changed event. | | 1 | RO
0b | Power Fault Detected Enable (PFDE): If Power Fault detection is not supported, this bit is permitted to be read-only with a value of 0b | | | | 0 = Disable (default) | | | | 1 = Enables software notification on a power fault event. | | 0 | RO | Attention Button Pressed Enable (ABPE): | | | 0b | 0 = Disable (default) | | | | 1 = Enables software notification on an attention button pressed event. | # 6.1.43 SLOTSTS—Slot Status B/D/F/Type: 0/1/0/PCI Address Offset: BA-BBh Default Value: 0000h Access: RO, R/WC Size: 16 bits PCI Express Slot related registers allow for the support of Hot Plug. | Bit | Access &
Default | Description | |------|---------------------|---| | 15:7 | RO
0000000b | Reserved and Zero: For future R/WC/S implementations; software must use 0 for writes to bits. | | 6 | RO
0b | Presence Detect State (PDS): This bit indicates the presence of an adapter in the slot, reflected by the logical "OR" of the Physical Layer in-band presence detect mechanism and, if present, any out-of-band presence detect mechanism defined for the slot's corresponding form factor. Note that the in-band presence detect mechanism requires that power be applied to an adapter for its presence to be detected. Consequently, form factors that require a power controller for hot-plug must implement a physical pin presence detect mechanism. 0 = Slot Empty | | | | 1 = Card Present in slot | | | | This register must be implemented on all Downstream Ports that implement slots. For Downstream Ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities Register is 0b), this bit must return 1b. | | 5 | RO
0b | Reserved | | 4 | RO | Command Completed (CC): If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), this bit is set when a hot-plug command has completed and the Hot-Plug Controller is ready to accept a subsequent command. The Command Completed status bit is set as an indication to host software that the Hot-Plug Controller has processed the previous command and is ready to receive the next command; it provides no assurance that the action corresponding to the command is complete. | | | | If Command Completed notification is not supported, this bit must be hardwired to 0b. | | 3 | R/WC
0b | Detect Changed (PDC): This bit is set when the value reported in Presence Detect State is changed. | | 2 | RO
0b | MRL Sensor Changed (MSC): If an MRL sensor is implemented, this bit is set when a MRL Sensor state change is detected. If an MRL sensor is not implemented, this bit must not be set. | | Bit | Access &
Default | Description | |-----|---------------------|--| | 1 | RO
0b | Power Fault Detected (PFD): If a Power Controller that supports power fault detection is implemented, this bit is set when the Power Controller detects a power fault at this slot. Note that, depending on hardware capability, it is possible that a power fault can be detected at any time, independent of the Power Controller Control setting or the occupancy of the slot. If power fault detection is not supported, this bit must not be set. | | 0 | RO
0b | Attention Button Pressed (ABP): If an Attention Button is implemented, this bit is set when the attention button is pressed. If an Attention Button is not supported, this bit must not be set. | #### 6.1.44 RCTL—Root Control B/D/F/Type: 0/1/0/PCI Address Offset: BC-BDh Default Value: 0000h Access: RO, R/W Size: 16 bits This register allows control of PCI Express Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register. | Bit | Access & Default | Description | |------|------------------|--| | 15:4 | RO
000h | Reserved | | 3 | R/W | PME Interrupt Enable (PMEIE): | | | 0b | 0 = No interrupts are generated as a result of receiving PME messages. | | | | 1 = Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state. | | 2 | R/W
0b | System Error on Fatal Error Enable (SEFEE) : This bit controls the Root Complex's response to fatal errors. | | | | 0 = No SERR generated on receipt of fatal error. | | | | 1 = SERR should be generated if a fatal error is reported by any of
the devices in the hierarchy associated with this Root Port, or by
the Root Port itself. | | 1 | R/W
0b | System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE): This bit controls the Root Complex's response to non-fatal errors. | | | | 0 = No SERR generated on receipt of non-fatal error. | | | | 1 = SERR should be generated if a non-fatal error is reported by any
of the devices in the hierarchy associated with this Root Port, or
by the Root Port itself. | | 0 | R/W
0b | System Error on Correctable Error Enable (SECEE): This bit controls the Root Complex's response to correctable errors. | | | | 0 = No SERR generated on receipt of correctable error. | | | | 1 = SERR should be generated if a correctable error is reported by
any of the devices in the hierarchy associated with this Root
Port, or by the Root Port itself. | #### 6.1.45 RSTS—Root Status B/D/F/Type: 0/1/0/PCI Address Offset: C0-C3h Default Value: 00000000h Access: RO, R/WC Size: 32 bits This register provides information about PCI Express Root Complex specific parameters. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:18 | RO
0000h | Reserved | | 17 | RO
0b | PME Pending (PMEP): 1 = Another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software; the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending. | | 16 | R/WC
0b | PME Status (PMES): 1 = PME was asserted by the requestor ID indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field. | | 15:0 | RO
0000h | PME Requestor ID (PMERID): This field indicates the PCI requestor ID of the last PME requestor. | # 6.1.46 PEGLC—PCI Express*-G Legacy Control B/D/F/Type: 0/1/0/PCI Address Offset: EC-EFh Default Value: 00000000h Access: R/W, RO Size: 32 bits This register controls functionality that is needed by Legacy (non-PCI Express aware) operating systems during run time. | Bit | Access &
Default | Description | |------|---------------------|---| | 31:3 | RO
00000000h | Reserved | | 2 | R/W
0b | PME GPE Enable (PMEGPE): 0 = Do Not generate GPE PME message when PME is received. | | | | 1 = Generate a GPE PME message when PME is received
(Assert_PMEGPE and De-assert_PMEGPE messages on DMI). This
enables the (G)MCH to support PMEs on the PEG port under
legacy operating systems. | | 1 | R/W | Hot-Plug GPE Enable (HPGPE): | | | 0b | 0 = Do Not generate GPE Hot-Plug message when Hot-Plug event is received. |
 | | 1 = Generate a GPE Hot-Plug message when Hot-Plug Event is
received (Assert_HPGPE and Deassert_HPGPE messages on
DMI). This enables the (G)MCH to support Hot-Plug on the PEG
port under legacy operating systems. | | 0 | R/W | General Message GPE Enable (GENGPE): | | | 0b | 0 = Do Not forward received GPE assert/de-assert messages. | | | | 1 = Forward received GPE assert/de-assert messages. These general GPE message can be received via the PEG port from an external Intel device (i.e., PxH) and will be subsequently forwarded to the ICH (via Assert_GPE and Deassert_GPE messages on DMI). For example, PxH might send this message if a PCI Express device is hot plugged into a PxH downstream port. | #### 6.1.47 VCECH—Virtual Channel Enhanced Capability Header B/D/F/Type: 0/1/0/MMR Address Offset: 100-103h Default Value: 14010002h Access: RO Size: 32 bits This register indicates PCI Express device Virtual Channel capabilities. Extended capability structures for PCI Express devices are located in PCI Express extended configuration space and have different field definitions than standard PCI capability structures. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:20 | RO
140h | Pointer to Next Capability (PNC): The Link Declaration Capability is the next in the PCI Express extended capabilities list. | | 19:16 | RO
1h | PCI Express Virtual Channel Capability Version (PCI EXPRESS*VCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. | | 15:0 | RO
0002h | Extended Capability ID (ECID): Value of 0002h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers. | #### 6.1.48 PVCCAP1—Port VC Capability Register 1 B/D/F/Type: 0/1/0/MMR Address Offset: 104–107h Default Value: 00000000h Access: RO Size: 32 bits This register describes the configuration of PCI Express Virtual Channels associated with this port. | Bit | Access & Default | Description | |------|------------------|---| | 31:7 | RO
0000000h | Reserved | | 6:4 | RO
000b | Low Priority Extended VC Count (LPEVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration. | | | | The value of o in this field implies strict ve arbitration. | | 3 | RO
0b | Reserved | | 2:0 | RO
000b | Extended VC Count (EVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device. | # 6.1.49 PVCCAP2—Port VC Capability Register 2 B/D/F/Type: 0/1/0/MMR Address Offset: 108–10Bh Default Value: 00000000h Access: RO Access: RO Size: 32 bits This register describes the configuration of PCI Express Virtual Channels associated with this port. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:24 | RO
00h | VC Arbitration Table Offset (VCATO): This field indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority). | | 23:8 | RO
0000h | Reserved | | 7:0 | RO
00h | Reserved | #### 6.1.50 PVCCTL—Port VC Control B/D/F/Type: 0/1/0/MMR Address Offset: 10C-10Dh Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15:4 | RO
000h | Reserved | | 3:1 | R/W
000b | VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. Since there is no other VC supported than the default, this field is reserved. | | 0 | RO
0b | Reserved | # 6.1.51 VCORCAP—VCO Resource Capability $\begin{array}{lll} \text{B/D/F/Type:} & 0/1/0/\text{MMR} \\ \text{Address Offset:} & 110-113\text{h} \\ \text{Default Value:} & 00000000\text{h} \\ \end{array}$ Access: RO Size: 32 bits | Bit | Access & Default | Description | |-------|------------------|--| | 31:16 | RO
0000h | Reserved | | 15 | RO | Reject Snoop Transactions (RSNPT): | | | 0b | 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. | | | | 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request. | | 14:0 | RO
0000h | Reserved | # 6.1.52 VCORCTL—VCO Resource Control B/D/F/Type: 0/1/0/MMR Address Offset: 114–117h Default Value: 800000FFh Access: RO, R/W Size: 32 bits This register controls the resources associated with PCI Express Virtual Channel 0. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31 | RO
1b | VCO Enable (VCOE): For VCO, this bit is hardwired to 1 and read only as VCO can never be disabled. | | 30:27 | RO
0h | Reserved | | 26:24 | RO
000b | VCO ID (VCOID): This field assigns a VC ID to the VC resource. For VCO, this field is hardwired to 0s and read only. | | 23:8 | RO
0000h | Reserved | | 7:1 | R/W
7Fh | TC/VCO Map (TCVCOM): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link. | | 0 | RO
1b | TCO/VCO Map (TCOVCOM): Traffic Class 0 is always routed to VC0. | #### 6.1.53 VCORSTS—VCO Resource Status B/D/F/Type: 0/1/0/MMR Address Offset: 11A-11Bh Default Value: 0002h Access: RO Size: 16 bits This register reports the Virtual Channel specific status. | Bit | Access & Default | Description | |------|------------------|---| | 15:2 | RO
0000h | Reserved | | 1 | RO | VC0 Negotiation Pending (VC0NP): | | | 1b | 0 = The VC negotiation is complete. | | | | 1 = The VC resource is still in the process of negotiation (initialization
or disabling). | | | | This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. | | | | Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link. | | 0 | RO
0b | Reserved | # 6.1.54 RCLDECH—Root Complex Link Declaration Enhanced B/D/F/Type: 0/1/0/MMR Address Offset: 140-143h Default Value: 00010005h Access: RO Size: 32 bits This capability declares links from this element (PEG) to other elements of the root complex component to which it belongs. See PCI Express specification for link/topology declaration requirements. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:20 | RO
000h | Pointer to Next Capability (PNC): This is the last capability in the PCI Express extended capabilities list | | 19:16 | RO
1h | Link Declaration Capability Version (LDCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. | | 15:0 | RO
0005h | Extended Capability ID (ECID): The value of 0005h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability. | ## 6.1.55 ESD—Element Self
Description B/D/F/Type: 0/1/0/MMR Address Offset: 144–147h Default Value: 02000100h Access: RO, R/WO Size: 32 bits This register provides information about the root complex element containing this Link Declaration Capability. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:24 | RO
02h | Port Number (PN): This field specifies the port number associated with this element with respect to the component that contains this element. This port number value is used by the egress port of the component to provide arbitration to this Root Complex Element. | | 23:16 | R/WO
00h | Component ID (CID): This field identifies the physical component that contains this Root Complex Element. | | 15:8 | RO
01h | Number of Link Entries (NLE): This field identifies the number of link entries following the Element Self Description. This field reports 1 (to Egress port only as we don't report any peer-to-peer capabilities in our topology). | | 7:4 | RO
0h | Reserved | | 3:0 | RO
0h | Element Type (ET): This field identifies the type of the Root Complex Element. Value of 0 h represents a root port. | ## 6.1.56 LE1D—Link Entry 1 Description B/D/F/Type: 0/1/0/MMR Address Offset: 150-153h Default Value: 00000000h Access: RO, R/WO Size: 32 bits This register provides the first part of a Link Entry which declares an internal link to another Root Complex Element. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:24 | RO
00h | Target Port Number (TPN): This field specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID. | | 23:16 | R/WO
00h | Target Component ID (TCID): This field identifies the physical or logical component that is targeted by this link entry. | | 15:2 | RO
0000h | Reserved | | 1 | RO
0b | Link Type (LTYP): This field identifies that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB. | | 0 | R/WO | Link Valid (LV): | | | 0b | 0 = Link Entry is not valid and will be ignored. | | | | 1 = Link Entry specifies a valid link. | ## 6.1.57 LE1A—Link Entry 1 Address B/D/F/Type: 0/1/0/MMR Address Offset: 158–15Fh Access: RO, R/WO Size: 64 bits This register provides the second part of a Link Entry which declares an internal link to another Root Complex Element. | Bit | Access & Default | Description | |-------|------------------|--| | 63:32 | RO
00000000h | Reserved | | 31:12 | R/WO
00000h | Link Address (LA): This field contains the memory-mapped base address of the RCRB that is the target element (Egress Port) for this link entry. | | 11:0 | RO
000h | Reserved | ## 6.1.58 PEGSSTS—PCI Express*-G Sequence Status B/D/F/Type: 0/1/0/MMR Address Offset: 218–21Fh Default Value: 00000000000FFFh Access: RO Size: 64 bits This register provides PCI Express status reporting that is required by the PCI Express specification. | Bit | Access & Default | Description | |-------|------------------|---| | 63:60 | RO
0h | Reserved | | 59:48 | RO
000h | Next Transmit Sequence Number (NTSN) : This field indicates the value of the NXT_TRANS_SEQ counter. This counter represents the transmit Sequence number to be applied to the next TLP to be transmitted onto the Link for the first time. | | 47:44 | RO
0h | Reserved | | 43:32 | RO
000h | Next Packet Sequence Number (NPSN): This field indicates the packet sequence number to be applied to the next TLP to be transmitted or re-transmitted onto the Link. | | 31:28 | RO
0h | Reserved | | 27:16 | RO
000h | Next Receive Sequence Number (NRSN): This is the sequence number associated with the TLP that is expected to be received next. | | 15:12 | RO
0h | Reserved | | 11:0 | RO
FFFh | Last Acknowledged Sequence Number (LASN): This is the sequence number associated with the last acknowledged TLP. | ## 7 Direct Memory Interface (DMI) Registers This Root Complex Register Block (RCRB) controls the (G)MCH-ICH8 serial interconnect. The base address of this space is programmed in DMIBAR in D0:F0 configuration space. Table 7-1 provides an address map of the DMI registers listed by address offset in ascending order. Section 7.1 provides register bit descriptions. Table 7-1. DMI Register Address Map | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|-------------|--|------------------|----------| | 00-03h | DMIVCECH | DMI Virtual Channel Enhanced
Capability | 04010002h | RO | | 04-07h | DMIPVCCAP1 | DMI Port VC Capability Register 1 | 00000001h | R/WO, RO | | 08-0Bh | DMIPVCCAP2 | DMI Port VC Capability Register 2 | 00000000h | RO | | 0C-0Dh | DMIPVCCTL | DMI Port VC Control | 0000h | RO, R/W | | 10-13h | DMIVC0RCAP | DMI VC0 Resource Capability | 00000001h | RO | | 14-17h | DMIVC0RCTL0 | DMI VC0 Resource Control | 800000FFh | RO, R/W | | 1A-1Bh | DMIVC0RSTS | DMI VC0 Resource Status | 0002h | RO | | 1C-1Fh | DMIVC1RCAP | DMI VC1 Resource Capability | 00008001h | RO | | 20-23h | DMIVC1RCTL1 | DMI VC1 Resource Control | 01000000h | R/W, RO | | 26-27h | DMIVC1RSTS | DMI VC1 Resource Status | 0002h | RO | | 84-87h | DMILCAP | DMI Link Capabilities | 00012C41h | RO, R/WO | | 88-89h | DMILCTL | DMI Link Control | 0000h | R/W, RO | | 8A-8Bh | DMILSTS | DMI Link Status | 0001h | RO | # 7.1 Direct Memory Interface (DMI) Configuration Register Details ## 7.1.1 DMI VCECH—DMI Virtual Channel Enhanced Capability B/D/F/Type: 0/0/0/DMIBAR Address Offset: 0-3h Default Value: 04010002h Access: RO Size: 32 bits This register indicates DMI Virtual Channel capabilities. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:20 | RO
040h | Pointer to Next Capability (PNC) : This field contains the offset to the next PCI Express capability structure in the linked list of capabilities (Link Declaration Capability). | | 19:16 | RO
1h | PCI Express* Virtual Channel Capability Version (PCI EXPRESS*VCCV): Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. | | 15:0 | RO
0002h | Extended Capability ID (ECID): Value of 0002h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers. | ## 7.1.2 DMIPVCCAP1—DMI Port VC Capability Register 1 B/D/F/Type: 0/0/0/DMIBAR Address Offset: 4-7h Default Value: 00000001h Access: R/WO, RO Size: 32 bits This register describes the configuration of PCI Express Virtual Channels associated with this port. | Bit | Access &
Default | Description | |------|---------------------|---| | 31:7 | RO
0000000h | Reserved | | 6:4 | RО
000b | Low Priority Extended VC Count (LPEVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration. | | 3 | RO
0b | Reserved | | 2:0 | R/WO
001b | Extended VC Count (EVCC): This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device. | | | | The Private Virtual Channel is not included in this count. | ## 7.1.3 DMIPVCCAP2—DMI Port VC Capability Register 2 B/D/F/Type: 0/0/0/DMIBAR Address Offset: 8-Bh Default Value: 00000000h Access: RO Size: 32 bits This register describes the configuration of PCI Express Virtual Channels associated with this port. | Bit | Access &
Default | Description | |------|---------------------|-------------| | 31:0 | RO
00000000h | Reserved | ### 7.1.4 DMI PVCCTL—DMI Port VC Control B/D/F/Type: 0/0/0/DMIBAR Address Offset: C-Dh Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |------|---------------------|--| | 15:4 | RO
000h | Reserved | | 3:1 | R/W
000b | VC Arbitration Select (VCAS): This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. See the PCI express specification for more details. | | 0 | RO
0b | Reserved |
7.1.5 DMIVCORCAP—DMI VCO Resource Capability B/D/F/Type: 0/0/0/DMIBAR Address Offset: 10-13h Default Value: 00000001h Access: RO Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
00000h | Reserved | | 15 | RO
0b | Reject Snoop Transactions (REJSNPT): 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. | | | | 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request. | | 14:8 | RO
00h | Reserved | | 7:0 | RO
01h | Port Arbitration Capability (PAC): Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed. | #### **DMIVCORCTLO—DMI VCO Resource Control** 7.1.6 0/0/0/DMIBAR B/D/F/Type: Address Offset: 14-17h Default Value: 800000FFh RO, R/W Access: Size: 32 bits This register controls the resources associated with PCI Express Virtual Channel 0. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31 | RO
1b | Virtual Channel O Enable (VCOE): For VCO, this bit is hardwired to 1 and read only as VCO can never be disabled. | | 30:27 | RO
0h | Reserved | | 26:24 | RO
000b | Virtual Channel 0 ID (VCOID): Assigns a VC ID to the VC resource. For VCO, this field is hardwired to 000 and read only. | | 23:20 | RO
0h | Reserved | | 19:17 | R/W
000b | Port Arbitration Select (PAS): This field configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. Because only bit 0 of that field is asserted. | | | | This field will always be programmed to 1. | | 16:8 | RO
000h | Reserved | | 7:1 | R/W
7Fh | Traffic Class / Virtual Channel 0 Map (TCVC0M): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. | | | | For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. To remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link. | | 0 | RO
1b | Traffic Class 0 / Virtual Channel 0 Map (TCOVCOM): Traffic Class 0 is always routed to VC0. | ### 7.1.7 DMI VCORSTS—DMI VCO Resource Status B/D/F/Type: 0/0/0/DMIBAR Address Offset: 1A-1Bh Default Value: 0002h Access: RO Size: 16 bits This register reports the Virtual Channel specific status. | Bit | Access & Default | Description | |------|------------------|--| | 15:2 | RO
0000h | Reserved. | | 1 | RO
1b | Virtual Channel O Negotiation Pending (VCONP): This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. | | | | 0 = The VC negotiation is complete. | | | | 1 = The VC resource is still in the process of negotiation (initialization or disabling). | | | | BIOS Requirement: Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link. | | 0 | RO
0b | Reserved | ## 7.1.8 DMIVC1RCAP—DMI VC1 Resource Capability B/D/F/Type: 0/0/0/DMIBAR Address Offset: 1C-1Fh Default Value: 00008001h Access: RO Size: 32 bits | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 31:16 | RO
00000h | Reserved | | | 15 | RO | Reject Snoop Transactions (REJSNPT): | | | | 1b | 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. | | | | | 1 = Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request. | | | 14:8 | RO
00h | Reserved | | | 7:0 | RO
01h | Port Arbitration Capability (PAC): Having only bit 0 set indicates that the only supported arbitration scheme for this VC is nonconfigurable hardware-fixed. | | ## 7.1.9 DMIVC1RCTL1—DMI VC1 Resource Control B/D/F/Type: 0/0/0/DMIBAR Address Offset: 20-23h Default Value: 01000000h Access: R/W, RO Size: 32 bits Controls the resources associated with PCI Express Virtual Channel 1. | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 31 | R/W | Virtual Channel 1 Enable (VC1E): | | | | 0b | 0 = Virtual Channel is disabled. | | | | | 1 = Virtual Channel is enabled. | | | 30:27 | RO
0h | Reserved | | | 26:24 | R/W
001b | Virtual Channel 1 ID (VC1ID): This field assigns a VC ID to the VC resource. Assigned value must be non-zero. This field can not be modified when the VC is already enabled. | | | 23:20 | RO
0h | Reserved | | | 19:17 | R/W
000b | Port Arbitration Select (PAS): This field configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. | | | 16:8 | RO
000h | Reserved | | | 7:1 | R/W
00h | Traffic Class / Virtual Channel 1 Map (TCVC1M): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. | | | | | For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link. | | | 0 | RO
0b | Traffic Class 0 / Virtual Channel 1 Map (TCOVC1M): Traffic Class 0 is always routed to VC0. | | ### 7.1.10 DMI VC1RSTS—DMI VC1 Resource Status B/D/F/Type: 0/0/0/DMIBAR Address Offset: 26–27h Default Value: 0002h Access: RO Size: 16 bits This register reports the Virtual Channel specific status. | Bit | Access &
Default | Description | |------|---------------------|--| | 15:2 | RO
0000h | Reserved | | 1 | RO
1b | Virtual Channel 1 Negotiation Pending (VC1NP): 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). | | 0 | RO
0b | Reserved | ## 7.1.11 DMILCAP—DMI Link Capabilities B/D/F/Type: 0/0/0/DMIBAR Address Offset: 84–87h Default Value: 00012C41h Access: RO, R/WO Size: 32 bits This field indicates DMI specific capabilities. | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 31:18 | RO
0000h | Reserved | | | 17:15 | R/WO
010b | L1 Exit Latency (L1SELAT): This field indicates the length of time this Port requires to complete the transition from L1 to L0. | | | | | 010 = 2 us to less than 4 us. | | | 14:12 | R/WO
010b | LOs Exit Latency (LOSELAT): This field indicates the length of time this Port requires to complete the transition from LOs to LO. | | | | | 010 = 128 ns to less than 256 ns | | | 11:10 | RO
11b | Active State Link PM Support (ASLPMS): L0s and L1 entry supported. | | | 9:4 | RO
04h | Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link. | | | 3:0 | RO
1h | Max Link Speed (MLS): Hardwired to indicate 2.5 Gb/s. | | ## 7.1.12 DMILCTL—DMI Link Control B/D/F/Type: 0/0/0/DMIBAR Address Offset: 88–89h Default Value: 0000h Access: R/W, RO Size: 16 bits This register allows control of DMI. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | RO
00h | Reserved | | 7 | R/W | Extended Synch (EXTSYNC): | | | 0b | 0 = Standard Fast Training Sequence (FTS). | | | | 1 = Forces the transmission of additional ordered sets when exiting the L0s state and when in the Recovery state. | | 6:3 | RO
0h | Reserved | | 2 | R/W
0b | Far-End Digital Loopback (FEDLB): | | 1:0 |
R/W
00b | Active State Power Management Support (ASPMS): This field controls the level of active state power management supported on the given link. | | | | 00 = Disabled | | | | 01 = L0s Entry Supported | | | | 10 = Reserved | | | | 11 = L0s and L1 Entry Supported | #### 7.1.13 **DMILSTS—DMI Link Status** 0/0/0/DMIBAR B/D/F/Type: Address Offset: 8A-8Bh 0001h Default Value: Access: RO Size: 16 bits This register indicates DMI status. | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 15:10 | RO
00h | Reserved and Zero for future R/WC/S implementations. Software must use 0 for writes to these bits. | | | 9:4 | RO
00h | Negotiated Width (NWID): This field indicates negotiated link width. This field is valid only when the link is in the L0, L0s, or L1 states (after link width negotiation is successfully completed). 04h = X4 | | | | | All other encodings are reserved. | | | 3:0 | RO
1h | Negotiated Speed (NSPD): This field indicates negotiated link speed. | | | | | 1h = 2.5 Gb/s | | | | | All other encodings are reserved. | | § ## 8 Integrated Graphics Device Registers (Device 2) (Intel® 82Q965/82Q963/82G965 Only) The Integrated Graphics Device (IGD) registers are located in Device 2 (D0), Function 0 (F0) and Function 1 (F1). This chapter provides the descriptions for these registers. Section 8.1 provides the register descriptions for Device 2, Function 0. Section 8.2 provides the register descriptions for Device 2, Function 1. # 8.1 IGD Configuration Register Details (Device 2, Function 0) Device 2, Function 0 contains registers for the internal graphics functions. Table 8-1 lists the PCI configuration registers in order of ascending offset address. Function 0 can be VGA compatible or not; this is selected through bit 1 of the GGC register (Device 0, offset 52h) Table 8-1. Integrated Graphics Device Register Address Map (Device 2, Function 0) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------------|--|--------------------------|-------------------| | 00-01h | VID2 | Vendor Identification | 8086h | RO | | 02-03h | DID2 | Device Identification | 2982h | RO | | 04-05h | PCICMD2 | PCI Command | 0000h | RO, R/W | | 06-07h | PCISTS2 | PCI Status | 0090h | RO, R/WC | | 08h | RID2 | Revision Identification | See register description | RO | | 09-0Bh | СС | Class Code | 030000h | RO | | 0Ch | CLS | Cache Line Size | 00h | RO | | 0Dh | MLT2 | Master Latency Timer | 00h | RO | | 0Eh | HDR2 | Header Type | 80h | RO | | 10-17h | GTTMMAD
R | Graphics Translation Table, Memory
Mapped Range Address | 000000000
000002h | RO, R/W | | 18-1Fh | GMADR | Graphics Memory Range Address | 000000000
00000Ah | R/W/L,
RO, R/W | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------------|--|------------------------------|--------------| | 20-23h | IOBAR | IO Base Address | 00000001h | RO, R/W | | 2C-2Dh | SVID2 | Subsystem Vendor Identification | 0000h | R/WO | | 2E-2Fh | SID2 | Subsystem Identification | 0000h | R/WO | | 30-33h | ROMADR | Video BIOS ROM Base Address | 00000000h | RO | | 34h | CAPPOINT | Capabilities Pointer | D0h | RO | | 3Ch | INTRLINE | Interrupt Line | 00h | R/W | | 3Dh | INTRPIN | Interrupt Pin | 01h | RO | | 3Eh | MINGNT | Minimum Grant | 00h | RO | | 3Fh | MAXLAT | Maximum Latency | 00h | RO | | 44h | MCAPPTR | Mirror of Device 0 Capabilities Pointer | E0h | RO | | 48-51h | CAPID0 | Mirror of Device 0 Capability Identifier | 000000000
0001090009
h | RO | | 52-53h | MGGC | Mirror of Device 0 GMCH Graphics
Control Register | 0030h | RO | | 54-57h | DEVEN | Mirror of Device 0 Device Enable | 000003DBh | RO,
R/W/L | | 58-5Bh | SSRW | Software Scratch Read Write | 00000000h | R/W | | 5C-5Fh | BSM | Base of Stolen Memory | 07800000h | RO | | 90-91h | MSI_CAPI
D | Message Signaled Interrupts
Capability ID | D005h | RO | | 92-93h | МС | Message Control | 0000h | RO, R/W | | 94-97h | MA | Message Address | 00000000h | R/W, RO | | 98-98h | MD | Message Data | 0000h | R/W | | D0-D1h | PMCAPID | Power Management Capabilities ID | 0001h | RO | | D2-D3h | PMCAP | Power Management Capabilities | 0022h | RO | | D4-D5h | PMCS | Power Management Control/Status | 0000h | RO, R/W | | E0-E0h | SWSMI | Software SMI | 0000h | R/W | ### 8.1.1 VID2—Vendor Identification B/D/F/Type: 0/2/0/PCI Address Offset: 0-1h Default Value: 8086h Access: RO Size: 16 bits This register combined with the Device Identification register uniquely identifies any PCI device. | Bit | Access & Default | Description | | |------|------------------|---|--| | 15:0 | RO
8086h | Vendor Identification Number (VID): PCI standard identification for Intel. | | ### 8.1.2 DID2—Device Identification B/D/F/Type: 0/2/0/PCI Address Offset: 2-3h Default Value: 2982h Access: RO Size: 16 bits This register, combined with the Vendor Identification register, uniquely identifies any PCI device. | Bit | Access & Default | Description | |------|------------------|---| | 15:0 | RO
2982h | Device Identification Number (DID): This is a 16 bit value assigned to the GMCH Graphic device | ### 8.1.3 PCICMD2—PCI Command B/D/F/Type: 0/2/0/PCI Address Offset: 4–5h Default Value: 0000h Access: RO, R/W Size: 16 bits This 16-bit register provides basic control over the IGD's ability to respond to PCI cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory. | Bit | Access &
Default | Description | | |-------|---------------------|--|--| | 15:11 | RO
00h | Reserved | | | 10 | R/W
0b | Interrupt Disable (INTDIS): This bit disables the device from asserting INTx#. | | | | | 0 = Enable the assertion of this device's INTx# signal. | | | | | 1 = Disable the assertion of this device's INTx# signal. DO_INTx messages will not be sent to DMI. | | | 9 | RO
0b | Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0. | | | 8 | RO
0b | SERR Enable (SERRE): Not Implemented. Hardwired to 0. | | | 7 | RO
0b | Address/Data Stepping Enable (ADSTEP): Not Implemented. Hardwired to 0. | | | 6 | RO
0b | Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since the IGD belongs to the category of devices that does not corrupt programs or data in system memory or hard drives, the IGD ignores any parity error that it detects and continues with normal operation. | | | 5 | RO
0b | Video Palette Snooping (VPS): This bit is hardwired to 0 to disable snooping. | | | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The IGD does not support memory write and invalidate commands. | | | 3 | RO
0b | Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores Special cycles. | | | 2 | R/W | Bus Master Enable (BME): | | | | 0b | 0 = Disable IGD bus mastering. | | | | | 1 = Enable the IGD to function as a PCI compliant master. | | | 1 | R/W
Ob | Memory Access Enable (MAE): This bit controls the IGD's response to memory space accesses. 0 = Disable. | | | | D (14) | 1 = Enable. | | | 0 | R/W
0b | I/O Access Enable (IOAE): This bit controls the IGD's response to I/O space accesses. | | | | | 0 = Disable.
1 = Enable. | | ### 8.1.4 PCISTS2—PCI Status B/D/F/Type: 0/2/0/PCI Address Offset: 6-7h Default Value: 0090h Access: RO, R/WC Size: 16 bits PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the IGD. | Bit | Access & Default | Description | | |------|------------------|---|--| | 15 | RO
0b | Detected Parity Error (DPE): Hardwired to 0. The IGD does not detect parity. | | | 14 | RO
0b | Signaled System Error (SSE): Hardwired to 0. The IGD never asserts SERR#. | | | 13 | RO
0b | Received Master Abort Status (RMAS): Hardwired to 0. The IGD never gets a master abort. | | | 12 | RO
0b | Received Target Abort Status (RTAS): Hardwired to 0. The IGD never gets a target abort. | | | 11 | RO
0b | Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not use target abort semantics. | | | 10:9 | RO
00b | DEVSEL Timing (DEVT): N/A. Hardwired to 00. | | | 8 | RO
0b | Master Data Parity Error Detected (DPD): Since Parity Error Response is hardwired to disabled (and the IGD does not do any parity detection), this bit is hardwired to 0. | | | 7 | RO
1b | Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-to-back when the transactions are not to the same agent. | | | 6 | RO
0b | User Defined Format (UDF): Hardwired to 0. | | | 5 | RO
0b | 66 MHz PCI Capable (66C): Hardwired to 0. | | | 4 | RO
1b | Capability List (CLIST): This bit is set to 1 to indicate that the register at 34h provides an offset into the function's PCI Configuration Space containing a pointer to the location of the first item in the list. | | | 3 | R/WC
0b |
Interrupt Status (INTSTS): This bit reflects the state of the interrupt in the device. Only when the Interrupt Disable bit in the PCICMD2 register (offset 04h) is a 0 and this Interrupt Status bit is a 1, will the devices INTx# signal be asserted. | | | | | Setting the Interrupt Disable bit to a 1 has no effect on the state of this bit. This bit is set by hardware; software must write a 1 to clear this bit. | | | 2:0 | RO
000b | Reserved | | ### 8.1.5 RID2—Revision Identification B/D/F/Type: 0/2/0/PCI Address Offset: 8h Default Value: See table below Access: RO Size: 8 bits This register contains the revision number for Device #2 Functions 0 and 1. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Revision Identification Number (RID): This is an 8-bit value that indicates the revision identification number for the GMCH Device 0. Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | ### 8.1.6 CC—Class Code B/D/F/Type: 0/2/0/PCI Address Offset: 9-Bh Default Value: 030000h Access: RO Size: 24 bits This register contains the device programming interface information related to the Sub-Class Code and Base Class Code definition for the IGD. This register also contains the Base Class Code and the function sub-class in relation to the Base Class Code. | Bit | Access &
Default | Description | |-------|---------------------|--| | 23:16 | RO
03h | Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the GMCH. | | | | 03h = Display controller. | | 15:8 | RO
00h | Sub-Class Code (SUBCC): Value will be determined based on Device 0 GGC register, GMS and IVD fields. | | | | 00h = VGA compatible | | | | 80h = Non VGA (GMS = "000" or IVD = "1") | | 7:0 | RO | Programming Interface (PI): | | | 00h | 00h = Display controller. | ### 8.1.7 CLS—Cache Line Size B/D/F/Type: 0/2/0/PCI Address Offset: Ch Default Value: 00h Access: RO Size: 8 bits The IGD does not support this register as a PCI slave. | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
00h | Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI compliant master does not use the Memory Write and Invalidate command and, in general, does not perform operations based on cache line size. | ### 8.1.8 MLT2—Master Latency Timer B/D/F/Type: 0/2/0/PCI Address Offset: Dh Default Value: 00h Access: RO Size: 8 bits The IGD does not support the programmability of the master latency timer because it does not perform bursts. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Master Latency Timer Count Value (MLTCV): Hardwired to 0s. | ### 8.1.9 HDR2—Header Type B/D/F/Type: 0/2/0/PCI Address Offset: Eh Default Value: 80h Access: RO Size: 8 bits This register contains the Header Type of the IGD. | Bit | Access &
Default | Description | |-----|---------------------|---| | 7 | RO
1b | Multi Function Status (MFUNC): This bit indicates if the device is a Multi-Function Device. The Value of this register is determined by DEVEN[4] (Device 0, offset 54h). If DEVEN[4] is set, the MFUNC bit is also set. | | 6:0 | RO
00h | Header Code (H): This is a 7-bit value that indicates the Header Code for the IGD. This code has the value 00h, indicating a type 0 configuration space format. | ## 8.1.10 GTTMMADR—Graphics Translation Table, Memory Mapped Range Address B/D/F/Type: 0/2/0/PCI Address Offset: 10-17h Default Value: 0000000000000002h Access: RO, R/W Size: 64 bits This register requests allocation for combined Graphics Translation Table (GTT) and memory-mapped range (1 MB combine for MMIO and Global GTT table aperture; one for 512 KB each) The allocation is for 1024 KB and the base address is defined by bits [31:20]. | Bit | Access &
Default | Description | |-------|---------------------|---| | 63:36 | RO
0000000h | Reserved | | 35:20 | R/W
0000h | Memory Base Address (GTTMMADR_MBA): Set by the OS, these bits correspond to address signals 35:20 (1 MB combine for MMIO and Global GTT table aperture; one for 512 KB each). | | 19:4 | RO
0000h | Reserved: Hardwired to 0s to indicate at least 1MB address range. | | 3 | RO
0b | Prefetchable Memory (PREFMEM): Hardwired to 0 to prevent prefetching. | | 2:1 | RO | Memory Type (MEMTYP): Memory Type (MEMTYP): | | | 01b | 0 = 32-bit address. | | | | 1 = 64-bit address | | 0 | RO
0b | Memory / IO Space (MIOS): Hardwired to 0 to indicate memory space. | ## 8.1.11 GMADR—Graphics Memory Range Address B/D/F/Type: 0/2/0/PCI Address Offset: 18-1Fh Default Value: 000000000000000Ah Access: R/W/L, RO, R/W Size: 64 bits IGD graphics memory base address is specified in this register. | Bit | Access &
Default | Description | |-------|---------------------|--| | 63:36 | RO
0000000h | Reserved | | 35:29 | R/W
0000000b | Memory Base Address (GMADR_MBA) : Set by the OS, these bits correspond to address signals 35:29. | | 28 | R/W/L
0b | 512MB Address Mask (512ADMSK) : This bit is either part of the Memory Base Address (R/W) or part of the Address Mask (RO), depending on the value of MSAC[1:0]. See MSAC (Device 2, Function 0, offset 66h) for details. | | 27 | R/W/L
0b | 256 MB Address Mask (256ADMSK) : This bit is either part of the Memory Base Address (R/W) or part of the Address Mask (RO), depending on the value of MSAC[1:0]. See MSAC (Device 2, Function 0, offset 66h) for details. | | 26:4 | RO
000000h | Address Mask (ADM): Hardwired to 0s to indicate at least 128 MB address range. | | 3 | RO
1b | Prefetchable Memory (PREFMEM): Hardwired to 1 to enable prefetching. | | 2:1 | RO
01b | Memory Type (MEMTYP): 0 = 32-bit address. 1 = 64-bit address | | 0 | RO
0b | Memory/IO Space (MIOS): Hardwired to 0 to indicate memory space. | #### 8.1.12 IOBAR—IO Base Address B/D/F/Type: 0/2/0/PCI Address Offset: 20–23h Default Value: 00000001h Access: RO, R/W Size: 32 bits This register provides the Base offset of the I/O registers within Device 2. Bits 15:3 are programmable allowing the I/O Base to be located anywhere in 16-bit I/O address space. Bits 2:1 are fixed and return zero; bit 0 is hardwired to a one indicating that 8 bytes of I/O space are decoded. Access to the 8Bs of I/O space is allowed in PM state D0 when IO Enable (PCICMD bit 0) set. Access is disallowed in PM states D1–D3 or if IO Enable is clear or if Device 2 is turned off or if Internal graphics is disabled thru the fuse or fuse override mechanisms. Note that access to this I/O BAR is independent of VGA functionality within Device 2. Also, note that this mechanism is available only through Function 0, Device 2 and is not duplicated in Function 1. If accesses to this I/O bar is allowed, then the GMCH claims all 8, 16, or 32 bit I/O cycles from the processor that falls within the 8B claimed. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
0000h | Reserved | | 15:3 | R/W
0000h | IO base Address (IOBASE): O Base Address: Set by the OS, these bits correspond to address signals 15:3. | | 2:1 | RO
00b | Memory Type (MEMTYPE): Memory Type: Hardwired to 0s to indicate 32-bit address. | | 0 | RO
1b | Memory/IO space type (SPCTYPE): Memory / IO Space: Hardwired to 1 to indicate I/O space. | ### 8.1.13 SVID2—Subsystem Vendor Identification B/D/F/Type: 0/2/0/PCI Address Offset: 2C-2Dh Default Value: 0000h Access: R/WO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:0 | R/WO
0000h | Subsystem Vendor ID (SUBVID): This value is used to identify the vendor of the subsystem. This register should be programmed by BIOS during boot-up. Once written, this register becomes Read_Only. This register can only be cleared by a Reset. | ## 8.1.14 SID2—Subsystem Identification B/D/F/Type: 0/2/0/PCI Address Offset: 2E-2Fh Default Value: 0000h Access: R/WO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | R/WO
0000h | Subsystem Identification (SUBID): This value is used to identify a
particular subsystem. This field should be programmed by BIOS during boot-up. Once written, this register becomes read only. This register can only be cleared by a Reset. | ### 8.1.15 ROMADR—Video BIOS ROM Base Address B/D/F/Type: 0/2/0/PCI Address Offset: 30-33h Default Value: 00000000h Access: RO Size: 32 bits The IGD does not use a separate BIOS ROM; therefore, this register is hardwired to 0s. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:18 | RO
0000h | ROM Base Address (RBA): Hardwired to 0s. | | 17:11 | RO
00h | Address Mask (ADMSK): Hardwired to 0s to indicate 256 KB address range. | | 10:1 | RO
000h | Reserved: Hardwired to 0s. | | 0 | RO
0b | ROM BIOS Enable (RBE): 0 = ROM not accessible. | ## 8.1.16 CAPPOINT—Capabilities Pointer B/D/F/Type: 0/2/0/PCI Address Offset: 34h Default Value: D0h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
D0h | Capabilities Pointer Value (CPV): This field contains an offset into the function's PCI configuration space for the first item in the New Capabilities Linked List, the MSI Capabilities ID registers at address 90h, or the Power Management capability at D0h. This value is determined by the configuration in CAPL[0]. | ## 8.1.17 INTRLINE—Interrupt Line B/D/F/Type: 0/2/0/PCI Address Offset: 3Ch Default Value: 00h Access: R/W Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | R/W
00h | Interrupt Connection (INTCON): This field is used to communicate interrupt line routing information. POST software writes the routing information into this register as it initializes and configures the system. The value in this field indicates which input of the system interrupt controller the device's interrupt pin is connected. | ## 8.1.18 INTRPIN—Interrupt Pin B/D/F/Type: 0/2/0/PCI Address Offset: 3Dh Default Value: 01h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
01h | Interrupt Pin (INTPIN): As a single function device, the IGD specifies INTA# as its interrupt pin. | | | | 01h = INTA#. | ### 8.1.19 MINGNT—Minimum Grant B/D/F/Type: 0/2/0/PCI Address Offset: 3Eh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Minimum Grant Value (MGV): The IGD does not burst as a PCI compliant master. | ### 8.1.20 MAXLAT—Maximum Latency B/D/F/Type: 0/2/0/PCI Address Offset: 3Fh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Maximum Latency Value (MLV): The IGD has no specific requirements for how often it needs to access the PCI bus. | ## 8.1.21 MCAPPTR—Mirror of Device 0 Capabilities Pointer B/D/F/Type: 0/2/0/PCI Address Offset: 44h Default Value: E0h Access: RO Size: 8 bits The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
E0h | Mirror of CAPPTR (MCAPPTR): Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPIDO). | ## 8.1.22 CAPIDO—Mirror of Device 0 Capability Identifier B/D/F/Type: 0/2/0/PCI Address Offset: 48-51h Default Value: 000000000001090009h Access: RO Size: 80 bits | Bit | Access &
Default | Description | |-------|--------------------------|---| | 79:26 | RO
000000000
0000h | Reserved | | 27:24 | RO
1h | CAPID Version (CAPIDV) : This field has the value 0001b to identify the first revision of the CAPID register definition. | | 23:16 | RO
09h | CAPID Length (CAPIDL): This field has the value 09h to indicate the structure length (9 bytes). | | 15:8 | RO
00h | Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list. | | 7:0 | RO
09h | Capability Identifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers. | ## 8.1.23 MGGC—Mirror of Device 0 GMCH Graphics Control Register B/D/F/Type: 0/2/0/PCI Address Offset: 52–53h Default Value: 0030h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:7 | RO
000h | Reserved | | 6:4 | RO
011b | Graphics Mode Select (GMS): This field is used to select the amount of system memory that is pre-allocated to support the Internal Graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled. | | | | 000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub-Class Code field within Device 2, Function 0 Class Code register is 80h. | | | | 001 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer. | | | | 010 = Reserved | | | | 011 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer. | | | | 100 = Reserved | | | | 101 = Reserved | | | | 110 = Reserved | | | | 111 = Reserved | | | | NOTE: This register is locked and becomes read only when the D_LCK bit in the SMRAM register is set. | | 3:2 | RO
00b | Reserved | | 1 | RO | IGD VGA Disable (IVD): | | | 0b | 0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles; the Sub-Class Code within Device 2 Class Code register is 00. | | | | 1 = Disable. Device 2 (IGD) does not claim VGA cycles (memory and I/O), and the Sub-Class Code field within Device 2 function 0 Class Code register is 80h. | | 0 | RO
0b | Reserved | ### 8.1.24 DEVEN—Mirror of Device 0 Device Enable B/D/F/Type: 0/2/0/PCI Address Offset: 54–57h Default Value: 000003DBh Access: RO Size: 32 bits This register allows enabling/disabling of PCI devices and functions that are in the GMCH. The following table bit definitions describes the behavior of all combinations of transactions to devices controlled by this register. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:10 | RO
0s | Reserved | | 9 | RO
1b | ME Function 3 (D3F3EN): If Device 3, Function 0 is disabled and hidden, then Device 3, Function 3 is also disabled and hidden, independent of the state of this bit. | | | | 0 = Bus 0, Device 3, Function 3 is disabled and hidden | | | | 1 = Bus 0, Device 3, Function 3 is enabled and visible. | | 8 | RO
1b | ME Function 2 (D3F2EN): If Device 3, Function 0 is disabled and hidden, then Device 3, Function 2 is also disabled and hidden, independent of the state of this bit. | | | | 0 = Bus 0, Device 3, Function 2 is disabled and hidden | | | | 1 = Bus 0, Device 3, Function 2 is enabled and visible. | | 7 | RO
1b | Reserved | | 6 | RO
1b | ME Function 0 (D3F0EN) : If the GMCH does not have ME capability, then Device 3, Function 0 is disabled and hidden, independent of the state of this bit. | | | | 0 = Bus 0, Device 3, Function 0 is disabled and hidden | | | | 1 = us 0, Device 3, Function 0 is enabled and visible. | | 5 | RO
0b | Reserved | | 4 | RO
1b | Internal Graphics Engine Function 1 (D2F1EN): If Device 2, Function 0, is disabled and hidden, then Device 2, Function 1 is also disabled and hidden, independent of the state of this bit. | | | | 0 = Bus 0, Device 2, Function 1 is disabled and hidden | | | | 1 = Bus 0, Device 2, Function 1 is enabled and visible | | 3 | RO | Internal Graphics Engine Function 0 (D2F0EN): | | | 1b | 0 = Bus 0, Device 2, Function 0 is disabled and hidden | | | | 1 = Bus 0, Device 2, Function 0 is enabled and visible | | 2 | RO
0b | Reserved | | Bit | Access &
Default | Description | |-----|---------------------|--| | 1 | RO | 82Q965, 82G965, GMCH | | | 1b | PCI Express Port (D1EN): | | | | 0 = Bus 0, Device 1, Function 0 is disabled and hidden. | | | | 1 = Bus 0, Device 1, Function 0 is enabled and visible. | | | | 82Q963 GMCH | | | | Reserved | | 0 | RO
1b | Host Bridge
(DOEN): Hardwired to 1. Bus 0, Device 0, Function 0 can not be disabled. | ### 8.1.25 SSRW—Software Scratch Read Write B/D/F/Type: 0/2/0/PCI Address Offset: 58–5Bh Default Value: 00000000h Access: R/W Size: 32 bits | Bit | Access &
Default | Description | |------|---------------------|-------------| | 31:0 | R/W
00000000h | Reserved | ### 8.1.26 BSM—Base of Stolen Memory B/D/F/Type: 0/2/0/PCI Address Offset: 5C-5Fh Default Value: 07800000h Access: RO Size: 32 bits Graphics stolen memory and TSEG are within DRAM space defined under TOLUD. From the top of low used DRAM, GMCH claims 1 to 64 MB of DRAM for internal graphics, if enabled. The base of stolen memory will always be below 4 GB. This is required to prevent aliasing between stolen range and the reclaim region. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:20 | RO
078h | Base of Stolen Memory (BSM): This register contains bits 31:20 of the base address of stolen DRAM memory. The host interface determines the base of graphics stolen memory by subtracting the graphics stolen memory size from TOLUD. See Device 0 TOLUD for more explanation. | | 19:0 | RO
00000h | Reserved | ### 8.1.27 HSRW—Hardware Scratch Read Write B/D/F/Type: 0/2/0/PCI Address Offset: 60-61h Default Value: 0000h Access: R/W Size: 16 bits | Bit | Access &
Default | Description | |------|---------------------|-------------| | 15:0 | R/W
0000h | Reserved | ### 8.1.28 MSI_CAPID—Message Signaled Interrupts Capability ID B/D/F/Type: 0/2/0/PCI Address Offset: 90–91h Default Value: D005h Access: RO Size: 16 bits When a device supports MSI, it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address. The reporting of the existence of this capability can be disabled by setting MSICH (CAPL[0] @ 7Fh). In that case walking this linked list will skip this capability and instead go directly to the PCI PM capability. | Bit | Access &
Default | Description | |------|---------------------|--| | 15:8 | RO
D0h | Pointer to Next Capability (POINTNEXT): This contains a pointer to the next item in the capabilities list which is the Power Management capability. | | 7:0 | RO
05h | Capability ID (CAPID): Value of 05h identifies this linked list item (capability structure) as being for MSI registers. | #### 8.1.29 MC—Message Control B/D/F/Type: 0/2/0/PCI Address Offset: 92–93h Default Value: 0000h Access: RO, R/W Size: 16 bits System software can modify bits in this register, but the device is prohibited from doing so. If the device writes the same message multiple times, only one of those messages is assured to be serviced. If all of the messages must be serviced, the device must not generate the same message again until the driver services the earlier one. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | RO
00h | Reserved | | 7 | RO
0b | 64 Bit Capable (64BCAP): Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address. | | 6:4 | R/W
000b | Multiple Message Enable (MME): System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. The encoding is the same as for the MMC field below. | | 3:1 | RO
000b | Multiple Message Capable (MMC): System Software reads this field to determine the number of messages being requested by this device. 000 = 1 request | | 0 | R/W
0b | MSI Enable (MSIEN): This bit controls the ability of this device to generate MSIs. 0 = Disable 1 = Enable | ## 8.1.30 MA—Message Address B/D/F/Type: 0/2/0/PCI Address Offset: 94–97h Default Value: 00000000h Access: R/W, RO Size: 32 bits | Bit | Access &
Default | Description | |------|---------------------|---| | 31:2 | R/W
00000000h | Message Address (MESSADD): This field is used by system software to assign an MSI address to the device. The device handles a MSI by writing the padded contents of the MD register to this address. | | 1:0 | RO
00b | Force DWord Align (FDWORD): Hardwired to 0s so that addresses assigned by system software are always aligned on a DWord address boundary. | ## 8.1.31 MD—Message Data B/D/F/Type: 0/2/0/PCI Address Offset: 98–99h Default Value: 0000h Access: R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | R/W
0000h | Message Data (MESSDATA): This field indicates the Base message data pattern assigned by system software and used to handle an MSI from the device. | | | | When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0. The lower 16 bits are supplied by this register. | ## 8.1.32 GDRST—Graphics Reset B/D/F/Type: 0/2/0/PCI Address Offset: C0h Default Value: 00h Access: RO, R/W/L Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:2 | RO
000h | Reserved | | 1 | RO
0b | Graphics Reset Status (GRS): This bit is set to 1 when Graphics Reset bit (bit 0 of this register) is set to a 1, and the graphics hardware has completed the debug reset sequence, and all graphics assets are in reset. This bit is cleared when Graphics Reset bit is set to a 0. | | | | 0 = Graphics subsystem not in Reset. | | | | 1 = Graphics Subsystem in Reset as a result of Graphics Reset. | | 0 | R/W/L
0b | Graphics Reset (GDR): | | | | 1 = Assert display and render domain reset | | | | 0 = De-assert display and render domain reset | | | | Render and Display clock domain resets should be asserted for at least 20 us. Once this bit is set to a 1: | | | | All GFX core MMIO registers are returned to power on default state. All Ring buffer pointers are reset. | | | | Command stream fetches are dropped. | | | | Ongoing render pipeline processing is halted. | | | | State machines and State Variables returned to power on default state. | | | | Display and overlay engines are halted (garbage on screen). | | | | VGA memory is not available. | | | | Store DWords and interrupts are not assured to be completed. | | | | Device 2 IO registers are not available. | | | | Device 2 Configuration registers continue to be available while Graphics debug reset is asserted. | ## 8.1.33 PMCAPID—Power Management Capabilities ID B/D/F/Type: 0/2/0/PCI Address Offset: D0-D1h Default Value: 0001h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
00h | Next Capability Pointer (NEXT_PTR): This field contains a pointer to next item in capabilities list. This is the final capability in the list and must be set to 00h. | | 7:0 | RO
01h | Capability I dentifier (CAP_ID): SIG defines this ID is 01h for power management. | ## 8.1.34 PMCAP—Power Management Capabilities B/D/F/Type: 0/2/0/PCI Address Offset: D2-D3h Default Value: 0022h Access: RO Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:11 | RO
00h | PME Support (PMES) : This field indicates the power states in which the IGD may assert PME#. Hardwired to 0 to indicate that the IGD does not assert the PME# signal. | | 10 | RO
0b | D2 Support (D2): Hardwired to 0. The D2 power management state is not supported. | | 9 | RO
0b | D1 Support (D1): Hardwired to 0 to indicate that the D1 power management state is not supported. | | 8:6 | RO
000b | Reserved | | 5 | RO
1b | Device Specific Initialization (DSI): Hardwired to 1 to indicate that special initialization of the IGD is required before generic class device driver is to use it. | | 4 | RO
0b | Reserved | | 3 | RO
0b | PME Clock (PMECLK): Hardwired to 0 to indicate IGD does not support PME# generation. | | 2:0 | RO
010b | Version (VER): Hardwired to 010b to indicate that there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the PCI Power Management Interface
Specification. | ### 8.1.35 PMCS—Power Management Control/Status B/D/F/Type: 0/2/0/PCI Address Offset: D4-D5h Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 15 | RO
0b | PME Status (PMESTS) : This bit is 0 to indicate that IGD does not support PME# generation from D3 (cold). | | 14:13 | RO
00b | Data Scale (DSCALE): The IGD does not support data register. This bit always returns 00 when read, write operations have no effect. | | 12:9 | RO
0h | Data Select (DSEL): The IGD does not support data register. This bit always returns 0h when read, write operations have no effect. | | 8 | RO
0b | PME Enable (PME_EN): This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled. | | 7:2 | RO
00h | Reserved | | 1:0 | R/W
00b | Power State (PWRSTAT): This field indicates the current power state of the IGD and can be used to set the IGD into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. On a transition from D3-to-D0 the graphics controller is optionally reset to initial values | | | | 00 = D0 (Default) | | | | 01 = D1 (Not Supported) | | | | 10 = D2 (Not Supported) | | | | 11= D3 | ### 8.1.36 SWSMI—Software SMI B/D/F/Type: 0/2/0/PCI Address Offset: E0-E1h Default Value: 0000h Access: R/W Size: 16 bits As long as there is the potential that DVO port legacy drivers exist in the system that expect this register at this address, Device 2, Function Oaddress E0h–E1h must be reserved for this register. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | R/W
00h | Software Scratch Bits (SWSB): | | 7:1 | R/W
00h | Software Flag (SWF): This field is used to indicate caller and SMI function desired, as well as return result. | | 0 | R/W
0b | GMCH Software SMI Event (GSSMIE): When set, this bit triggers an SMI. Software must write a 0 to clear this bit. | ## 8.2 IGD Configuration Register Details (Device 2, Function 1) The Integrated Graphics Device registers are located in Device 2 (D2), Function 0 (F0) and Function 1 (F1). This section provides the descriptions for the D2:F1 registers. Table 8-2 provides an address map of the D2:F1registers listed in ascending order by address offset. Detailed bit descriptions follow the table. Table 8-2. Integrated Graphics Device Register Address Map (Device 2, Function 1) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|----------|---|-------------------------------|------------| | 00-01h | VID2 | Vendor Identification | 8086h | RO | | 02-03h | DID2 | Device Identification | 2983h | RO | | 04-05h | PCICMD2 | PCI Command | 0000h | RO,
R/W | | 06-07h | PCISTS2 | PCI Status | 0090h | RO | | 0808h | RID2 | Revision Identification | See register description | RO | | 09-0Bh | СС | Class Code Register | 038000h | RO | | 0Ch | CLS | Cache Line Size | 00h | RO | | 0Dh | MLT2 | Master Latency Timer | 00h | RO | | 0E | HDR2 | Header Type | 80h | RO | | 1017-h | MMADR | Memory Mapped Range Address | 00000000
0000002h | R/W,
RO | | 2C-2Dh | SVID2 | Subsystem Vendor Identification | 0000h | R/WO | | 2E-2Fh | SID2 | Subsystem Identification | 0000h | R/WO | | 30-33h | ROMADR | Video BIOS ROM Base Address | 00000000h | RO | | 34-34h | CAPPOINT | Capabilities Pointer | D0h | RO | | 3Eh | MINGNT | Minimum Grant | 00h | RO | | 3Fh | MAXLAT | Maximum Latency | 00h | RO | | 44h | MCAPPTR | Mirror of Device 0 Capabilities Pointer | E0h | RO | | 48-51h | CAPID0 | Capability Identifier | 000000000
000010900
09h | RO | | 52-53h | MGGC | Mirror of Device 0 GMCH Graphics Control Register | 0030h | RO | | 54-57h | DEVEN | Device Enable | 000003DBh | RO | | 58-5Bh | SSRW | Mirror Function 0 Software Scratch Read
Write | 00000000h | RO | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------|---|------------------|------------| | 5C-5Fh | BSM | Mirror of Function 0 Base of Stolen
Memory | 07800000h | RO | | C0h | GDRST | Mirror of Device 2 Func0 Graphics Reset | 00h | RO | | D0-D1h | PMCAPID | Mirror Function 0 Power Management
Capabilities ID | 0001h | RO | | D2-D3h | PMCAP | Mirror Function 0 Power Management
Capabilities | 0022h | RO | | D4-D5h | PMCS | Power Management Control/Status | 0000h | RO,
R/W | | E0-E1h | SWSMI | Software SMI | 0000h | R/W | ### 8.2.1 VID2—Vendor Identification B/D/F/Type: 0/2/1/PCI Address Offset: 0-1h Default Value: 8086h Access: RO Size: 16 bits This register, combined with the Device Identification register, uniquely identifies any PCI device. | Bit | Access &
Default | Description | |------|---------------------|--| | 15:0 | RO
8086h | Vendor Identification Number (VID): PCI standard identification for Intel. | ### 8.2.2 DID2—Device Identification B/D/F/Type: 0/2/1/PCI Address Offset: 2-3h Default Value: 2983h Access: RO Size: 16 bits This register is unique in Function 1 (the Function 0 DID is separate). This difference in Device ID is necessary for allowing distinct Plug and Play enumeration of Function 1 when both Function 0 and Function 1 have the same class code. | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | RO
2983h | Device Identification Number (DID): This is a 16 bit value assigned to the GMCH Graphic device Function 1 | ### 8.2.3 PCICMD2—PCI Command B/D/F/Type: 0/2/1/PCI Address Offset: 4-5h Default Value: 0000h Access: RO, R/W Size: 16 bits This 16-bit register provides basic control over the IGD's ability to respond to PCI cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory. | Bit | Access & Default | Description | |-------|------------------|--| | 15:10 | RO
00h | Reserved | | 9 | RO
0b | Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0. | | 8 | RO
0b | SERR Enable (SERRE): Not Implemented. Hardwired to 0. | | 7 | RO
0b | Address/Data Stepping Enable (ADSTEP): Not Implemented. Hardwired to 0. | | 6 | RO
0b | Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since the IGD belongs to the category of devices that does not corrupt programs or data in system memory or hard drives, the IGD ignores any parity error that it detects and continues with normal operation. | | 5 | RO
0b | VGA Palette Snoop Enable (VGASNOOP): Hardwired to 0 to disable snooping. | | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The IGD does not support memory write and invalidate commands. | | 3 | RO
0b | Special Cycle Enable (SCE): Hardwired to 0. The IGD ignores Special cycles. | | 2 | R/W | Bus Master Enable (BME): | | | 0b | 0 = Disable IGD bus mastering. | | | | 1 = Enable the IGD to function as a PCI compliant master. | | 1 | R/W
0b | Memory Access Enable (MAE): This bit controls the IGD's response to memory space accesses. | | | | 0 = Disable. | | | | 1 = Enable. | | 0 | R/W
0b | I/O Access Enable (IOAE): This bit controls the IGD's response to I/O space accesses. | | | | 0 = Disable. | | | | 1 = Enable. | ### 8.2.4 PCISTS2—PCI Status B/D/F/Type: 0/2/1/PCI Address Offset: 6-7h Default Value: 0090h Access: RO Size: 16 bits PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the IGD. | | 1 | | |------|------------------|---| | Bit | Access & Default | Description | | 15 | RO
0b | Detected Parity Error (DPE): Hardwired to 0. IGD does not detect parity. | | 14 | RO
0b | Signaled System Error (SSE) : Hardwired to 0. IGD never asserts SERR#. | | 13 | RO
0b | Received Master Abort Status (RMAS): Hardwired to 0. IGD never gets a master abort. | | 12 | RO
0b | Received Target Abort Status (RTAS): Hardwired to 0. IGD never gets a target abort. | | 11 | RO
0b | Signaled Target Abort Status (STAS): Hardwired to 0. IGD does not use target abort semantics. | | 10:9 | RO
00b | DEVSEL Timing (DEVT): N/A. These bits are hardwired to 00. | | 8 | RO
0b | Master Data Parity Error Detected (DPD): Hardwired to 0. Parity Error Response is hardwired to disabled (and the IGD does not do any parity detection). | | 7 | RO
1b | Fast Back-to-Back (FB2B): Hardwired to 1. IGD accepts fast back-to-back when the transactions are not to the same agent. | | 6 | RO
0b | User Defined Format (UDF): Hardwired to 0. | | 5 | RO
0b | 66 MHz PCI Capable (66C): N/A – Hardwired to
0. | | 4 | RO
1b | Capability List (CLIST): This bit is set to 1 to indicate that the register at 34h provides an offset into the function's PCI Configuration Space containing a pointer to the location of the first item in the list. | | 3 | RO
0b | Interrupt Status (INTSTS): Hardwired to 0. | | 2:0 | RO
000b | Reserved | ### 8.2.5 RID2—Revision Identification B/D/F/Type: 0/2/1/PCI Address Offset: 8h Default Value: See table below Access: RO Size: 8 bits This register contains the revision number for Device 2, Functions 0 and 1. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Revision I dentification Number (RID): This is an 8-bit value that indicates the revision identification number for the GMCH Device 0. Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | ### 8.2.6 CC—Class Code Register B/D/F/Type: 0/2/1/PCI Address Offset: 9-Bh Default Value: 038000h Access: RO Size: 24 bits This register contains the device programming interface information related to the Sub-Class Code and Base Class Code definition for the IGD. This register also contains the Base Class Code and the function sub-class in relation to the Base Class Code. | Bit | Access &
Default | Description | |-------|---------------------|--| | 23:16 | RO
03h | Base Class Code (BCC): This is an 8-bit value that indicates the base class code for the GMCH. | | | | 03h = Display controller. | | 15:8 | RO | Sub-Class Code (SUBCC): | | | 80h | 80h = Non VGA | | 7:0 | RO | Programming Interface (PI): | | | 00h | 00h = Display controller. | ### 8.2.7 CLS—Cache Line Size B/D/F/Type: 0/2/1/PCI Address Offset: Ch Default Value: 00h Access: RO Size: 8 bits The IGD does not support this register as a PCI slave. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI compliant master does not use the Memory Write and Invalidate command and, in general, does not perform operations based on cache line size. | ### 8.2.8 MLT2—Master Latency Timer B/D/F/Type: 0/2/1/PCI Address Offset: Dh Default Value: 00h Access: RO Size: 8 bits The IGD does not support the programmability of the master latency timer because it does not perform bursts. | Bit | Access &
Default | Description | |-----|---------------------|--| | 7:0 | RO
00h | Master Latency Timer Count Value (MLTCV): Hardwired to 0s. | ### 8.2.9 HDR2—Header Type B/D/F/Type: 0/2/1/PCI Address Offset: Eh Default Value: 80h Access: RO Size: 8 bits This register contains the Header Type of the IGD. | Bit | Access & Default | Description | |-----|------------------|---| | 7 | RO
1b | Multi Function Status (MFUNC): This field indicates if the device is a Multi-Function Device. The Value of this register is determined by Device 0, offset 54h, DEVEN[4]. If Device 0 DEVEN[4] is set, the MFUNC bit is also set. | | 6:0 | RO
00h | Header Code (H): This is a 7-bit value that indicates the Header Code for the IGD. This code has the value 00h, indicating a type 0 configuration space format. | ### 8.2.10 MMADR—Memory Mapped Range Address B/D/F/Type: 0/2/1/PCI Address Offset: 10-17h Access: R/W, RO Size: 64 bits This register requests allocation for the IGD registers and instruction ports. The allocation is for 512 KB and the base address is defined by bits 31:19. | Bit | Access &
Default | Description | |-------|---------------------|--| | 63:36 | RO
0000000h | Reserved | | 35:20 | R/W
0000h | Memory Base Address (MMADR_MBA): Set by the OS, these bits correspond to address signals 31:19. | | 19:4 | RO
0000h | Address Mask (ADMSK): Hardwired to 0s to indicate 512 KB address range. | | 3 | RO
0b | Prefetchable Memory (PREFMEM): Hardwired to 0 to prevent prefetching. | | 2:1 | RO
01b | Memory Type (MEMTYP): Hardwired to 01 to indicate 64-bit address. | | 0 | RO
0b | Memory / IO Space (MIOS): Hardwired to 0 to indicate memory space. | ### 8.2.11 SVID2—Subsystem Vendor Identification B/D/F/Type: 0/2/1/PCI Address Offset: 2C-2Dh Default Value: 0000h Access: R/WO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | R/WO
0000h | Subsystem Vendor ID (SUBVID): This value is used to identify the vendor of the subsystem. This register should be programmed by BIOS during boot-up. Once written, this register becomes read only. This register can only be cleared by a Reset. | ### 8.2.12 SID2—Subsystem Identification B/D/F/Type: 0/2/1/PCI Address Offset: 2E-2Fh Default Value: 0000h Access: R/WO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | R/WO
0000h | Subsystem Identification (SUBID): This value is used to identify a particular subsystem. This field should be programmed by BIOS during boot-up. Once written, this register becomes read only. This register can only be cleared by a Reset. | ### 8.2.13 ROMADR—Video BIOS ROM Base Address B/D/F/Type: 0/2/1/PCI Address Offset: 30-33h Default Value: 00000000h Access: RO Size: 32 bits The IGD does not use a separate BIOS ROM; therefore this register is hardwired to 0s. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:18 | RO
0000h | ROM Base Address (RBA): Hardwired to 0s. | | 17:11 | RO
00h | Address Mask (ADMSK): Hardwired to 0s to indicate 256 KB address range. | | 10:1 | RO
000h | Reserved: Hardwired to 0s. | | 0 | RO
0b | ROM BIOS Enable (RBE): 0 = ROM not accessible. | ### 8.2.14 CAPPOINT—Capabilities Pointer B/D/F/Type: 0/2/1/PCI Address Offset: 34h Default Value: D0h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
D0h | Capabilities Pointer Value (CPV): This field contains an offset into the function's PCI configuration space for the first item in the New Capabilities Linked List, the MSI Capabilities ID registers at address 90h or the Power Management capability at D0h. | | | | This value is determined by the configuration in CAPL[0]. | ### 8.2.15 MINGNT—Minimum Grant B/D/F/Type: 0/2/1/PCI Address Offset: 3Eh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Minimum Grant Value (MGV): The IGD does not burst as a PCI compliant master. | ### 8.2.16 MAXLAT—Maximum Latency B/D/F/Type: 0/2/1/PCI Address Offset: 3Fh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Maximum Latency Value (MLV): The IGD has no specific requirements for how often it needs to access the PCI bus. | ### 8.2.17 MCAPPTR—Mirror of Device 0 Capabilities Pointer B/D/F/Type: 0/2/1/PCI Address Offset: 44h Default Value: E0h Access: RO Size: 8 bits The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
E0h | Mirror of CAPPTR (MCAPPTR): Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPID0). | ### 8.2.18 CAPIDO—Capability Identifier B/D/F/Type: 0/2/1/PCI Address Offset: 48–51h Default Value: 0000000000001090009h Access: RO Size: 80 bits | Bit | Access &
Default | Description | |-------|--------------------------|---| | 79:26 | RO
000000000
0000h | Reserved | | 27:24 | RO
1h | CAPID Version (CAPIDV): This field has the value 0001b to identify the first revision of the CAPID register
definition. | | 23:16 | RO
09h | CAPID Length (CAPIDL): This field has the value 09h to indicate the structure length (9 bytes). | | 15:8 | RO
00h | Next Capability Pointer (NCP): This field is hardwired to 00h indicating the end of the capabilities linked list. | | 7:0 | RO
09h | Capability Identifier (CAP_ID): This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers. | ### 8.2.19 MGGC—Mirror of Device 0 GMCH Graphics Control Register B/D/F/Type: 0/2/1/PCI Address Offset: 52–53h Default Value: 0030h Access: RO Size: 16 bits | Dit | A | Decariation | |------|---------------------|--| | Bit | Access &
Default | Description | | 15:7 | RO
000h | Reserved | | 6:4 | RO
011b | Graphics Mode Select (GMS): This field is used to select the amount of Main Memory that is pre-allocated to support the Internal Graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled. | | | | 000 No memory pre-allocated. Device 2 (IGD) does not claim VGA cycles (memory and I/O), and the Sub-Class Code field within Device 2 function 0 Class Code register is 80. | | | | 001 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer. 010 = Reserved 011 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer. 100 = Reserved 101 = Reserved 110 = Reserved 111 = Reserved | | | | Note: This register is locked and becomes Read Only when the D_LCK bit in the SMRAM register is set. | | 3:2 | RO
00b | Reserved | | 1 | RO
0b | IGD VGA Disable (IVD): 0 = Enable. Device 2 (IGD) claims VGA memory and IO cycles, the Sub-Class Code within Device 2 Class Code register is 00. 1 = Disable. Device 2 (IGD) does not claim VGA cycles (memory and IO), and the Sub- Class Code field within Device 2 function 0 Class Code register is 80h. | | 0 | RO
0b | Reserved | ### 8.2.20 **DEVEN—Device Enable** B/D/F/Type: 0/2/1/PCI Address Offset: 54–57h Default Value: 000003DBh Access: RO Size: 32 bits This register allows enabling/disabling of PCI devices and functions that are within the GMCH. The following table bit definitions describes the behavior of all combinations of transactions to devices controlled by this register. | Bit | Access & Default | Description | |-------|------------------|---| | 31:10 | RO
000000000h | Reserved | | 9 | RO
1b | ME Function 3 (D3F3EN): If Device 3, Function 0 is disabled and hidden, then Device 3, Function 3 is also disabled and hidden independent of the state of this bit. | | | | 0 = Bus 0, Device 3, Function 3 is disabled and hidden | | | | 1 = Bus 0, Device 3, Function 3 is enabled and visible | | 8 | RO
1b | ME Function 2 (D3F2EN): If Device 3, Function 0 is disabled and hidden, then Device 3, Function 2 is also disabled and hidden independent of the state of this bit. | | | | 0 = Bus 0, Device 3, Function 2, is disabled and hidden | | | | 1 = Bus 0, Device 3, Function 2 is enabled and visible | | 7 | RO
1b | Reserved | | 6 | RO
1b | ME Function 0 (D3F0EN): If this GMCH does not have ME capability, then Device 3, Function 0 is disabled and hidden independent of the state of this bit. | | | | 0 = Bus 0, Device 3, Function 0 is disabled and hidden | | | | 1 = Bus 0, Device 3, Function 0 is enabled and visible. | | 5 | RO
0b | Reserved | | 4 | RO
1b | Internal Graphics Engine Function 1 (D2F1EN): If Device 2, Function 0 is disabled and hidden, then Device 2, Function 1 is also disabled and hidden independent of the state of this bit. | | | | 0 = Bus 0, Device 2, Function 1 is disabled and hidden | | | | 1 = Bus 0, Device 2, Function 1 is enabled and visible | | 3 | RO | Internal Graphics Engine Function 0 (D2F0EN): | | | 1b | 0 = Bus 0, Device 2, Function 0 is disabled and hidden | | | | 1 = Bus 0, Device 2, Function 0 is enabled and visible | | 2 | RO
0b | Reserved | | Bit | Access &
Default | Description | |-----|---------------------|---| | 1 | RO | 82Q965/82G965 MCH | | | 1b | PCI Express Port (D1EN): | | | | 0 = Bus 0, Device 1, Function 0 is disabled and hidden. | | | | 1 = Bus 0, Device 1, Function 0 is enabled and visible. | | | | 82Q963 GMCH | | | | Reserved | | 0 | RO
1b | Host Bridge (DOEN): Hardwired to 1. Bus 0, Device 0, Function 0 can not be disabled. | ### 8.2.21 SSRW—Mirror Function 0 Software Scratch Read/Write B/D/F/Type: 0/2/1/PCI Address Offset: 58–5Bh Default Value: 00000000h Access: RO Access: RO Size: 32 bits | Bit | Access &
Default | Description | |------|---------------------|--------------| | 31:0 | RO
00000000h | Reserved R/W | ### 8.2.22 BSM—Mirror of Function 0 Base of Stolen Memory B/D/F/Type: 0/2/1/PCI Address Offset: 5C-5Fh Default Value: 07800000h Access: RO Size: 32 bits Graphics stolen memory and TSEG are within DRAM space defined under TOLUD. From the top of low used DRAM, GMCH claims 1 to 64 MB of DRAM for internal graphics, if enabled. The base of stolen memory will always be below 4 GB. This is required to prevent aliasing between stolen range and the reclaim region. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:20 | RO
078h | Base of Stolen Memory (BSM): This register contains bits 31:20 of the base address of stolen DRAM memory. The host interface determines the base of Graphics Stolen memory by subtracting the graphics stolen memory size from TOLUD. See Device 0 TOLUD for more explanation. | | 19:0 | RO
00000h | Reserved | ## 8.2.23 HSRW—Mirror of Device 2, Function 0 Hardware Scratch Read-Write B/D/F/Type: 0/2/1/PCI Address Offset: 60-61h Default Value: 0000h Access: R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|-------------| | 15:0 | R/W
0000h | Reserved | ## 8.2.24 PMCAPID—Mirror Function 0 Power Management Capabilities ID B/D/F/Type: 0/2/1/PCI Address Offset: D0-D1h Default Value: 0001h Access: RO Size: 16 bits This register is a mirror of Function 0 with the same R/W attributes. The hardware implements a single physical register common to both Functions 0 and 1. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | RO
00h | Next Capability Pointer (NEXT_PTR): This field contains a pointer to next item in capabilities list. This is the final capability in the list and must be set to 00h. | | 7:0 | RO
01h | Capability Identifier (CAP_ID): SIG defines this ID is 01h for power management. | ## 8.2.25 PMCAP—Mirror Function 0 Power Management Capabilities B/D/F/Type: 0/2/1/PCI Address Offset: D2-D3h Default Value: 0022h Access: RO Size: 16 bits This register is a mirror of Function 0 with the same read/write attributes. The hardware implements a single physical register common to both Functions 0 and 1. | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 15:11 | RO
00h | PME Support (PMES): This field indicates the power states in which the IGD may assert PME#. Hardwired to 0 to indicate that the IGD does not assert the PME# signal. | | | 10 | RO
0b | D2 Support (D2): Hardwired to 0. The D2 power management state is not supported. | | | 9 | RO
0b | D1 Support (D1): Hardwired to 0 to indicate that the D1 power management state is not supported. | | | 8:6 | RO
000b | Reserved | | | 5 | RO
1b | Device Specific Initialization (DSI) : Hardwired to 1 to indicate that special initialization of the IGD is required before generic class device driver is to use it. | | | 4 | RO | Reserved | | | 3 | RO
0b | PME Clock (PMECLK): Hardwired to 0 to indicate IGD does not support PME# generation. | | | 2:0 | RO
010b | Version (VER): Hardwired to 010b to indicate that there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the PCI Power Management Interface Specification. | | ### 8.2.26 PMCS—Power Management Control/Status B/D/F/Type: 0/2/1/PCI Address Offset: D4-D5h Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 15 | RO
0b | PME Status (PMESTS): This bit is 0 to indicate that IGD does not support PME# generation from D3 (cold). | | | 14:13 | RO
00b | Data Scale (DSCALE): The IGD does
not support data register. This bit always returns 0 when read, writes have no effect. | | | 12:9 | RO
0h | Data Select (DATASEL): The IGD does not support data register. This bit always returns 0 when read, writes have no effect. | | | 8 | RO
0b | PME Enable (PME_EN): This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled. | | | 7:2 | RO
00h | Reserved | | | 1:0 | R/W
00b | Power State (PWRSTAT): This field indicates the current power state of the IGD and can be used to set the IGD into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. On a transition from D3-to-D0 the graphics controller is optionally reset to initial values. | | | | | 00 = D0 (Default)
01 = D1 (Not Supported)
10 = D2 (Not Supported)
11 = D3 | | ### 8.2.27 SWSMI—Mirror of Function 0 Software SMI B/D/F/Type: 0/2/1/PCI Address Offset: E0-E1h Default Value: 0000h Access: R/W Size: 16 bits As long as there is the potential that DVO port legacy drivers are in the system that expect this register at this address, Device 2, Function 0 address E0h–E1h must be reserved for this register. | Bit | Access & Default | Description | |------|------------------|--| | 15:8 | R/W
00h | Software Scratch Bits (SWSB): | | 7:1 | R/W
00h | Software Flag (SWF): This field indicates caller and SMI function desired, as well as return result. | | 0 | R/W
0b | GMCH Software SMI Event (GSSMIE): When Set, this bit will trigger an SMI. Software must write a 0 to clear this bit. | ### 9 Manageability Engine (ME) Subsystem Registers (Device 3, Functions 0,1,2) This chapter contains the Manageability Engine registers for BTS '06 Intel® AMT. # 9.1 Host Embedded Controller Interface (HECI1) Configuration Register Details (Device 3, Function 0) Table 9-1. HECI1 Register Address Map (Device 3, Function 0) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------------|--|--------------------------|------------------| | 00-03h | ID | Identifiers | 29848086h | RO | | 04-05h | CMD | Command | 0000h | RO, R/W | | 06-07h | STS | Device Status | 0010h | RO | | 08h | RID | Revision ID | See register description | RO | | 09-0Bh | CC | Class Code | 000000h | RO | | 0Ch | CLS | Cache Line Size | 00h | RO | | 0Dh | MLT | Master Latency Timer | 00h | RO | | 0Eh | HTYPE | Header Type | 80h | RO | | 10-17h | HECI_MBA
R | HECI MMIO Base Address | 0000000000
000004h | RO, R/W | | 2C-2Fh | SS | Sub System Identifiers | 00000000h | R/WO | | 34h | CAP | Capabilities Pointer | 50h | RO | | 3C-3Dh | INTR | Interrupt Information | 0100h | RO, R/W | | 3Eh | MGNT | Minimum Grant | 00h | RO | | 3Fh | MLAT | Maximum Latency | 00h | RO | | 40-43h | HFS | Host Firmware Status | 00000000h | RO | | 50-51h | PID | PCI Power Management Capability ID | 8C01h | RO | | 52-53h | PC | PCI Power Management Capabilities | C803h | RO | | 54-55h | PMCS | PCI Power Management Control And
Status | 0008h | R/WC,
RO, R/W | | 8C-8Dh | MID | Message Signaled Interrupt
Identifiers | 0005h | RO | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|--|------------------|---------| | 8E-8Fh | MC | Message Signaled Interrupt Message
Control | 0080h | RO, R/W | | 90-93h | MA | Message Signaled Interrupt Message
Address | 00000000h | R/W, RO | | 94-97h | MUA | Message Signaled Interrupt Upper
Address (Optional) | 00000000h | R/W | | 98-99h | MD | Message Signaled Interrupt Message
Data | 0000h | R/W | | A0h | HIDM | HECI Interrupt Delivery Mode | 00h | R/W | ### 9.1.1 ID—Identifiers B/D/F/Type: 0/3/0/PCI Address Offset: 0-3h Default Value: 29848086h Access: RO Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
2984h | Device ID (DID): This register indicates what device number assigned for the ME subsystem. | | 15:0 | RO
8086h | Vendor ID (VID): This field indicates Intel is the vendor, assigned by the PCI SIG. | ### 9.1.2 CMD—Command B/D/F/Type: 0/3/0/PCI Address Offset: 4-5h Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:11 | RO
00000b | Reserved | | 10 | R/W
0b | Interrupt Disable (ID): This bit disables this device from generating PCI line based interrupts. This bit does not have any effect on MSI operation. | | | | 0 = Enable
1 = Disable | | Bit | Access & Default | Description | |-----|------------------|--| | 9 | RO
0b | Fast Back-to-Back Enable (FBE): Not implemented, hardwired to 0. | | 8 | RO
0b | SERR# Enable (SEE): Not implemented, hardwired to 0. | | 7 | RO
0b | Wait Cycle Enable (WCC): Not implemented, hardwired to 0. | | 6 | RO
0b | Parity Error Response Enable (PEE): Not implemented, hardwired to 0. | | 5 | RO
0b | VGA Palette Snooping Enable (VGA): Not implemented, hardwired to 0. | | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Not implemented, hardwired to 0. | | 3 | RO
0b | Special Cycle Enable (SCE): Not implemented, hardwired to 0. | | 2 | R/W
0b | Bus Master Enable (BME): This bit controls the HECI host controller's ability to act as a system memory master for data transfers. 0 = Disable. HECI is blocked from generating MSI to the host | | | | processor. 1 = Enable | | | | When this bit is cleared, HECI bus master activity stops and any active DMA engines return to an idle condition. This bit is made visible to firmware through the H_PCI_CSR register, and changes to this bit may be configured by the H_PCI_CSR register to generate an ME MSI. | | | | Note that this bit does not block HECI accesses to ME-UMA (i.e., writes or reads to the host and ME circular buffers through the read window and write window registers still cause ME backbone transactions to ME-UMA). | | 1 | R/W
0b | Memory Space Enable (MSE): This bit controls access to the HECI host controller's memory mapped register space. | | | | 0 = Disable
1 = Enable | | 0 | RO
0b | I/O Space Enable (IOSE): Not implemented, hardwired to 0. | ### 9.1.3 STS—Device Status B/D/F/Type: 0/3/0/PCI Address Offset: 6-7h Default Value: 0010h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15 | RO
0b | Detected Parity Error (DPE): Not implemented, hardwired to 0. | | 14 | RO
0b | Signaled System Error (SSE): Not implemented, hardwired to 0. | | 13 | RO
0b | Received Master-Abort (RMA): Not implemented, hardwired to 0. | | 12 | RO
0b | Received Target Abort (RTA): Not implemented, hardwired to 0. | | 11 | RO
0b | Signaled Target-Abort (STA): Not implemented, hardwired to 0. | | 10:9 | RO
00b | DEVSEL# Timing (DEVT): These bits are hardwired to 00. | | 8 | RO
0b | Master Data Parity Error Detected (DPD): Not implemented, hardwired to 0. | | 7 | RO
0b | Fast Back-to-Back Capable (FBC): Not implemented, hardwired to 0. | | 6 | RO
0b | Reserved | | 5 | RO
0b | 66 MHz Capable (C66): Not implemented, hardwired to 0. | | 4 | RO
1b | Capabilities List (CL): Indicates the presence of a capabilities list, hardwired to 1. | | 3 | RO
0b | Interrupt Status (IS): Indicates the interrupt status of the device (1 = asserted). | | 2:0 | RO
000b | Reserved | ### 9.1.4 RID—Revision ID B/D/F/Type: 0/3/0/PCI Address Offset: 8h Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Revision ID (RID): This field indicates stepping of the HECI host controller. Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | ### 9.1.5 CC—Class Code B/D/F/Type: 0/3/0/PCI Address Offset: 9-Bh Default Value: 000000h Access: RO Size: 24 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 23:16 | RO
00h | Base Class Code (BCC): This field indicates the base class code of the HECI host controller device. | | 15:8 | RO
00h | Sub Class Code (SCC): This field indicates the sub class code of the HECI host controller device. | | 7:0 | RO
00h | Programming Interface (PI): This field indicates the programming interface of the HECI host controller device. | ### 9.1.6 CLS—Cache Line Size B/D/F/Type: 0/3/0/PCI Address Offset: Ch Default Value: 00h Access: RO Size: 8 bits | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
00h | Cache Line Size (CLS): Not implemented, hardwired to 0. | ### 9.1.7 MLT—Master Latency Timer B/D/F/Type: 0/3/0/PCI Address Offset: Dh Default Value: 00h Access: RO Size:
8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Master Latency Timer (MLT): Not implemented, hardwired to 0. | ### 9.1.8 HTYPE—Header Type B/D/F/Type: 0/3/0/PCI Address Offset: Eh Default Value: 80h Access: RO Size: 8 bits | Bit | Access &
Default | Description | |-----|---------------------|--| | 7 | RO
1b | Multi-Function Device (MFD): This bit indicates the HECI host controller is part of a multi-function device. | | 6:0 | RO
0000000b | Header Layout (HL): This field indicates that the HECI host controller uses a target device layout. | ### 9.1.9 HECI_MBAR—HECI MMIO Base Address B/D/F/Type: 0/3/0/PCI Address Offset: 10-17h Default Value: 0000000000000004h Access: RO, R/W Size: 64 bits This register allocates space for the HECI memory-mapped registers defined in Section 1.3.7. | Bit | Access & Default | Description | |------|-----------------------------|--| | 63:4 | R/W
00000000
0000000h | Base Address (BA): This field provides the base address of register memory space. | | 3 | RO
0b | Prefetchable (PF): This bit indicates that this range is not prefetchable | | 2:1 | RO
10b | Type (TP): This field indicates that this range can be mapped anywhere in 64-bit address space. Note that the (G)MCH only uses bits 35:4 of the base address field as the (G)MCH only decodes FSB address bits 35:4. | | 0 | RO
0b | Resource Type Indicator (RTE): This bit indicates a request for register memory space. | ### 9.1.10 SS—Sub System Identifiers B/D/F/Type: 0/3/0/PCI Address Offset: 2C-2Fh Default Value: 00000000h Access: R/WO Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:16 | R/WO
0000h | Subsystem ID (SSID): This field indicates the sub-system identifier. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This field can only be cleared by PLTRST#. | | 15:0 | R/WO
0000h | Subsystem Vendor ID (SSVID): This field indicates the subsystem vendor identifier. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This field can only be cleared by PLTRST#. | ### 9.1.11 CAP—Capabilities Pointer B/D/F/Type: 0/3/0/PCI Address Offset: 34h Default Value: 50h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
50h | Capability Pointer (CP): This field indicates the first capability pointer offset. It points to the PCI power management capability offset. | ### 9.1.12 INTR—Interrupt Information B/D/F/Type: 0/3/0/PCI Address Offset: 3C-3Dh Default Value: 0100h Access: RO, R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
01h | Interrupt Pin (IPIN): This field indicates the interrupt pin the HECI host controller uses. The value of 01h selects INTA# interrupt pin. Note: As HECI is an internal device in the GMCH, the INTA# pin is implemented as an INTA# message to the ICH8. | | 7:0 | R/W
00h | Interrupt Line (ILINE): Software written value to indicate which interrupt line (vector) the interrupt is connected to. No hardware action is taken on this register. | ### 9.1.13 MGNT—Minimum Grant B/D/F/Type: 0/3/0/PCI Address Offset: 3Eh Default Value: 00h Access: RO Size: 8 bits | В | it | Access & Default | Description | |----|----|------------------|---| | 7: | 0 | RO
00h | Grant (GNT): Not implemented, hardwired to 0. | ### 9.1.14 MLAT—Maximum Latency B/D/F/Type: 0/3/0/PCI Address Offset: 3Fh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Latency (LAT): Not implemented, hardwired to 0. | ### 9.1.15 HFS—Host Firmware Status B/D/F/Type: 0/3/0/PCI Address Offset: 40-43h Default Value: 00000000h Access: RO Size: 32 bits | Bit | Access &
Default | Description | | |------|---------------------|---|--| | 31:0 | RO
00000000h | Firmware Status Host Access (FS_HA): This field indicates current status of the firmware for the HECI controller. | | ### 9.1.16 PID—PCI Power Management Capability ID B/D/F/Type: 0/3/0/PCI Address Offset: 50-51h Default Value: 8C01h Access: RO Size: 16 bits | Bit | Access & Default | Description | | |------|------------------|---|--| | 15:8 | RO
8Ch | Next Capability (NEXT): This field indicates the location of the next capability item in the list. This is the Message Signaled Interrupts capability. | | | 7:0 | RO
01h | Cap ID (CID): This field indicates that this pointer is a PCI power management. | | ### 9.1.17 PC—PCI Power Management Capabilities B/D/F/Type: 0/3/0/PCI Address Offset: 52–53h Default Value: C803h Access: RO Size: 16 bits | Bit | Access &
Default | Description | | |-------|---------------------|---|--| | 15:11 | RO
11001b | PME_Support (PSUP): This field indicates the states that can generate PME#. | | | | | HECI can assert PME# from any D-state except D1 or D2 which are not supported by HECI. | | | 10 | RO
0b | D2_Support (D2S): The D2 state is not supported for the HECI host controller. | | | 9 | RO
0b | D1_Support (D1S): The D1 state is not supported for the HECI host controller. | | | 8:6 | RO
000b | Aux_Current (AUXC): Reports the maximum Suspend well current required when in the D3COLD state. | | | 5 | RO
0b | Device Specific Initialization (DSI): This bit indicates whether device-specific initialization is required. | | | 4 | RO
0b | Reserved | | | 3 | RO
0b | PME Clock (PMEC): This bit indicates that PCI clock is not required to generate PME#. | | | 2:0 | RO
011b | Version (VS): This bit indicates support for Revision 1.2 of the PCI Power Management Specification. | | ### 9.1.18 PMCS—PCI Power Management Control And Status B/D/F/Type: 0/3/0/PCI Address Offset: 54–55h Default Value: 0008h Access: R/WC, RO, R/W Size: 16 bits | Bit | Access & Default | Description | | |------|------------------|--|--| | 15 | R/WC
0b | PME Status (PMES): The PME Status bit in HECI space can be set to 1 by FW performing a write into AUX register to set PMES. | | | | | This bit is cleared by host processor writing a 1 to it. | | | | | FW cannot clear this bit. | | | | | Host processor writes with value 0 have no effect on this bit. | | | | | This bit is reset to 0 by MRST# | | | 14:9 | RO
000000b | Reserved | | | 8 | R/W
0b | PME Enable (PMEE): This read/write bit is controlled by host SW. It does not directly have an effect on PME events. This bit is reset to 0 by MRST#. | | | | | 0 = Disable
1 = Enable | | | 7:4 | RO
0000b | Reserved | | | 3 | RO
1b | No_Soft_Reset (NSR): This bit indicates that when the HECI host controller is transitioning from D3hot to D0 due to power state command; it does not perform an internal reset. | | | | | 0 = No soft reset
1 = Soft reset | | | 2 | RO
0b | Reserved | | | 1:0 | R/W
00b | Power State (PS): This field is used both to determine the current power state of the HECI host controller and to set a new power state. The values are: | | | | | 00 = D0 state | | | | | 11 = D3HOT state | | ### 9.1.19 MID—Message Signaled Interrupt Identifiers B/D/F/Type: 0/3/0/PCI Address Offset: 8C-8Dh Default Value: 0005h Access: RO Size: 16 bits | Bit | Access & Default | Description | | |------|------------------|--|--| | 15:8 | RO
00h | Next Pointer (NEXT): This field indicates the next item in the list. This can be other capability pointers (such as PCI-Express) or it can be the last item in the list. | | | 7:0 | RO
05h | Capability ID (CID): Capabilities ID indicates MSI. | | ### 9.1.20 MC—Message Signaled Interrupt Message Control B/D/F/Type: 0/3/0/PCI Address Offset: 8E-8Fh Default Value: 0080h Access: RO, R/W Size: 16 bits | Bit | Access & Default | Description | | |------|------------------|---|--| | 15:8 | RO
00h | Reserved | | | 7 | RO
1b | 64 Bit Address Capable (C64): This bit indicates whether capable of generating 64-bit messages. | | | 6:4 |
RO
000b | Multiple Message Enable (MME): Not implemented, hardwired to 0. | | | 3:1 | RO
000b | Multiple Message Capable (MMC): Not implemented, hardwired to 0. | | | 0 | R/W
0b | MSI Enable (MSIE): If set, MSI is enabled and traditional interrupt pins are not used to generate interrupts. | | | | | 0 = Disable
1 = Enable | | ### 9.1.21 MA—Message Signaled Interrupt Message Address B/D/F/Type: 0/3/0/PCI Address Offset: 90–93h Default Value: 00000000h Access: R/W, RO Size: 32 bits | Bit | Access &
Default | Description | | |------|---------------------|--|--| | 31:2 | R/W
00000000h | Address (ADDR): This field indicates the lower 32 bits of the system specified message address; always DW aligned. | | | 1:0 | RO
00b | Reserved | | ### 9.1.22 MD—Message Signaled Interrupt Message Data B/D/F/Type: 0/3/0/PCI Address Offset: 98–99h Default Value: 0000h Access: R/W Size: 16 bits | Bit | Access &
Default | Description | | |------|---------------------|--|--| | 15:0 | R/W
0000h | Data (Data): This 16-bit field is programmed by system software if MSI is enabled. Its content is driven onto the FSB during the data phase of the MSI memory write transaction. | | ### 9.1.23 HIDM—HECI Interrupt Delivery Mode B/D/F/Type: 0/3/0/PCI Address Offset: A0h Default Value: 00h Access: R/W Size: 8 bits BIOS Optimal Default 00h This register is used to select interrupt delivery mechanism for HECI to Host processor interrupts. | Bit | Access & Default | Description | | |-----|------------------|--|--| | 7:2 | RO
0h | Reserved | | | 1:0 | R/W
00b | HECI Interrupt Delivery Mode (HIDM): These bits control what type of interrupt the HECI will send.: 00 = Generate Legacy or MSI interrupt 01 = Generate SCI 10 = Generate SMI 11 = Reserved | | # 9.2 HECI2 Configuration Register Details (Device 3, Function 1)) (Intel® 82Q965 GMCH Only) Table 9-2. HECI2 Register Address Map (Device 3, Function 1) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|-----------|--|--------------------------|------------------| | 00-03h | ID | Identifiers | 29858086h | RO | | 04-05h | CMD | Command | 0000h | RO, R/W | | 06-07h | STS | Device Status | 0010h | RO | | 08h | RID | Revision ID | See register description | RO | | 09-0Bh | CC | Class Code | 000000h | RO | | 0Ch | CLS | Cache Line Size | 00h | RO | | 0Dh | MLT | Master Latency Timer | 00h | RO | | 0Eh | HTYPE | Header Type | 80h | RO | | 0Fh | BIST | Built In Self Test | 00h | RO | | 10-17h | HECI_MBAR | HECI MMIO Base Address | 000000000
0000004h | RO, R/W | | 2C-2Fh | SS | Sub System Identifiers | 00000000h | R/WO | | 34h | CAP | Capabilities Pointer | 50h | RO | | 3C-3Dh | INTR | Interrupt Information | 0100h | R/W, RO | | 3Eh | MGNT | Minimum Grant | 00h | RO | | 3Fh | MLAT | Maximum Latency | 00h | RO | | 40-43h | HFS | Host Firmware Status | 00000000h | RO | | 50-51h | PID | PCI Power Management Capability ID | 8C01h | RO | | 52-53h | PC | PCI Power Management
Capabilities | C803h | RO | | 54-55h | PMCS | PCI Power Management Control
And Status | 0008h | R/W,
R/WC, RO | | 8C-8Dh | MID | Message Signaled Interrupt
Identifiers | 0005h | RO | | 8E-8Fh | МС | Message Signaled Interrupt
Message Control | 0080h | RO, R/W | | 90-93h | MA | Message Signaled Interrupt
Message Address | 00000000h | RO, R/W | | 94-97h | MUA | Message Signaled Interrupt Upper
Address (Optional) | 00000000h | R/W | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|--|------------------|--------| | 98-99h | MD | Message Signaled Interrupt
Message Data | 0000h | R/W | | A0 | HIDM | HECI Interrupt Delivery Mode | 00h | R/W | ### 9.2.1 ID—Identifiers B/D/F/Type: 0/3/1/PCI Address Offset: 0-3h Default Value: 29858086h Access: RO Access: RO Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
2985h | Device ID (DID): This field indicates what device number assigned by Intel. | | 15:0 | RO
8086h | Vendor ID (VID): This field indicates Intel is the vendor, assigned by the PCI SIG. | ### 9.2.2 CMD—Command B/D/F/Type: 0/3/1/PCI Address Offset: 4-5h Default Value: 0000h Access: RO, R/W Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:11 | RO
00000b | RSVD (RSVD): Reserved | | 10 | R/W
0b | Interrupt Disable (ID): This bit disables this device from generating PCI line based interrupts. This bit does not have any effect on MSI operation. | | | | 0 = Enable
1 = Disable | | 9 | RO
0b | Fast Back-to-Back Enable (FBE): Not implemented, hardwired to 0. | | 8 | RO
0b | SERR# Enable (SEE): Not implemented, hardwired to 0. | | 7 | RO
0b | Wait Cycle Enable (WCC): Not implemented, hardwired to 0. | | 6 | RO
0b | Parity Error Response Enable (PEE): Not implemented, hardwired to 0. | | Bit | Access & Default | Description | |-----|------------------|--| | 5 | RO
0b | VGA Palette Snooping Enable (VGA): Not implemented, hardwired to 0 | | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Not implemented, hardwired to 0. | | 3 | RO
0b | Special Cycle Enable (SCE): Not implemented, hardwired to 0. | | 2 | R/W
0b | Bus Master Enable (BME): This bit controls the HECI host controller's ability to act as a system memory master for data transfers. | | | | 0 = Disable
1 = Enable | | | | When this bit is cleared, HECI bus master activity stops and any active DMA engines return to an idle condition. This bit is made visible to firmware through the H_PCI_CSR register, and changes to this bit may be configured by the H_PCI_CSR register to generate an ME MSI. | | | | When this bit is 0, HECI is blocked from generating MSI to the host processor. | | | | Note: This bit does not block HECI accesses to ME-UMA (i.e., writes or reads to the host and ME circular buffers through the read window and write window registers still cause ME backbone transactions to ME-UMA). | | 1 | R/W
0b | Memory Space Enable (MSE): This bit controls access to the HECI host controller's memory mapped register space. | | | | 0 = Disable
1 = Enable | | 0 | RO
0b | I/O Space Enable (IOSE): Not implemented, hardwired to 0. | #### 9.2.3 STS—Device Status B/D/F/Type: 0/3/1/PCI Address Offset: 6-7h Default Value: 0010h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15 | RO
0b | Detected Parity Error (DPE): Not implemented, hardwired to 0. | | 14 | RO
0b | Signaled System Error (SSE): Not implemented, hardwired to 0. | | 13 | RO
0b | Received Master-Abort (RMA): Not implemented, hardwired to 0. | | 12 | RO | Received Target Abort (RTA): Not implemented, hardwired to 0. | | 11 | RO
0b | Signaled Target-Abort (STA): Not implemented, hardwired to 0. | | 10:9 | RO
00b | DEVSEL# Timing (DEVT) : These bits are hardwired to 00. | | 8 | RO
0b | Master Data Parity Error Detected (DPD): Not implemented, hardwired to 0. | | 7 | RO
0b | Fast Back-to-Back Capable (FBC): Not implemented, hardwired to 0. | | 6 | RO
0b | Reserved | | 5 | RO
0b | 66 MHz Capable (C66): Not implemented, hardwired to 0. | | 4 | RO
1b | Capabilities List (CL): This bit indicates the presence of a capabilities list, hardwired to 1. | | 3 | RO
0b | Interrupt Status (IS): This bit indicates the interrupt status of the device | | | | 0 = Not asserted
1 = Asserted | | 2:0 | RO
000b | Reserved | #### 9.2.4 RID—Revision ID B/D/F/Type: 0/3/1/PCI Address Offset: 8h Default Value: See table below Access: RO Size: 8 bits | В | it | Access & Default | Description | |---|----|------------------|--| | 7 | :0 | RO
00h | Revision ID (RID): This field indicates stepping of the HECI host controller. Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | #### 9.2.5 CC—Class Code B/D/F/Type: 0/3/1/PCI Address Offset: 9-Bh Default Value: 000000h Access: RO Size: 24 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 23:16 | RO
00h | Base Class Code (BCC): This field indicates the base class code of the HECI host controller device. | | 15:8 | RO
00h | Sub Class Code (SCC): This field indicates the sub class code of the HECI host controller device. | | 7:0 | RO
00h | Programming Interface (PI): This field indicates the programming interface of the HECI
host controller device. | #### 9.2.6 CLS—Cache Line Size B/D/F/Type: 0/3/1/PCI Address Offset: Ch Default Value: 00h Access: RO Size: 8 bits | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
00h | Cache Line Size (CLS): Not implemented, hardwired to 0. | #### 9.2.7 MLT—Master Latency Timer B/D/F/Type: 0/3/1/PCI Address Offset: Dh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Master Latency Timer (MLT): Not implemented, hardwired to 0. | #### 9.2.8 HTYPE—Header Type B/D/F/Type: 0/3/1/PCI Address Offset: Eh Default Value: 80h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|--| | 7 | RO
1b | Multi-Function Device (MFD): This bit indicates the HECI host controller is part of a multi-function device. | | 6:0 | RO
0000000b | Header Layout (HL): This field indicates that the HECI host controller uses a target device layout. | #### 9.2.9 BIST—Built In Self Test B/D/F/Type: 0/3/1/PCI Address Offset: Fh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7 | RO
0b | BIST Capable (BC): Not implemented, hardwired to 0. | | 6:0 | RO
0000000b | Reserved | #### 9.2.10 HECI_MBAR—HECI MMIO Base Address B/D/F/Type: 0/3/1/PCI Address Offset: 10-17h Default Value: 0000000000000004h Access: RO, R/W Size: 64 bits This register allocates space for the HECI memory mapped registers. | Bit | Access &
Default | Description | |------|-----------------------------|--| | 63:4 | R/W
00000000
0000000h | Base Address (BA): This field provides the base address of register memory space. | | 3 | RO
0b | Prefetchable (PF): This bit indicates that this range is not prefetchable | | 2:1 | RO
10b | Type (TP): This field indicates that this range can be mapped anywhere in 32-bit address space. | | 0 | RO
0b | Resource Type Indicator (RTE): This bit indicates a request for register memory space. | #### 9.2.11 SS—Sub System Identifiers B/D/F/Type: 0/3/1/PCI Address Offset: 2C-2Fh Default Value: 00000000h Access: R/WO Size: 32 bits | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:16 | R/WO
0000h | Subsystem ID (SSID): This field indicates the sub-system identifier. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This field can only be cleared by PLTRST#. | | 15:0 | R/WO
0000h | Subsystem Vendor ID (SSVID): This field indicates the subsystem vendor identifier. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read Only. This field can only be cleared by PLTRST#. | #### 9.2.12 CAP—Capabilities Pointer B/D/F/Type: 0/3/1/PCI Address Offset: 34h Default Value: 50h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
50h | Capability Pointer (CP): This field indicates the first capability pointer offset. It points to the PCI power management capability offset. | #### 9.2.13 INTR—Interrupt Information B/D/F/Type: 0/3/1/PCI Address Offset: 3C-3Dh Default Value: 0100h Access: R/W, RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
01h | Interrupt Pin (IPIN): This field indicates the interrupt pin the HECI host controller uses. | | | | 01h = INTA# interrupt pin. | | | | NOTE: As HECI is an internal device in the GMCH, the INTA# pin is implemented as an INTA# message to the ICH8. | | 7:0 | R/W
00h | Interrupt Line (ILINE): This field is a software written value that indicates which interrupt line (vector) the interrupt is connected. No hardware action is taken on this register. | #### 9.2.14 MGNT—Minimum Grant B/D/F/Type: 0/3/1/PCI Address Offset: 3Eh Default Value: 00h Access: RO Size: 8 bits | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Grant (GNT): Not implemented, hardwired to 0. | #### 9.2.15 MLAT—Maximum Latency B/D/F/Type: 0/3/1/PCI Address Offset: 3Fh Default Value: 00h Access: RO Size: 8 bits | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
00h | Latency (LAT): Not implemented, hardwired to 0. | #### 9.2.16 HFS—Host Firmware Status B/D/F/Type: 0/3/1/PCI Address Offset: 40-43h Default Value: 00000000h Access: RO Size: 32 bits | Bit | Access &
Default | Description | |------|---------------------|--| | 31:0 | RO
00000000h | Firmware Status Host Access (FS_HA): This field indicates current status of the firmware for the HECI controller. This field is the host's read only access to the FS field in the ME Firmware Status AUX register. | #### 9.2.17 PID—PCI Power Management Capability ID B/D/F/Type: 0/3/1/PCI Address Offset: 50-51h Default Value: 8C01h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
8Ch | Next Capability (NEXT): This field indicates the location of the next capability item in the list. This is the Message Signaled Interrupts capability. | | 7:0 | RO
01h | Cap ID (CID): This field indicates that this pointer is a PCI power management. | #### 9.2.18 PC—PCI Power Management Capabilities B/D/F/Type: 0/3/1/PCI Address Offset: 52–53h Default Value: C803h Access: RO Size: 16 bits | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:11 | RO
11001b | PME_Support (PSUP): This field indicates the states that can generate PME#. HECI can assert PME# from any D-state except D1 or D2 which are not supported by HECI. | | 10 | RO
0b | D2_Support (D2S) : The D2 state is not supported for the HECI host controller. | | 9 | RO
0b | D1_Support (D1S) : The D1 state is not supported for the HECI host controller. | | 8:6 | RO
000b | Aux_Current (AUXC): This field reports the maximum Suspend well current required when in the D3 _{COLD} state. PME# from D3 _{COLD} is not supported; therefore, this field is 000b. | | 5 | RO
0b | Device Specific Initialization (DSI): This bit indicates whether device-specific initialization is required. | | 4 | RO
0b | RSVD (RSVD): Reserved | | 3 | RO
0b | PME Clock (PMEC): This bit indicates that PCI clock is not required to generate PME#. | | 2:0 | RO
011b | Version (VS): This field indicates support for Revision 1.2 of the PCI Power Management Specification. | #### 9.2.19 PMCS—PCI Power Management Control and Status B/D/F/Type: 0/3/1/PCI Address Offset: 54–55h Default Value: 0008h Access: R/W, R/WC, RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15 | R/WC
0b | PME Status (PMES): 0 = This bit is cleared by host processor writing a 1 to it. 1 = The PME Status bit in HECI space can be set to 1 by ARC FW | | | | performing a write into AUX register to set PMES. Notes: | | | | ARC cannot clear this bit. | | | | Host processor writes with value 0 have no effect on this bit. This bit is reset to 0 by MRST#. | | 14:9 | RO | Reserved. | | 14:9 | 000000b | Reserved. | | 8 | R/W
0b | PME Enable (PMEE): This bit is read/write, under control of host SW. It does not directly have an effect on PME events. However, this bit is shadowed into AUX space so ARC FW can monitor it. The ARC FW is responsible for ensuring that FW does not cause the PME-S bit to transition to 1 while the PMEE bit is 0, indicating that host SW had disabled PME. This bit is reset to 0 by MRST# | | 7:4 | RO
0000b | Reserved | | 3 | RO
1b | No_Soft_Reset (NSR): | | | 10 | 1 = This bit indicates that when the HECI host controller is transitioning from D3hot-to-D0 due to power state command, it does not perform an internal reset. Configuration Context is preserved. Upon transition from the D3hot to the D0 Initialized state, no additional operating system intervention
is required to preserve Configuration Context beyond writing the PowerState bits. | | | | 0 = Devices do perform an internal reset upon transitioning from D3hot to D0 via software control of the PowerState bits. Configuration Context is lost when performing the soft reset. Upon transition from the D3hot to the D0 state, full reinitialization sequence is needed to return the device to D0 Initialized. | | 2 | RO
0b | Reserved | #### Manageability Engine (ME) Subsystem Registers (Device 3, Functions 0,1,2) | Bit | Access & Default | Description | |-----|------------------|---| | 1:0 | R/W
00b | Power State (PS): This field is used both to determine the current power state of the HECI host controller and to set a new power state. | | | | 00 = D0 state
01 = Reserved
10 = Reserved
11 = D3HOT state | | | | The D1 and D2 states are not supported for this HECI host controller. When in the D3HOT state, the HBA's configuration space is available, but the register memory spaces are not. Additionally, interrupts are blocked. This field is visible to firmware through the H_PCI_CSR register, and changes to this field may be configured by the H_PCI_CSR register to generate an ME MSI. | #### 9.2.20 MID—Message Signaled Interrupt Identifiers B/D/F/Type: 0/3/1/PCI Address Offset: 8C-8Dh Default Value: 0005h Access: RO Size: 16 bits | Bit | Access &
Default | Description | |------|---------------------|--| | 15:8 | RO
00h | Next Pointer (NEXT): This field indicates the next item in the list. This can be other capability pointers (such as PCI-X or PCI-Express) or it can be the last item in the list. | | 7:0 | RO
05h | Capability ID (CID): Capabilities ID indicates MSI. | #### 9.2.21 MC—Message Signaled Interrupt Message Control B/D/F/Type: 0/3/1/PCI Address Offset: 8E-8Fh Default Value: 0080h Access: RO, R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
00h | RSVD (RSVD): Reserved | | 7 | RO
1b | 64 Bit Address Capable (C64): This field indicates whether capable of generating 64-bit messages. | | 6:4 | RO
000b | Multiple Message Enable (MME): Not implemented, hardwired to 0. | | 3:1 | RO
000b | Multiple Message Capable (MMC): Not implemented, hardwired to 0. | | 0 | R/W
0b | MSI Enable (MSIE): If set, MSI is enabled and traditional interrupt pins are not used to generate interrupts. | | | | 0 = Disable
1 = Enable | #### 9.2.22 MA—Message Signaled Interrupt Message Address B/D/F/Type: 0/3/1/PCI Address Offset: 90–93h Default Value: 00000000h Access: RO, R/W Size: 32 bits | Bit | Access &
Default | Description | |------|---------------------|--| | 31:2 | R/W
00000000h | Address (ADDR): This field indicates the lower 32 bits of the system specified message address; always DW aligned. | | 1:0 | RO
00b | Reserved | ### 9.2.23 MUA—Message Signaled Interrupt Upper Address (Optional) B/D/F/Type: 0/3/1/PCI Address Offset: 94–97h Default Value: 00000000h Access: R/W Size: 32 bits | Bit | Access &
Default | Description | |------|---------------------|---| | 31:0 | R/W
00000000h | Upper Address (UADDR): This field indicates the upper 32 bits of the system specified message address. This register is optional and only implemented if MC.C64=1. | #### 9.2.24 MD—Message Signaled Interrupt Message Data B/D/F/Type: 0/3/1/PCI Address Offset: 98–99h Default Value: 0000h Access: R/W Size: 16 bits | Bit | Access & Default | Description | |------|------------------|--| | 15:0 | R/W
0000h | Data (Data): This 16-bit field is programmed by system software if MSI is enabled. Its content is driven onto the FSB during the data phase of the MSI memory write transaction. | #### 9.2.25 HIDM—HECI Interrupt Delivery Mode B/D/F/Type: 0/3/1/PCI Address Offset: A0h Default Value: 00h Access: R/W Size: 8 bits BIOS Optimal Default 00h This register is used to select interrupt delivery mechanism for HECI-to-Host processor interrupts. | Bit | Access & Default | Description | |-----|------------------|--| | 7:2 | RO
0h | Reserved | | 1:0 | R/W
00b | HECI Interrupt Delivery Mode (HIDM) : These bits control what type of interrupt the HECI will send when ARC writes to set the M_IG bit in AUX space. They are interpreted as follows: | | | | 00 = Generate Legacy or MSI interrupt | | | | 01 = Generate SCI | | | | 10 = Generate SMI | ## 9.3 PT IDER Configuration Register Details (Device 3, Function 2) (Intel® 82Q965 GMCH Only) Table 9-3. PT IDER Register Address Map (Device 3, Function 2) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|---|--------------------------------|------------------| | 00-03h | ID | Identification | 29868086h | RO | | 04-05h | CMD | Command Register | 0000h | RO, R/W | | 06-07h | STS | Device Status | 00B0h | RO | | 08h | RID | Revision ID | See
register
description | RO | | 09-0Bh | CC | Class Codes | 010185h | RO | | 0Ch | CLS | Cache Line Size | 00h | RO | | 0Dh | MLT | Master Latency Timer | 00h | RO | | 0Eh | HTYPE | Header Type (Not implemented) | Undefined | Undefined | | 10-13h | PCMDBA | Primary Command Block IO Bar | 00000001h | RO, R/W | | 14-17h | PCTLBA | Primary Control Block Base Address | 00000001h | RO, R/W | | 18-1Bh | SCMDBA | Secondary Command Block Base Address | 00000001h | RO, R/W | | 1C-1Fh | SCTLBA | Secondary Control Block base Address | 00000001h | RO, R/W | | 20-23h | LBAR | Legacy Bus Master Base Address | 00000001h | RO, R/W | | 24-27h | RSVD | Reserved | 00000000h | RO | | 2C-2Fh | SS | Sub System Identifiers | 00008086h | R/WO | | 30-33h | EROM | Expansion ROM Base Address | 00000000h | RO | | 34h | CAP | Capabilities Pointer | C8h | RO | | 3C-3Dh | INTR | Interrupt Information | 0300h | R/W, RO | | 3Eh | MGNT | Minimum Grant | 00h | RO | | 3Fh | MLAT | Maximum Latency | 00h | RO | | C8-C9h | PID | PCI Power Management Capability ID | D001h | RO | | CA-CBh | PC | PCI Power Management Capabilities | 0023h | RO | | CC-CFh | PMCS | PCI Power Management Control and
Status | 00000000h | RO, RO/V,
R/W | | D0-D1h | MID | Message Signaled Interrupt Capability ID | 0005h | RO | | D2-D3h | MC | Message Signaled Interrupt Message
Control | 0080h | RO, R/W | | D4-D7h | MA | Message Signaled Interrupt Message
Address | 00000000h | RO, R/W | | D8-DBh | MAU | Message Signaled Interrupt Message
Upper Address | 00000000h | RO, R/W | | DC-DDh | MD | Message Signaled Interrupt Message
Data | 0000h | R/W | #### 9.3.1 ID—Identification B/D/F/Type: 0/3/2/PCI Address Offset: 0-3h Default Value: 29868086h Access: RO Size: 32 bits This register, combined with the Device Identification register, uniquely identifies any PCI device. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
2986h | Device ID (DID): This field is assigned by Manufacturer; identifies the type of Device | | 15:0 | RO
8086h | Vendor ID (VID): This field indicates the company vendor as Intel | #### 9.3.2 CMD—Command Register B/D/F/Type: 0/3/2/PCI Address Offset: 4-5h Default Value: 0000h Access: RO, R/W Size: 16 bits This register provides basic control over the device's ability to respond to and perform Host system related accesses. Note: Reset: Host System reset or D3->D0 transition of function. | Bit | Access &
Default | Description | |-------|---------------------|--| | 15:11 | RO
00h | Reserved | | 10 | R/W
0b | Interrupt Disable (ID): This bit disables pin-based INTx# interrupts. This bit has no effect on MSI operation. | | | | 0 = Enable. Internal INTx# messages are generated if there is an interrupt and MSI is not enabled. | | | | 1 = Disable. Internal INTx# messages will not be generated. | | 9 | RO
0b | Fast back-to-back enable (FBE): Hardwired to 0. | | 8 | RO
0b | SERR# Enable (SEE): Hardwired to 0. The PT function never generates a SERR#. | | 7 | RO
0b | Wait Cycle Enable (WCC): Hardwired to 0. | | 6 | RO
0b | Parity Error Response Enable (PEE): Hardwired to 0. No Parity detection in PT functions. | | Bit | Access &
Default | Description | |-----|---------------------|---| | 5 | RO
0b | VGA Palette Snooping Enable (VGA):
Reserved | | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Reserved | | 3 | RO
0b | Special Cycle enable (SCE): Reserved | | 2 | R/W
0b | Bus Master Enable (BME): This bit controls the PT function's ability to act as a master for data transfers. This bit does not impact the generation of completions for split transaction commands. | | | | 0 = Disable
1 = Enable | | 1 | RO
0b | Memory Space Enable (MSE): Hardwired to 0. PT function does not contain target memory space. | | 0 | R/W
0b | I/O Space Enable (IOSE): This bit controls access to the PT function's target I/O space | | | | 0 = Disable
1 = Enable | #### 9.3.3 STS—Device Status B/D/F/Type: 0/3/2/PCI Address Offset: 6-7h Default Value: 00B0h Access: RO Size: 16 bits This register is used by the function to reflect its PCI status to the host for the functionality that it implements. | Bit | Access & Default | Description | |------|------------------|--| | 15 | RO
0b | Detected Parity Error (DPE): Reserved. No parity error on its interface | | 14 | RO
0b | Signaled System Error (SSE): Reserved. The PT function will never generate a SERR# | | 13 | RO
0b | Received Master-Abort Status (RMA): Reserved | | 12 | RO
0b | Received Target-Abort Status (RTA): Reserved | | 11 | RO
0b | Signaled Target-Abort Status (STA): Reserved. The PT Function will never generate a target abort. | | 10:9 | RO
00b | DEVSEL# Timing Status (DEVT): This bit controls the device select time for the PT function's PCI interface | | 8 | RO
0b | Master Data Parity Error Detected) (DPD): Hardwired to 0. PT function (IDER), as a master, does not detect a parity error. | | Bit | Access & Default | Description | |-----|------------------|--| | 7 | RO
1b | Fast back to back capable (RSVD): Reserved | | 6 | RO
0b | Reserved | | 5 | RO
1b | 66 MHz capable: Reserved | | 4 | RO
1b | Capabilities List (CL): This bit indicates that there is a capabilities pointer implemented in the device. | | 3 | RO
0b | Interrupt Status (IS): This bit reflects the state of the interrupt in the function. Setting of the Interrupt Disable bit to 1 has no affect on this bit. Only when this bit is a 1 and ID bit is 0 is the INTC interrupt asserted to the Host | | 2:0 | RO
000b | Reserved | #### 9.3.4 RID—Revision ID B/D/F/Type: 0/3/2/PCI Address Offset: 8h Default Value: 00h Access: RO Size: 8 bits This register specifies a device specific revision. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Revision ID (RID): Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | #### 9.3.5 CC—Class Codes B/D/F/Type: 0/3/2/PCI Address Offset: 9-Bh Default Value: 010185h Access: RO Size: 24 bits This register identifies the basic functionality of the device is IDE mass storage. | Bit | Access & Default | Description | |------|------------------|---| | 23:0 | RO
010185h | Programming Interface BCC SCC (PI BCC SCC): | #### 9.3.6 CLS—Cache Line Size B/D/F/Type: 0/3/2/PCI Address Offset: Ch Default Value: 00h Access: RO Size: 8 bits This register defines the system cache line size in DWord increments. This is mandatory for master that use the Memory-Write and Invalidate command. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Cache Line Size (CLS): All writes to system memory are Memory Writes. | #### 9.3.7 MLT—Master Latency Timer B/D/F/Type: 0/3/2/PCI Address Offset: Dh Default Value: 00h Access: RO Size: 8 bits This register defines the minimum number of PCI clocks the bus master can retain ownership of the bus whenever it initiates new transactions. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
00h | Master Latency Timer (MLT): Not implemented since the function is in the GMCH | #### 9.3.8 HTYPE—Header Type B/D/F/Type: 0/3/2/PCI Address Offset: Eh Default Value: Access: Undefined Size: 8 bits This register is Not implemented. #### 9.3.9 PCMDBA—Primary Command Block IO Bar B/D/F/Type: 0/3/2/PCI Address Offset: 10-13h Default Value: 00000001h Access: RO, R/W Size: 32 bits This 8-byte I/O space is used in Native Mode for the Primary Controller's Command Block. Reset: Host system Reset or D3->D0 transition of the function. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
0000h | Reserved | | 15:3 | R/W
0000h | Base Address (BAR): This field indicates the base address of the BAR0 I/O space (8 consecutive I/O locations) | | 2:1 | RO
00b | Reserved | | 0 | RO
1b | Resource Type Indicator (RTE): Hardwired to 1 indicating a request for I/O space | #### 9.3.10 PCTLBA—Primary Control Block Base Address B/D/F/Type: 0/3/2/PCI Address Offset: 14–17h Default Value: 00000001h Access: RO, R/W Size: 32 bits This 4-byte I/O space is used in Native Mode for the Primary Controller's Control Block. Reset: Host system Reset or D3->D0 transition of the function. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:16 | RO
0000h | Reserved | | 15:2 | R/W
0000h | Base Address (BAR): This field indicates the Base Address of the BAR1 I/O space (4 consecutive I/O locations). | | 1 | RO
0b | Reserved | | 0 | RO
1b | Resource Type Indicator (RTE): This bit indicates a request for I/O space. | #### 9.3.11 SCMDBA—Secondary Command Block Base Address B/D/F/Type: 0/3/2/PCI Address Offset: 18–1Bh Default Value: 00000001h Access: RO, R/W Size: 32 bits This 8-byte I/O space is used in Native Mode for the secondary Controller's Command Block. Secondary Channel is not implemented and reads return 7F7F7F7Fh and all writes are ignored. Reset: Host System Reset or D3->D0 transition of the function. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
0000h | Reserved | | 15:3 | R/W
0000h | Base Address (BAR): This field indicates the Base Address of the I/O space (8 consecutive I/O locations). | | 2:1 | RO
00b | Reserved | | 0 | RO
1b | Resource Type Indicator (RTE): This bit indicates a request for I/O space. | #### 9.3.12 SCTLBA—Secondary Control Block base Address B/D/F/Type: 0/3/2/PCI Address Offset: 1C-1Fh Default Value: 00000001h Access: RO, R/W Size: 32 bits This 4-byte I/O space is used in Native Mode for Secondary Controller's Control block. Secondary Channel is not implemented and reads return 7F7F7F7F and all writes are dropped. Reset: Host System Reset or D3->D0 transition | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | RO
0000h | Reserved | | 15:2 | R/W
0000h | Base Address (BAR): This field indicates the Base Address of the I/O space (4 consecutive I/O locations). | | 1 | RO
0b | Reserved | | 0 | RO
1b | Resource Type Indicator (RTE): This bit indicates a request for I/O space. | #### 9.3.13 LBAR—Legacy Bus Master Base Address B/D/F/Type: 0/3/2/PCI Address Offset: 20–23h Default Value: 00000001h Access: RO, R/W Size: 32 bits This Bar is used to allocate I/O space for the SFF-8038i mode of operation (aka Bus Master IDE). Reset: Host system Reset or D3->D0 transition. | Bit | Access & Default | Description | |-------|------------------|---| | 31:16 | RO
0000h | Reserved | | 15:4 | R/W
000h | Base Address (BA): This field indicates Base Address of the I/O space (16 consecutive I/O locations). | | 3:1 | RO
000b | Reserved | | 0 | RO
1b | Resource Type Indicator (RTE): This bit indicates a request for I/O space. | #### 9.3.14 SS—Sub System Identifiers B/D/F/Type: 0/3/2/PCI Address Offset: 2C-2Fh Default Value: 00008086h Access: R/WO Size: 32 bits These registers are used to uniquely identify the add-in card or the subsystem that the device resides within. Reset: Host System Reset. | Bit | Access &
Default | Description | |-------|---------------------|---| | 31:16 | R/WO
0000h | Subsystem ID (SSID): This field is written by BIOS. No hardware action taken on this value. | | 15:0 | R/WO
8086h | Subsystem Vendor ID (SSVID): This field is written by BIOS. No hardware action taken on this value. | #### 9.3.15 EROM—Expansion ROM Base Address B/D/F/Type: 0/3/2/PCI Address Offset: 30-33h Default Value: 00000000h Access: RO Size: 32 bits This optional register is not implemented. | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:11 | RO
000000h | Expansion ROM Base Address (ERBAR): | | 10:1 | RO
000h | Reserved | | 0 | RO
0b | Enable (EN): Enable expansion
ROM Access | #### 9.3.16 CAP—Capabilities Pointer B/D/F/Type: 0/3/2/PCI Address Offset: 34h Default Value: C8h Access: RO Size: 8 bits This optional register is used to point to a linked list of new capabilities implemented by the device. | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
C8h | Capability Pointer (CP): This field indicates that the first capability pointer offset is offset c8h (the power management capability) | #### 9.3.17 INTR—Interrupt Information B/D/F/Type: 0/3/2/PCI Address Offset: 3C-3Dh Default Value: 0300h Access: R/W, RO Size: 16 bits See definitions in the registers below. Reset: Host System Reset or D3->D0 reset of the function. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
03h | Interrupt Pin (IPIN): A value of 1h/2h/3h/4h indicates that this function implements legacy interrupt on INTA/INTB/INTC/INTD, respectively. | | | | Function Value INTx | | | | (2 IDE) 03h INTC | | 7:0 | R/W
00h | Interrupt Line (ILINE): The value written in this register indicates which input of the system interrupt controller, the device's interrupt pin is connected to. This value is used by the OS and the device driver, and has no affect on the (G)MCH. | #### 9.3.18 MGNT—Minimum Grant B/D/F/Type: 0/3/2/PCI Address Offset: 3Eh Default Value: 00h Access: RO Size: 8 bits This optional register is not implemented. | Bit | Access & Default | Description | |-----|------------------|-------------| | 7:0 | RO
00h | Reserved | #### 9.3.19 MLAT—Maximum Latency B/D/F/Type: 0/3/2/PCI Address Offset: 3Fh Default Value: 00h Access: RO Size: 8 bits This optional register is not implemented. | Bit | Access & Default | Description | |-----|------------------|-------------| | 7:0 | RO
00h | Reserved | #### 9.3.20 PID—PCI Power Management Capability ID B/D/F/Type: 0/3/2/PCI Address Offset: C8-C9h Default Value: D001h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
D0h | Next Capability (NEXT): The value of D0h points to the MSI capability | | 7:0 | RO
01h | Cap ID (CID): This field indicates that this pointer is a PCI power management. | #### 9.3.21 PC—PCI Power Management Capabilities B/D/F/Type: 0/3/2/PCI Address Offset: CA-CBh Default Value: 0023h Access: RO Size: 16 bits This register implements the power management capabilities of the function. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:11 | RO
00000b | PME Support (PME): This field indicates no PME# in the PT function. | | 10 | RO
0b | D2 Support (D2S): The D2 state is not Supported | | 9 | RO
0b | D1 Support (D1S): The D1 state is not supported | | 8:6 | RO
000b | Aux Current (AUXC): PME# from D3 (cold) state is not supported, therefore this field is 000b | | 5 | RO
1b | Device Specific Initialization (DSI): This bit indicates that no device-specific initialization is required. | | 4 | RO
0b | Reserved | | 3 | RO
0b | PME Clock (PMEC): This bit indicates that PCI clock is not required to generate PME#. | | 2:0 | RO
011b | Version (VS): This field indicates support for revision 1.2 of the PCI power management specification. | #### 9.3.22 PMCS—PCI Power Management Control and Status B/D/F/Type: 0/3/2/PCI Address Offset: CC-CFh Default Value: 00000000h Access: RO, RO/V, R/W Size: 32 bits BIOS Optimal Default 0000h This register implements the PCI PM Control and Status Register to allow PM state transitions and Wake up. **Note:** NSR bit of this register. All registers (PCI configuration and device specific) marked with D3->D0 transition reset will only do so if this bit reads a 0. If this bit is a 1, the D3->D0 transition will not reset the registers. Reset: Host System Reset or D3->D0 transition. | Bit | Access & Default | Description | | |-------|------------------|--|--| | 31:16 | RO
0h | Reserved | | | 15 | RO
0b | PME Status (PMES): This bit is set when a PME event is to be requested. Not supported | | | 14:9 | RO
00h | Reserved | | | 8 | RO
0b | PME Enable (PMEE): Not Supported | | | 7:2 | RO
0s | Reserved | | | 1:0 | R/W
00b | Power State (PS): This field is used both to determine the current power state of the PT function and to set a new power state. The values are: | | | | | 00 = D0 state | | | | | 11 = D3 _{HOT} state | | | | | When in the $D3_{HOT}$ state, the controller's configuration space is available, but the I/O and memory spaces are not. Additionally, interrupts are blocked. If software attempts to write a 10 or 01 to these bits, the write will be ignored. | | #### 9.3.23 MID—Message Signaled Interrupt Capability ID B/D/F/Type: 0/3/2/PCI Address Offset: D0-D1h Default Value: 0005h Access: RO Size: 16 bits Message Signaled Interrupt is a feature that allows the device/function to generate an interrupt to the host by performing a DWord memory write to a system specified address with system specified data. This register is used to identify and configure an MSI capable device. | Bit | Access & Default | Description | | |------|------------------|--|--| | 15:8 | RO
00h | Next Pointer (NEXT): This value Indicates this is the last item in the capabilities list. | | | 7:0 | RO
05h | Capability ID (CID): Capabilities ID value indicates device is capable of generating an MSI. | | #### 9.3.24 MC—Message Signaled Interrupt Message Control B/D/F/Type: 0/3/2/PCI Address Offset: D2-D3h Default Value: 0080h Access: RO, R/W Size: 16 bits This register provides System Software control over MSI. Note: Reset: Host System Reset or D3->D0 transition | Bit | Access &
Default | Description | | |------|---------------------|---|--| | 15:8 | RO
00h | Reserved | | | 7 | RO
1b | 64 Bit Address Capable (C64): This bit indicates the capable of generating 64-bit and 32-bit messages | | | 6:4 | R/W
000b | Multiple Message Enable (MME): These bits are R/W for software compatibility, but only one message is ever sent by the PT function. | | | 3:1 | RO
000b | Multiple Message Capable (MMC): Only one message is required. | | | 0 | R/W
0b | MSI Enable (MSIE): If set, MSI is enabled and traditional interrupt pins are not used to generate interrupts. | | | | | 0 = Disable
1 = Enable | | #### 9.3.25 MA—Message Signaled Interrupt Message Address B/D/F/Type: 0/3/2/PCI Address Offset: D4-D7h Default Value: 00000000h Access: RO, R/W Size: 32 bits This register specifies the DWORD aligned address programmed by system software for sending MSI. Note: Reset: Host system Reset or D3->D0 transition. | Bit | Access & Default | Description | |------|------------------|--| | 31:2 | R/W
00000000h | Address (ADDR): This field indicates the lower 32 bits of the system specified message address; always DWORD aligned | | 1:0 | RO
00b | Reserved | #### 9.3.26 MAU—Message Signaled Interrupt Message Upper Address B/D/F/Type: 0/3/2/PCI Address Offset: D8-DBh Default Value: 00000000h Access: RO, R/W Size: 32 bits Upper 32 bits of the message address for the 64bit address capable device. Note: Reset: Host system Reset or D3->D0 transition. | Bit | Access & Default | Description | | |------|------------------|--|--| | 31:4 | RO
0000000h | Reserved | | | 3:0 | R/W
0000b | Address (ADDR): This field indicates the upper 4 bits of the system specified message address. | | #### 9.3.27 MD—Message Signaled Interrupt Message Data B/D/F/Type: 0/3/2/PCI Address Offset: DC-DDh Default Value: 0000h Access: R/W Size: 16 bits This 16-bit field is programmed by system software if MSI is enabled. Note: Reset: Host system Reset or D3->D0 transition. | Bit | Access & Default | Description | | |------|------------------|--|--| | 15:0 | R/W
0000h | Data (DATA): This content is driven onto the lower word of the data bus of the MSI memory write transaction. | | # 9.4 (KT) Redirection Configuration Register Details (Device 3, Function 3) (Intel® 82Q965 GMCH Only) Table 9-4. (KT) Redirection Register Address Map (Device 3, Function3) | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|---|--------------------------------|------------------| | 00-03h | ID | Identification | 29878086h | RO | | 04-05h | CMD | Command Register | 0000h | RO, R/W | | 06-07h | STS | Device Status | 00B0h | RO | | 08h | RID | Revision ID | See
register
description | RO | | 09-0Bh | СС | Class Codes | 010185h | RO | | 0Ch | CLS | Cache Line Size | 00h | RO | | 0Dh | MLT | Master Latency Timer | 00h | RO
| | 0Eh | HTYPE | Header Type | Undefined | Undefined | | 10-13h | KTIBA | KT IO Block Base Address | 00000001h | RO, R/W | | 14-17h | KTMBA | KT Memory Block Base Address | 00000000h | RO, R/W | | 2C-2Fh | SS | Sub System Identifiers | 00008086h | R/WO | | 30-33h | EROM | Expansion ROM Base Address | 00000000h | RO | | 34h | CAP | Capabilities Pointer | C8h | RO | | 3C-3Dh | INTR | Interrupt Information | 0200h | R/W, RO | | 3Eh | MGNT | Minimum Grant | 00h | RO | | 3Fh | MLAT | Maximum Latency | 00h | RO | | C8-C9h | PID | PCI Power Management Capability ID | D001h | RO | | CA-CBh | PC | PCI Power Management Capabilities | 0023h | RO | | CC-CFh | PMCS | PCI Power Management Control and
Status | 00000000h | RO, R/W,
RO/V | | D0-D1h | MID | Message Signaled Interrupt Capability ID | 0005h | RO | | D2-D3h | MC | Message Signaled Interrupt Message
Control | 0080h | RO, R/W | | D4-D7h | МА | Message Signaled Interrupt Message
Address | 00000000h | RO, R/W | | D8-DBh | MAU | Message Signaled Interrupt Message
Upper Address | 00000000h | RO, R/W | | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|--|------------------|--------| | DC-DDh | MD | Message Signaled Interrupt Message
Data | 0000h | R/W | #### 9.4.1 ID—Identification B/D/F/Type: 0/3/3/PCI Address Offset: 0-3h Default Value: 29878086h Access: RO Size: 32 bits This register, combined with the Device Identification register, uniquely identifies any PCI device. | Bit | Access & Default | Description | | |-------|------------------|--|--| | 31:16 | RO
2987h | Device ID (DID): This field is assigned by manufacturer, identifies the device. | | | 15:0 | RO
8086h | Vendor ID (VID): This 16-bit field indicates the company vendor as Intel. | | #### 9.4.2 CMD—Command Register B/D/F/Type: 0/3/3/PCI Address Offset: 4-5h Default Value: 0000h Access: RO, R/W Size: 16 bits This register provides basic control over the device's ability to respond to and perform Host system related accesses. Reset: Host System reset or D3->D0 transition. | Bit | Access & Default | Description | |-------|------------------|--| | 15:11 | RO
00h | Reserved | | 10 | R/W
0b | Interrupt Disable (ID): This disables pin-based INTx# interrupts. This bit has no effect on MSI operation. When set, internal INTx# messages will not be generated. When cleared, internal INTx# messages are generated if there is an interrupt and MSI is not enabled. | | 9 | RO
0b | Fast back-to-back enable (FBE): Hardwired to 0. | | 8 | RO
0b | SERR# Enable (SEE): The PT function never generates an SERR#. Hardwired to 0. | | Bit | Access & Default | Description | | |-----|------------------|---|--| | 7 | RO
0b | Wait Cycle Enable (WCC): Hardwired to 0. | | | 6 | RO
0b | Parity Error Response Enable (PEE): No Parity detection in PT functions. Hardwired to 0. | | | 5 | RO
0b | VGA Palette Snooping Enable (VGA): Hardwired to 0. | | | 4 | RO
0b | Memory Write and Invalidate Enable (MWIE): Hardwired to 0. | | | 3 | RO
0b | Special Cycle enable (SCE): Hardwired to 0. | | | 2 | R/W
0b | Bus Master Enable (BME): This bit controls the KT function's ability to act as a master for data transfers. This bit does not impact the generation of completions for split transaction commands. For KT, the only bus mastering activity is MSI generation. | | | | | 0 = Disable
1 = Enable | | | 1 | R/W
0b | Memory Space Enable (MSE): This bit controls Access to the PT function's target memory space. | | | | | 0 = Disable
1 = Enable | | | 0 | R/W
0b | I/O Space Enable (IOSE): This bit controls access to the PT function's target I/O space. | | | | | 0 = Disable
1 = Enable | | #### 9.4.3 STS—Device Status B/D/F/Type: 0/3/3/PCI Address Offset: 6-7h Default Value: 00B0h Access: RO Size: 16 bits This register is used by the function to reflect its PCI status to the host for the functionality that it implements. | Bit | Access & Default | Description | | |-----|------------------|---|--| | 15 | RO
0b | Detected Parity Error (DPE): No parity error on its interface. | | | 14 | RO
0b | Signaled System Error (SSE): The PT function will never generate a SERR#. | | | 13 | RO
0b | Received Master-Abort Status (RMA): Hardwired to 0. | | | | Т | | |------|------------------|--| | Bit | Access & Default | Description | | 12 | RO
0b | Received Target-Abort Status (RTA): Hardwired to 0. | | 11 | RO
0b | Signaled Target-Abort Status (STA): The PT Function will never generate a target abort. Hardwired to 0. | | 10:9 | RO
00b | DEVSEL# Timing Status (DEVT): This field controls the device select time for the PT function's PCI interface | | 8 | RO
0b | Master Data Parity Error Detected) (DPD): PT function (IDER), as a master, does not detect a parity error. Other PT function is not a master and hence this bit is reserved also. | | 7 | RO
1b | Fast back to back capable (RSVD): Hardwired to 1. | | 6 | RO
0b | Reserved | | 5 | RO
1b | 66MHz capable (RSVD): | | 4 | RO
1b | Capabilities List (CL): This bit indicates that there is a capabilities pointer implemented in the device. | | 3 | RO
0b | Interrupt Status (IS): This bit reflects the state of the interrupt in the function. Setting of the Interrupt Disable bit to 1 has no affect on this bit. Only when this bit is a 1 and ID bit is 0 is the intb interrupt asserted to the Host | | 2:0 | RO
000b | Reserved | #### 9.4.4 RID—Revision ID B/D/F/Type: 0/3/3/PCI Address Offset: 8h Default Value: 00h Access: RO Size: 8 bits This register specifies a device specific revision. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Revision ID (RID): This field indicates stepping of the silicon. Refer to the <i>Intel® 965 Express Chipset Family Specification Update</i> for the value of the Revision ID register. | #### 9.4.5 CC—Class Codes B/D/F/Type: 0/3/3/PCI Address Offset: 9-Bh Default Value: 010185h Access: RO Size: 24 bits This register identifies the basic functionality of the device (i.e., Serial Com Port). | Bit | Access & Default | Description | |------|------------------|---| | 23:0 | RO
010185h | Programming Interface BCC SCC (PI BCC SCC): | #### 9.4.6 CLS—Cache Line Size B/D/F/Type: 0/3/3/PCI Address Offset: Ch Default Value: 00h Access: RO Size: 8 bits This register defines the system cache line size in DWord increments. This is mandatory for a master that uses the Memory-Write and Invalidate command. | Bit | Access & Default | Description | |-----|------------------|---| | 7:0 | RO
00h | Cache Line Size (CLS): All writes to system memory are Memory Writes. | #### 9.4.7 MLT—Master Latency Timer B/D/F/Type: 0/3/3/PCI Address Offset: Dh Default Value: 00h Access: RO Size: 8 bits This register defines the minimum number of PCI clocks the bus master can retain ownership of the bus whenever it initiates new transactions. | Bit | Access &
Default | Description | |-----|---------------------|---| | 7:0 | RO
00h | Master Latency Timer (MLT): Not implemented since the function is in the (G)MCH. | #### 9.4.8 HTYPE—Header Type B/D/F/Type: 0/3/3/PCI Address Offset: Eh Default Value: Access: Undefined Size: 8 bits Register is Not implemented. Reads return 0. #### 9.4.9 KTIBA—KT IO Block Base Address B/D/F/Type: 0/3/3/PCI Address Offset: 10-13h Default Value: 00000001h Access: RO, R/W Size: 32 bits This register provides the Base Address for the 8 byte I/O space for KT. Reset: Host system Reset or D3->D0 transition | Bit | Access & Default | Description | |-------|------------------|--| | 31:16 | RO
0000h | Reserved | | 15:3 | R/W
0000h | Base Address (BAR): This field indicates the base Address of the I/O space (8 consecutive I/O locations) | | 2:1 | RO
00b | Reserved | | 0 | RO
1b | Resource Type Indicator (RTE): This bit indicates a request for I/O space. | #### 9.4.10 KTMBA—KT Memory Block Base Address B/D/F/Type: 0/3/3/PCI Address Offset: 14–17h Default Value: 00000000h Access: RO, R/W Size: 32 bits This register provides the Base Address of memory-mapped space. Reset: Host system Reset or D3->D0 transition | Bit | Access &
Default | Description | |-------|---------------------|--| | 31:12 | R/W
00000h | Base Address (BAR): This Memory-mapped I/O BAR field provides address signals 31:12. | | 11:4 | RO
00h | Reserved | | 3 | RO
0b |
Prefetchable (PF): This bit is hardwired to 0 Indicating that this range is not pre-fetchable. | | 2:1 | RO
00b | Type (TP): This bit is hardwired to 00 Indicating that this range can be mapped anywhere in 32-bit address space | | 0 | RO
0b | Resource Type Indicator (RTE): This bit is hardwired to 0 Indicating a request for register memory space. | #### 9.4.11 SS—Sub System Identifiers B/D/F/Type: 0/3/3/PCI Address Offset: 2C-2Fh Default Value: 00008086h Access: R/WO Size: 32 bits These registers are used to uniquely identify the add-in card or the subsystem that the device resides within. Reset: Host system Reset. | Bit | Access & Default | Description | |-------|------------------|--| | 31:16 | R/WO
0000h | Subsystem ID (SSID): This field is written by BIOS. No hardware action taken on this value | | 15:0 | R/WO
8086h | Subsystem Vendor ID (SSVID): This field is written by BIOS. No hardware action taken on this value | # 9.4.12 EROM—Expansion ROM Base Address B/D/F/Type: 0/3/3/PCI Address Offset: 30-33h Default Value: 00000000h Access: RO Size: 32 bits This optional register is not implemented. | Bit | Access & Default | Description | |-------|------------------|---| | 31:11 | RO
000000h | Expansion ROM Base Address (ERBAR): | | 10:1 | RO
000h | Reserved | | 0 | RO
0b | Enable (EN): This bit enables expansion ROM Access. | ## 9.4.13 CAP—Capabilities Pointer B/D/F/Type: 0/3/3/PCI Address Offset: 34h Default Value: C8h Access: RO Size: 8 bits This optional register is used to point to a linked list of new capabilities implemented by the device. | Bit | Access & Default | Description | |-----|------------------|--| | 7:0 | RO
C8h | Capability Pointer (CP): This field indicates that the first capability pointer offset is offset C8h (the power management capability). | # 9.4.14 INTR—Interrupt Information B/D/F/Type: 0/3/3/PCI Address Offset: 3C-3Dh Default Value: 0200h Access: R/W, RO Size: 16 bits Reset: Host System Reset or D3->D0 reset of the function. | Bit | Access & Default | | D | escription | |------|------------------|--------------------|-------------------------------|--| | 15:8 | RO
02h | | | e of 1h/2h/3h/4h indicates that this errupt on INTA/INTB/INTC/INTD, | | | | Function | Value | INTx | | | | (3 KT/Serial Port) | 02h | INTB | | 7:0 | R/W
00h | which input of the | system inter
value is used | value written in this register indicates
rupt controller the device's interrupt pin
d by the OS and the device driver, and | ## 9.4.15 MGNT—Minimum Grant B/D/F/Type: 0/3/3/PCI Address Offset: 3Eh Default Value: 00h Access: RO Size: 8 bits This optional register is not implemented. | Bit | Access & Default | Description | |-----|------------------|-------------| | 7:0 | RO
00h | Reserved | # 9.4.16 MLAT—Maximum Latency B/D/F/Type: 0/3/3/PCI Address Offset: 3Fh Default Value: 00h Access: RO Size: 8 bits This optional register is not implemented. | Bit | Access & Default | Description | |-----|------------------|-------------| | 7:0 | RO
00h | Reserved | # 9.4.17 PID—PCI Power Management Capability ID B/D/F/Type: 0/3/3/PCI Address Offset: C8-C9h Default Value: D001h Access: RO Size: 16 bits | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
D0h | Next Capability (NEXT): The value of D0h points to the MSI capability. | | 7:0 | RO
01h | Cap ID (CID): This field indicates that this pointer is a PCI power management. | # 9.4.18 PC—PCI Power Management Capabilities B/D/F/Type: 0/3/3/PCI Address Offset: CA-CBh Default Value: 0023h Access: RO Size: 16 bits This register implements the power management capabilities of the function. | Bit | Access &
Default | Description | |-------|---------------------|---| | 15:11 | RO
00000b | PME Support (PME): This field indicates no PME# in the PT function. | | 10 | RO
0b | D2 Support (D2S): The D2 state is not Supported. | | 9 | RO
0b | D1 Support (D1S): The D1 state is not supported. | | 8:6 | RO
000b | Aux Current (AUXC): PME# from D3 (cold) state is not supported' therefore this field is 000b. | | 5 | RO
1b | Device Specific Initialization (DSI): This bit indicates that no device-specific initialization is required. | | 4 | RO
0b | Reserved | | 3 | RO
0b | PME Clock (PMEC): This bit indicates that PCI clock is not required to generate PME#. | | 2:0 | RO
011b | Version (VS): This field indicates support for revision 1.2 of the PCI power management specification. | ## 9.4.19 PMCS—PCI Power Management Control and Status B/D/F/Type: 0/3/3/PCI Address Offset: CC-CFh Default Value: 00000000h Access: RO, R/W, RO/V Size: 32 bits BIOS Optimal Default 0000h This register implements the PCI PM Control and Status Register to allow PM state transitions and Wake up. **Note:** NSR bit of this register. All registers (PCI configuration and Device Specific) marked with D3->D0 transition reset will only do so if this bit reads a 0. If this bit is a 1, the D3->D0 transition will not reset the registers. Reset: Host System Reset or D3->D0 transition. | Bit | Access & Default | Description | | |-------|------------------|--|--| | 31:16 | RO
0h | Reserved | | | 15 | RO
0b | PME Status (PMES): This bit is set when a PME event is to be requested. Not supported. | | | 14:9 | RO
00h | Reserved | | | 8 | RO
0b | PME Enable (PMEE): Not Supported | | | 7:2 | RO
0h | Reserved | | | 1:0 | R/W
00b | Power State (PS): This field is used both to determine the current power state of the PT function and to set a new power state. The values are: | | | | | 00 = D0 state | | | | | 11 = D3 _{HOT} state | | | | | When in the $D3_{HOT}$ state, the controller's configuration space is available, but the I/O and memory spaces are not. Additionally, interrupts are blocked. If software attempts to write a 10 or 01 to these bits, the write will be ignored. | | ## 9.4.20 MID—Message Signaled Interrupt Capability ID B/D/F/Type: 0/3/3/PCI Address Offset: D0-D1h Default Value: 0005h Access: RO Size: 16 bits Message Signaled Interrupt is a feature that allows the device/function to generate an interrupt to the host by performing a DWord memory write to a system specified address with system specified data. This register is used to identify and configure an MSI capable device. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
00h | Next Pointer (NEXT): This value indicates this is the last item in the list. | | 7:0 | RO
05h | Capability ID (CID): The value of Capabilities ID indicates device is capable of generating MSI | ## 9.4.21 MC—Message Signaled Interrupt Message Control B/D/F/Type: 0/3/3/PCI Address Offset: D2-D3h Default Value: 0080h Access: RO, R/W Size: 16 bits This register provides System Software control over MSI. Reset: Host System Reset or D3->D0 transition. | Bit | Access & Default | Description | |------|------------------|---| | 15:8 | RO
00h | Reserved | | 7 | RO
1b | 64 Bit Address Capable (C64): This field indicates the capable of generating 64-bit and 32-bit messages | | 6:4 | R/W
000b | Multiple Message Enable (MME): These bits are R/W for software compatibility, but only one message is ever sent by the PT function. | | 3:1 | RO
000b | Multiple Message Capable (MMC): Only one message is required. | | 0 | R/W
0b | MSI Enable (MSIE): If set, MSI is enabled and traditional interrupt pins are not used to generate interrupts. | | | | 0 = Disable
1 = Enable | # 9.4.22 MA—Message Signaled Interrupt Message Address B/D/F/Type: 0/3/3/PCI Address Offset: D4-D7h Default Value: 00000000h Access: RO, R/W Size: 32 bits This register specifies the DWord aligned address programmed by system software for sending MSI. This register is reset by a Host system Reset or D3->D0 transition. | Bit | Access &
Default | Description | |------|----------------------|--| | 31:2 | R/W
00000000
h | Address (ADDR): This field indicates the lower 32 bits of the system specified message address, always DWORD aligned | | 1:0 | RO
00b | Reserved | ## 9.4.23 MAU—Message Signaled Interrupt Message Upper Address B/D/F/Type: 0/3/3/PCI Address Offset: D8-DBh Default Value: 00000000h Access: RO, R/W Size: 32 bits This register provides the upper 32 bits of the message address for the 64-bit address capable device. Reset: Host system Reset or D3->D0 transition. | Bit | Access & Default | Description | |------|------------------|--| | 31:4 | RO
0000000h | Reserved | | 3:0 | R/W
0000b | Address (ADDR): This field indicates the upper 4 bits of the system specified message address. | # 9.4.24 MD—Message Signaled Interrupt Message Data B/D/F/Type:
0/3/3/PCI Address Offset: DC-DDh Default Value: 0000h Access: R/W Size: 16 bits This 16-bit field is programmed by system software if MSI is enabled. Reset: Host system Reset or D3->D0 transition. | Bit | Access &
Default | Description | |------|---------------------|--| | 15:0 | R/W
0000h | Data (DATA): This MSI data is driven onto the lower word of the data bus of the MSI memory write transaction. | § # 10 Functional Description This chapter describes the (G)MCH interfaces and major functional units. ## 10.1 Host Interface The (G)MCH supports the Core™2 Duo desktop processor, Pentium® D processor, Pentium 4 processor subset of the Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. The address signals are double pumped; a new address can be generated every other bus clock. At 133/200/266 MHz bus clock, the address signals run at 266/400/533 MT/s. The data is quad pumped, and an entire 64B cache line can be transferred in two bus clocks. At 133/200/266 MHz bus clock, the data signals run at 533/800/1066 MT/s. ## 10.1.1 FSB IOQ Depth The Scalable Bus supports up to 12 simultaneous outstanding transactions. ## 10.1.2 FSB OOQ Depth The (G)MCH supports only one outstanding deferred transaction on the FSB. #### 10.1.3 FSB GTL+ Termination The (G)MCH integrates GTL+ termination resistors on die. Also, approximately 2.8 pF (fast) – 3.3 pF (slow) per pad of on die capacitance is implemented to provide better FSB electrical performance. ## 10.1.4 FSB Dynamic Bus Inversion The (G)MCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the processor. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the worst-case power consumption of the (G)MCH. HDINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase. | HDINV[3:0]# | Data Bits | |-------------|------------| | HDINV0# | HD[15:0]# | | HDINV1# | HD[31:16]# | | HDINV2# | HD[47:32]# | | HDINV3# | HD[63:48]# | When the processor or the (G)MCH drive data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus, the corresponding HDINVx# signal will be asserted, and the data will be inverted prior to being driven on the bus. When the processor or the (G)MCH receives data, it monitors HDINV[3:0]# to determine if the corresponding data segment should be inverted. ## 10.1.4.1 APIC Cluster Mode Support APIC Cluster mode support is required for backwards compatibility with existing software, including various Operating systems. As one example, with Microsoft Windows 2000, there is a mode (boot.ini) that allows an end user to enable the use of cluster addressing support of the APIC. - The (G)MCH supports three types of interrupt re-direction: - Physical - Flat-Logical - Clustered-Logical # 10.2 System Memory Controller The (G)MCH integrates a system memory DDR2 controller with two, 64-bit wide interfaces. Only Double Data Rate (DDR2) memory is supported; consequently, the buffers support only SSTL_1.8 V signal interfaces. The memory controller interface is fully configurable through a set of control registers. Rules for populating DIMM slots are included in this chapter. **Note:** References to DDR2-800 apply to the 82Q965, 82G965, 82P965 (G)MCH only. The 82Q963 does not support DDR2-800. The system memory controller supports two styles of memory organization (Interleaved and Asymmetric). Table 10-1 and Table 10-2 show example memory organizations. Table 10-1. Sample System Memory Organization with Interleaved Channels | | Channel A population | Cumulative
top address
in Channel A | Channel B population | Cumulative
top address
in Channel B | |--------|----------------------|---|----------------------|---| | Rank 3 | 0 MB | 2560 MB | 0 MB | 2560 MB | | Rank 2 | 256 MB | 2560 MB | 256 MB | 2560 MB | | Rank 1 | 512 MB | 2048 MB | 512 MB | 2048 MB | | Rank 0 | 512 MB | 1024 MB | 512 MB | 1024 MB | Table 10-2. Sample System Memory Organization with Asymmetric Channels | | Channel A population | Cumulative
top address
in Channel A | Channel B population | Cumulative
top address
in Channel B | |--------|----------------------|---|----------------------|---| | Rank 3 | 0 MB | 1280 MB | 0 MB | 2560 MB | | Rank 2 | 256 MB | 1280 MB | 256 MB | 2560 MB | | Rank 1 | 512 MB | 1024 MB | 512 MB | 2304 MB | | Rank 0 | 512 MB | 512 MB | 512 MB | 1792 MB | #### **Interleaved Mode** This mode provides maximum performance on real applications. Addresses are bounced between the channels, and the switch happens after each cache line (64 byte boundary). If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are ensured to be on opposite channels. The drawback of Interleaved Mode is that the system designer must populate both channels of memory such that they have equal capacity, but the technology and device width may vary from one channel to the other. #### **Asymmetric Mode** This mode trades performance for system design flexibility. Unlike the previous mode, addresses start in channel A and stay there until the end of the highest rank in channel A, then addresses continue from the bottom of channel B to the top. Real world applications are unlikely to make requests that alternate between addresses that sit on opposite channels with this memory organization, so in most cases, bandwidth will be limited to that of a single channel. The system designer can populate or not to populate any rank on either channel, including either degenerate single channel case. #### Flex Mode This mode provides the best performance flexibility. The lowest DRAM memory is mapped to two channel operation and the topmost , if any, DRAM memory is mapped to single channel operation. The drawback of Flex mode is that the system designer must populate both channels of memory to get the benefits of flex mode, and there will be multiple zones of dual/single channel operation across the whole of DRAM memory. Figure 10-1. System Memory Styles ## 10.2.1 DRAM Technologies and Organization This section provides information on currently supported DRAM technologies. The following terminology is used: Single sided A logical term referring to the number of chip selects attached to the DIMM. A physical DIMM may have the components on both sides of the substrate, but be logically indistinguishable from a single-sided DIMM with all devices on one side, if all components on the DIMM are attached to the same chip select signal. x8 Each component has 8 data lines. x16 ECh component has 16 data lines. All standard 256-Mb, 512-Mb, and 1-Gb technologies and addressing are supported for x16 and x8 devices. ``` For DDR2 533 (PC2 4300) Non-ECC Version A = Single sided x8 Version B = Double sided x8 Version C = Single sided x16 667 (PC2 5300) Non-ECC Version C = Single sided x16 Version D = Single sided x8 Version E = Double sided x8 800 (PC2 6400) Non-ECC Version C = Single sided x16 Version D = Single sided x8 Version E = Double sided x8 ``` No support for DIMMs with different technologies or capacities on opposite sides of the same DIMM. If one side of a DIMM is populated, the other side is either identical or empty. #### Supported components include: ``` For DDR2 at 533 (PC2 4300) and 667 (PC2 5300) 256-Mb technology 32-M cells x8 data bits/cell 1-K columns 4 banks 8-K rows Each component has a 1-KB page. One DIMM has 8 components resulting in an 8-KB page. The capacity of one rank is 256 MB. 16-M cells x16 data bits/cell 512 columns 4 banks 8-K rows Each component has a 1-KB page. One DIMM has 4 components resulting in a 4-KB page. The capacity of one rank is 128 MB. 512-Mb technology 64-M cells x8 data bits/cell 1K columns 4 banks 16K rows Each component has a 1-KB page. One DIMM has 8 components resulting in an 8-KB page. The capacity of one rank is 512 MB. 32-M cells x16 data bits/cell 1-K columns 4 banks 8-K rows Each component has a 2-KB page. One DIMM has 4 components resulting in an 8-KB page. The capacity of one rank is 256 MB. 1-Gb technology 128-M cells x8 data bits/cell 1-K columns 8 banks 16-K rows Each component has a 1-KB page. One DIMM has 8 components resulting in an 8-KB page. The capacity of one rank is 1 GB. 64-M cells x16 data bits/cell 1-K columns 8 banks 8-K rows Each component has a 2-KB page. One DIMM has 4 components resulting in an 8-KB page. ``` Note: 800MHz 1Gb technology is not supported **Note:** The (G)MCH does not support system memory frequencies that exceed the frequency of the Front Side Bus (FSB). If memory with higher frequency capabilities than that of the FSB is populated, the memory will be under-clocked to align with the FSB. 338 Datasheet The capacity of one rank is 512 MB. The DRAM sub-system supports single or dual channels, 64b wide per channel. A maximum of 4 ranks can be populated (2 Double Sided DIMMs) per channel. Mixed mode DDR DS-DIMMs (x8 and x16 on the same DIMM) are not supported (not validated). By using 1Gb technology, the largest memory capacity is 8 GB (16K rows * 1K columns * 1 cell/(row * column) * 8 b/cell * 8 banks/device * 8 devices/rank * 4 ranks/channel * 2 channel *1M/(K*K) * 1G/1024M * 1B/8b = 8 GB). Using 8 GB of memory is only possible in Interleaved mode with all ranks populated at maximum capacity. By using 256Mb technology, the smallest memory capacity is 128 MB (8K rows * 512 columns * 1 cell/(row * column) * 16b/cell * 4 banks/device * 4 devices/rank * 1 rank * 1M/1024K * 1B/8b = 128 MB). #### 10.2.1.1 Rules for Populating DIMM Slots In all modes, the
frequency of system memory will be the lowest frequency of all of the DIMMs in the system, as determined through the SPD registers on the DIMMs. In Single Channel mode, any DIMM slot within the channel may be populated in any order. Either channel may be used. To save power, do not populate the unused channel. In Dual Channel Asymmetric mode, any DIMM slot may be populated in any order. In Dual Channel Interleaved mode, any DIMM slot may be populated in any order, but the total memory in each channel must be the same. In Flex memory mode, any DIMM slot may be populated in any order per channel, but each channel must have at least 1 DIMM. The matching amount of memory per channel will be run in Dual channel interleaved mode and the remaining unmatched memory will run in Asymmetric mode. #### 10.2.1.2 System Memory Supported Configurations The (G)MCH supports the 256 Mbit, 512 Mbit and 1 Gbit technology based DIMMs listed in Table 10-3. **Table 10-3. DDR2 DIMM Supported Configurations** | Technology | Configuration | # of Row
Address Bits | # of Column
Address Bits | # of Bank
Address Bits | Page
Size | Rank
Size | |------------|---------------|--------------------------|-----------------------------|---------------------------|--------------|--------------| | 256Mbit | 16M X 16 | 13 | 9 | 2 | 4K | 128 MB | | 256Mbit | 32M X 8 | 13 | 10 | 2 | 8K | 256 MB | | 512Mbit | 32M X 16 | 13 | 10 | 2 | 8K | 256 MB | | 512Mbit | 64M X 8 | 14 | 10 | 2 | 8K | 512 MB | | 1Gbit | 128M X 8 | 14 | 10 | 3 | 8K | 1 GB | **NOTE**: The (G)MCH has a minimum total memory requirement of 256 MB. #### 10.2.1.3 Main Memory DRAM Address Translation and Decoding Table 10-4 and Table 10-5 specify the host interface to memory interface address multiplex for the (G)MCH. Refer to the details of the various DIMM configurations as described in Table 10-3. Table 10-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode) | Technology (Mb) | 256 | 256 | 512 | 512 | 1024 | 1024 | |-------------------|------|------|----------|------------|-------|------| | Row bits | 13 | 13 | 14 | 13 | 14 | 13 | | Column bits | 10 | 9 | 10 | 10 | 10 | 10 | | Bank bits | 2 | 2 | 2 | 2 | 3 | 3 | | Width (b) | 8 | 16 | 8 | 16 | 8 | 16 | | Rows | 8192 | 8192 | 16384 | 8192 | 16384 | 8192 | | Columns | 1024 | 512 | 1024 | 1024 | 1024 | 1024 | | Banks | 4 | 4 | 4 | 4 | 8 | 8 | | Page Size (KB) | 8 | 4 | 8 | 8 | 8 | 8 | | Devices per rank | 8 | 4 | 8 | 4 | 8 | 4 | | Rank Size (MB) | 256 | 128 | 512 | 256 | 1024 | 512 | | Depth (M) | 32 | 16 | 64 | 32 | 128 | 64 | | Addr bits [n:0] | 27 | 26 | 28 | 27 | 29 | 28 | | Available in DDR2 | yes | yes | yes | yes | yes | yes | | Host Address bit | | | Memory A | ddress bit | • | • | | 32 | _ | _ | _ | _ | _ | _ | | 31 | _ | _ | _ | _ | _ | _ | | 30 | _ | _ | _ | _ | _ | _ | | 29 | _ | _ | _ | _ | r 13 | _ | | 28 | _ | _ | r 13 | _ | r 11 | r 11 | | 27 | r 12 | - | r 12 | r 12 | r 12 | r 12 | | 26 | r 10 | | 25 | r 9 | r 9 | r 9 | r 9 | r 9 | r 9 | | 24 | r 8 | r 8 | r 8 | r 8 | r 8 | r 8 | | 23 | r 7 | r 7 | r 7 | r 7 | r 7 | r 7 | | 22 | r 6 | r 6 | r 6 | r 6 | r 6 | r 6 | | 21 | r 5 | r 5 | r 5 | r 5 | r 5 | r 5 | | 20 | r 4 | r 4 | r 4 | r 4 | r 4 | r 4 | | 19 | r 3 | r 3 | r 3 | r 3 | r 3 | r 3 | | 18 | r 2 | r 2 | r 2 | r 2 | r 2 | r 2 | | 17 | r 1 | r 1 | r 1 | r 1 | r 1 | r 1 | | 16 | r 0 | r 0 | r 0 | r 0 | r 0 | r 0 | | 15 | r 11 | r 11 | r 11 | r 11 | b 0 | b 0 | | 14 | b 1 | r 12 | b 1 | b 1 | b 1 | b 1 | | 13 | b 0 | b 0 | b 0 | b 0 | b 2 | b 2 | | 12 | c 9 | b 1 | c 9 | c 9 | c 9 | c 9 | | 11 | c 8 | c 8 | c 8 | c 8 | c 8 | c 8 | | 10 | c 7 | c 7 | c 7 | c 7 | c 7 | c 7 | | 9 | c 6 | c 6 | c 6 | c 6 | c 6 | c 6 | | 8 | c 5 | c 5 | c 5 | c 5 | c 5 | c 5 | | 7 | c 4 | c 4 | c 4 | c 4 | c 4 | c 4 | | 6 | c 3 | c 3 | c 3 | c 3 | c 3 | c 3 | | 5 | c 2 | c 2 | c 2 | c 2 | c 2 | c 2 | | 4 | c 1 | c 1 | c 1 | c 1 | c 1 | c 1 | | 3 | c 0 | c 0 | c 0 | c 0 | c 0 | c 0 | Table 10-5. DRAM Address Translation (Dual Channel Symmetric Mode) | , | | | | | | | |-------------------|----------------------|------|-------|------|-------|------| | Technology (Mb) | 256 | 256 | 512 | 512 | 1024 | 1024 | | Row bits | 13 | 13 | 14 | 13 | 14 | 13 | | Column bits | 10 | 9 | 10 | 10 | 10 | 10 | | Bank bits | 2 | 2 | 2 | 2 | 3 | 3 | | Width (b) | 8 | 16 | 8 | 16 | 8 | 16 | | Rows | 8192 | 8192 | 16384 | 8192 | 16384 | 8192 | | Columns | 1024 | 512 | 1024 | 1024 | 1024 | 1024 | | Banks | 4 | 4 | 4 | 4 | 8 | 8 | | Page Size (KB) | 8 | 4 | 8 | 8 | 8 | 8 | | Devices per rank | 8 | 4 | 8 | 4 | 8 | 4 | | Rank Size (MB) | 256 | 128 | 512 | 256 | 1024 | 512 | | Depth (M) | 32 | 16 | 64 | 32 | 128 | 64 | | Addr bits [n:0] | 27 | 26 | 28 | 27 | 29 | 28 | | Available in DDR2 | yes | yes | yes | yes | yes | yes | | Host Address bit | t Memory Address bit | | | | | | | 32 | _ | _ | _ | _ | _ | _ | | 31 | _ | _ | | | _ | | | 30 | _ | _ | _ | _ | r 13 | _ | | 29 | _ | _ | r 13 | _ | r 11 | r 11 | | 28 | r 12 | - | r 12 | r 12 | r 12 | r 12 | | 27 | r 10 | | 26 | r 9 | r 9 | r 9 | r 9 | r 9 | r 9 | | 25 | r 8 | r 8 | r 8 | r 8 | r 8 | r 8 | | 24 | r 7 | r 7 | r 7 | r 7 | r 7 | r 7 | | 23 | r 6 | r 6 | r 6 | r 6 | r 6 | r 6 | | 22 | r 5 | r 5 | r 5 | r 5 | r 5 | r 5 | | 21 | r 4 | r 4 | r 4 | r 4 | r 4 | r 4 | | 20 | r 3 | r 3 | r 3 | r 3 | r 3 | r 3 | | 19 | r 2 | r 2 | r 2 | r 2 | r 2 | r 2 | | 18 | r 1 | r 1 | r 1 | r 1 | r 1 | r 1 | | 17 | r 0 | r 0 | r 0 | r 0 | r 0 | r 0 | | 16 | r 11 | r 11 | r 11 | r 11 | b 0 | b 0 | | 15 | b 1 | r 12 | b 1 | b 1 | b 1 | b 1 | | 14 | b 0 | b 0 | b 0 | b 0 | b 2 | b 2 | | 13 | c 9 | b 1 | c 9 | c 9 | c 9 | c 9 | | 12 | c 8 | c 8 | c 8 | c 8 | c 8 | c 8 | | 11 | c 7 | c 7 | c 7 | c 7 | c 7 | c 7 | | 10 | c 6 | c 6 | c 6 | c 6 | c 6 | c 6 | | 9 | c 5 | c 5 | c 5 | c 5 | c 5 | c 5 | | 8 | c 4 | c 4 | c 4 | c 4 | c 4 | c 4 | | 7 | c 3 | c 3 | c 3 | c 3 | c 3 | c 3 | | 6 | h | h | h | h | h | h | | 5 | c 2 | c 2 | c 2 | c 2 | c 2 | c 2 | | 4 | c 1 | c 1 | c 1 | c 1 | c 1 | c 1 | | 3 | c 0 | c 0 | c 0 | c 0 | c 0 | c 0 | ## 10.2.2 Memory Detection and Initialization See your Intel representative for the latest BIOS information. #### 10.2.3 DRAM Clock Generation The (G)MCH generates three differential clock pairs for every supported DIMM. A total of 6 clock pairs are driven directly by the (G)MCH to 2 DIMMs per channel. ## 10.2.4 Suspend to RAM and Resume When entering the Suspend to RAM (STR) state, the SDRAM controller will flush pending cycles and then enter all SDRAM rows into self refresh. In STR, the CKE signals remain LOW so the SDRAM devices will perform self-refresh. #### 10.2.5 DDR2 On-Die Termination On-die termination (ODT) is a feature that allows a DRAM to turn on/off internal termination resistance for each DQ, DM, DQS, and DQS# signal for x8 and x16 configurations via the ODT control signals. The ODT feature is designed to improve signal integrity of the memory channel by allowing the termination resistance for the DQ, DM, DQS, and DQS# signals to be located inside the DRAM devices themselves instead of on the motherboard. The (G)MCH drives out the required ODT signals, based on memory configuration and which rank is being written to or read from, to the DRAM devices on a targeted DIMM rank to enable or disable their termination resistance. # 10.3 PCI Express* (Intel® 82Q965, 82G965, 82P965 (G)MCH) See Chapter 1 for a list of PCI Express features, and the PCI Express specification for further details. This (G)MCH is part of a PCI Express root complex. This means it connects a host processor/memory subsystem to a PCI Express hierarchy. The control registers for this functionality are located in device 1 configuration space and two Root Complex Register Blocks (RCRBs). The DMI RCRB contains registers for control of the Intel ICH8 attach ports. The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model (a load-store architecture with a flat address space) is maintained to ensure that all existing applications and drivers operate unchanged. The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The initial speed of 1.25 GHz (250 MHz internally) results in 2.5 Gb/s/direction; this provides a 250 MB/s communications channel in each direction (500 MB/s total). That is close to twice the data rate of classic PCI per lane. # 10.3.1 Transaction Layer The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as read and write, as well as certain types of events. The Transaction Layer also manages flow control of TLPs. ## 10.3.2 Data Link Layer The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction. ## 10.3.3 Physical Layer The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry. # 10.4 Intel[®] Serial Digital Video Output (SDVO) (Intel[®] 82Q965, 82Q963, 82G965 GMCH Only) The SDVO signals on the 82Q965 and 82G965 GMCH are multiplexed with the PCI Express x16 port pins. The SDVO signals on the 82Q963 GMCH are not multiplexed. The Intel® SDVO port is the second generation of digital video output from compliant Intel (G)MCHs. The electrical interface is based on the PCI Express interface, though the protocol and timings are completely unique. Whereas PCI Express runs at a fixed frequency, the frequency of the SDVO interface is dependant upon the active display resolution and timing. The port can be dynamically configured in several modes to support display configurations. Essentially, an SDVO port transmits
display data in a high speed, serial format across differential AC coupled signals. An SDVO port consists of a sideband differential clock pair and a number of differential data pairs. # 10.4.1 Intel® SDVO Capabilities SDVO ports can support a variety of display types including LVDS, DVI, Analog CRT, TV-Out and external CE type devices. The (G)MCH utilizes an external SDVO device to translate from SDVO protocol and timings to the desired display format and timings. The Internal Graphics Controller can have one or two SDVO ports multiplexed on the x16 PCI Express interface. When an external x16 PCI Express graphics accelerator is not in use, an ADD2 card may be plugged into the x16 connector or if a x16 slot is not present, the SDVO(s) may be located 'down' on the motherboard to access the multiplexed SDVO ports and provide a variety of digital display options. The ADD2/Media Expansion card is designed to fit in a x16 PCI Express connector. The ADD2/Media Expansion card can support one or two devices. If a single channel SDVO device is utilized, it should be attached to the channel B SDVO pins. The ADD2 card can support two separate SDVO devices when the interface is in Dual Independent or Dual Simultaneous Standard modes. The Media Expansion card adds Video in capabilities. The SDVO port defines a two-wire point-to-point communication path between the SDVO device and (G)MCH. The SDVO control clock and data provide similar functionality to I^2C . However unlike I^2C , this interface is intended to be point-to-point (from the (G)MCH to the SDVO device) and will require the SDVO device to act as a switch and direct traffic from the SDVO control bus to the appropriate receiver. Additionally, this control bus will be able to run at faster speeds (up to 1 MHz) than a traditional I^2C interface. Figure 10-2. SDVO Conceptual Block Diagram # 10.4.2 Intel® SDVO Modes The port can be dynamically configured in several modes: - **Standard**. This mode provides baseline SDVO functionality. It supports pixel rates between 25 MP/s and 270 MP/s. It uses three data pairs to transfer RGB data. - **Dual Standard**. This mode uses Standard data streams across both SDVOB and SDVOC. Both channels can only run in Standard mode (3 data pairs) and each channel supports pixel rates between 25 MP/s and 270 MP/s. - Dual Independent Standard. In Dual Independent Standard mode, each SDVO channel sees a different pixel stream. The data stream across SDVOB is not the same as the data stream across SDVOC. - Dual Simultaneous Standard. In Dual Simultaneous Standard mode, both SDVO channels see the same pixel stream. The data stream across SDVOB is the same as the data stream across SDVOC. The display timings will be identical; however, the transfer timings may not be identical (i.e., SDVOB clocks and data may not be perfectly aligned with SDVOC clock and data as seen at the SDVO device). Since this mode uses just a single data stream, it uses a single pixel pipeline within the GMCH. # 10.4.3 PCI Express* and Internal Graphics Simultaneous Operation (Intel® 82Q965, 82G965 Only) #### 10.4.3.1 Standard PCI Express* Cards and Internal Graphics BIOS control of simultaneous operation is needed to ensure the PCI Express is configured appropriately. #### 10.4.3.2 Media Expansion Cards (Concurrent SDVO and PCI Express*) The GMCH supports SDVO lane reversal. This functionality allows current SDVO ADD2 cards to work in current ATX and BTX systems instead of requiring a separate card. The GMCH allows SDVO and PCI Express to operate concurrently on the PCI Express port. The card that plugs into the x16 connector in this case is called a Media Expansion card (MEC). It uses 4 or 8 lanes for SDVO and up to 8 lanes of standard PCI Express. *Note:* The only supported PCI Express width, when SDVO is present, is x1. This concurrency is supported in reversed and non-reversed configurations. Mirroring / Reversing is always about the axis. | Table 10-6 C | oncurrent S | DVO / DCI | Evnrace* | Configuration | Strap Controls | |---------------|-------------|-----------|----------|------------------|-----------------------| | Table 10-0. C | oncurrent 3 | DVO / PCI | EXPLESS | Corningui ationi | ou ap controls | | Config # | Description | Slot
Reversed
Strap | SDVO
Present
Strap | SDVO/PCI
Express*
Concurrent
Strap | |----------|--|---------------------------|--------------------------|---| | 1 | PCI Express* not reversed | _ | | | | 2 | PCI Express* Reversed | Yes | | | | 3 | SDVO (ADD2) not reversed | _ | Yes | | | 4 | SDVO (ADD2) Reversed | Yes | Yes | | | 5 | SDVO & PCI Express* (Media Expansion) not reversed | _ | Yes | Yes | | 6 | SDVO & PCI Express* (Media Expansion) Reversed | Yes | Yes | Yes | ## NOTES: - 1. The Configuration #s refer to the following figures (no intentional relation to validation configurations). - 2. Configurations 4, 5, and 6 (required addition of SDVO/PCI Express* Concurrent Strap). Figure 10-3. Concurrent SDVO / PCI Express* Non-Reversed Configurations Figure 10-4. Concurrent SDVO / PCI Express* Reversed Configurations # 10.5 Integrated Graphics Device (IGD) (Intel® 82Q965, 82Q963, 82G965 GMCH Only) The 82Q965, 82Q963, 82G965 GMCHs provide a highly integrated graphics accelerator that allows for a flexible Integrated System Graphics solution. High bandwidth access to data is provided through the graphics and system memory ports. The GMCH can access graphics data located in system memory at up to 12.6 GB/s (depending on memory configuration). The GMCH can drive an integrated DAC, and/or two SDVO ports (multiplexed with PCI Express on the 82Q965 and 82G965 GMCH); with the SDVO ports capable of driving an ADD2/Media Expansion card. The external SDVO devices can drive a variety of connections (e.g., TV-Out, TMDS, and LVDS transmitters). #### 10.5.1 Overview With the evolution of PC graphics from fixed function parallelizable pipelines to generalized programmable parallel engines, the Internal Graphics Device delivers a highly programmable graphics device capable of rendering 3D, 2D, and video content. Graphics workloads like 3D, imaging, and video encode/decode are all good examples of parallel applications. The programmable graphics architecture in the GMCH allows the ability for the driver to program the graphics device to operate on parallel workloads in a parallel manor. ## 10.5.1.1 3D Graphics The 82G965 GMCH graphics engine supports acceleration for all DX9.0c/DX10 and OGL 1.5 required features and other additional features. Some of the key features supported are: - Vertex Shader Model 3.0 (HW) - Hardware Pixel Shader 3.0 - 32-bit and 16-bit Full Precision Floating Point Operations - Up to 8 Multiple Render Targets (MRTs) - Occlusion Query - 128-bit Floating Point Texture Formats - Bilinear, Trilinear, and Anisotropic MipMap Filtering - Shadow Maps and Double Sided Stencils The 82Q965 and 82Q963 GMCH graphics engine supports DX9.0c and OGL 1.4 plus extensions as well as the following: - Vertex Shader Model 2.0/3.0 (SW Only) - Hardware Pixel Shader 2.0 - 32-bit and 16-bit Fixed Point Operations - Up to 8 Multiple Render Targets (MRTs) - Occlusion Query - 128-bit Floating Point Texture Formats - Bilinear, Trilinear, and Anisotropic MipMap Filtering - Shadow Maps and Double Sided Stencils The 3D performance of any graphics device is affected by several key factors: memory bandwidth, and numbers of pixels per clock. The 82Q965, 82Q963, and 82G965 GMCH graphic's capability addresses all of these potential bottlenecks by sharing the two channels of memory bandwidth that allows for up to 12.6 GB/s, and the ability to operate on 4 pixels per clock #### 10.5.1.2 Video Playback — Deinterlacing Support For display on a progressive computer monitor, interlaced data that has been formatted for display on interlaced monitors (TV), needs to be de-interlaced. The simple approaches to de-interlacing create unwanted display artifacts. More advanced de-interlacing techniques have been developed to provide a high quality, effective solution. The Motion Adaptive Deinterlacing supported in the GMCH greatly reduces the feathering artifacts typical with Weave deinterlacing and the jaggies typically associated to Bob deinterlacing. Clear, sharp text is another benefit on Intel's Motion Adaptive Deinterlacing technique. # 10.6 Display Interfaces The GMCH has three display ports; one analog and two digital. Each port can transmit data according to one or more protocols. The digital ports are connected to an external device that converts one protocol to another. Examples of this are TV encoders, external DACs, LVDS transmitters, and TMDS transmitters. Each display port has control signals that may be used to control, configure and/or determine the capabilities of an external device. **Note:** References in this section of multiplexed SDVO ports or PCI Express port apply to the 82Q965 and 82G965 GMCH only. The SDVO ports are dedicated (non-multiplexed) on the 82Q963 GMCH. The GMCH has one dedicated display port, the analog port. On the 82Q965 and 82G965 GMCH SDVO ports B and C are multiplexed with the PCI Express graphics interface and are not available if an external PCI Express graphics device is in use. When a system uses a PCI Express graphics connector, SDVO ports B and C can be used via an ADD2/Media Expansion (Advanced Digital Display 2) card. Ports B and C can also operate in dual-channel mode, where the data bus is connected to both display ports, allowing a single device to take data at twice the pixel rate. - The GMCH's analog port uses an integrated 400 MHz RAMDAC that can directly drive a standard progressive scan analog monitor up to a resolution of 2048x1536 pixels with 32-bit color at 75 Hz. - The GMCH's SDVO ports are each capable of driving a 270-MP pixel rate. Each port is capable of driving a digital display up to
1600x1200 @ 60 Hz. When in dual-channel mode, the GMCH can drive a flat panel up to 2048x1536 @ 75 Hz or dCRT/HDTV up to 1920x1080 @ 85 Hz. The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external device and connector, the GMCH has a high speed interface to a digital display (e.g., flat panel or digital CRT). **Table 10-7. Display Port Characteristics** | | | Analog | Digital Port B | Digital Port C | | |-------------|--------------------|---|---|--------------------|--| | | Interface Protocol | RGB DAC | DVO 1.0 | DVO 1.0 | | | | HSYNC | | Yes Enable/Polarity | | | | | VSYNC | | Yes Enable/Polarity | | | | SIGNALS | BLANK | No | Yes ⁽¹⁾ | Yes ⁽¹⁾ | | | I GN | STALL | No | Yes | Yes | | | S | Field | No | Yes | Yes | | | | Display_Enable | No | | No | | | | Image Aspect Ratio | Programmable and typically 1.33:1 or 1.78:1 | | | | | | Pixel Aspect Ratio | Square ⁽¹⁾ | | | | | | Voltage | RGB 0.7 V p-p | PCI Express* | PCI Express | | | | Clock | NA | Differential | | | | | Max Rate | 400 Mpixel | 270 Mpixel | 270 Mpixel | | | | Format | Analog RGB | RGB 8:8:8 | YUV 4:4:4 | | | Control Bus | | DDC1/DDC2B | DDC2B | | | | | External Device | No | TMDS/LVDS Trans | mitter /TV Encoder | | | | Connector | VGA/DVI-I | DVI/CVBS/S-
Video/Component/SCART/HDMI | | | #### NOTES: 1. Single signal software selectable between display enable and Blank# # 10.6.1 Analog Display Port Characteristics The analog display port provides a RGB signal output along with a HSYNC and VSYNC signal. There is an associated DDC signal pair that is implemented using the DDC_CLK and DDC_DATA signals dedicated to the analog port. The intended target device is for a CRT based monitor with a VGA connector. Display devices such as LCD panels with analog inputs may work satisfactory but no functionality has been added to the signals to enhance that capability. **Table 10-8. Analog Port Characteristics** | Signal | Port Characteristic | Support | |--------|-------------------------|----------------------------| | | Voltage Range | 0.7 V p-p only | | RGB | Monitor Sense | Analog Compare | | | Analog Copy Protection | No | | | Sync on Green | No | | | Voltage | 2.5 V | | | Enable/Disable | Port control | | HSYNC | Polarity adjust | VGA or port control | | VSYNC | Composite Sync Support | No | | | Special Flat Panel Sync | No | | | Stereo Sync | No | | DDC | Voltage | Externally buffered to 5 V | | DDC | Control | Through GPIO interface | ## 10.6.1.1 Integrated RAMDAC The display function contains a RAM-based Digital-to-Analog Converter (RAMDAC) that transforms the digital data from the graphics and video subsystems to analog data for the CRT monitor. The GMCH's integrated 400 MHz RAMDAC supports resolutions up to 2048 x 1536 @ 75 Hz. Three 8-bit DACs provide the R, G, and B signals to the monitor. #### 10.6.1.2 Sync Signals HSYNC and VSYNC signals are digital and conform to TTL signal levels at the connector. Since these levels cannot be generated internal to the device, external level shifting buffers are required. These signals can be polarity adjusted and individually disabled in one of the two possible states. The sync signals should power up disabled in the high state. No composite sync or special flat panel sync support will be included. #### 10.6.1.3 **VESA/VGA Mode** VESA/VGA mode provides compatibility for pre-existing software that set the display mode using the VGA CRTC registers. Timings are generated based on the VGA register values and the timing generator registers are not used. ## 10.6.1.4 DDC (Display Data Channel) DDC is a standard defined by VESA. Its purpose is to allow communication between the host system and display. Both configuration and control information can be exchanged allowing plug- and-play systems to be realized. Support for DDC 1 and 2 is implemented. The GMCH uses the DDC_CLK and DDC_DATA signals to communicate with the analog monitor. The GMCH generates these signals at 2.5 V. External pull-up resistors and level shifting circuitry should be implemented on the board. The GMCH implements a hardware GMBus controller that can be used to control these signals allowing for transactions speeds up to 400 kHz. ## 10.6.2 Digital Display Interface The GMCH has several options for driving digital displays. The GMCH contains two SDVO ports. On the 82Q965 and 82G965 GMCH the ports are multiplexed on the PCI Express* interface. When an external PCI Express* Graphics accelerator is not present, the GMCH can use the multiplexed SDVO ports to provide extra digital display options. These additional digital display capabilities may be provided through an ADD2 card, which is designed to plug in to a PCI Express connector. # 10.6.2.1 Multiplexed Digital Display Channels – Intel® SDVOB and Intel® SDVOC (Intel® 82Q965 and 82G965 GMCH Only) The GMCH has the capability to support digital display devices through two SDVO. When an external graphics accelerator is used via the PCI Express* port, the multiplexed SDVO ports are not available. The shared SDVO ports each support a pixel clock up to 270 MHz and can support a variety of transmission devices. SDVO_CTRLDATA is an open-drain signal that acts as a strap during reset to tell the GMCH whether the interface is a PCI Express interface or an SDVO interface. When implementing SDVO, either via ADD2 cards or with a down device, a pull-up is placed on this line to signal to the GMCH to run in SDVO mode and for proper GMBus operation. #### 10.6.2.1.1 ADD2/Media Expansion Card When a Q965, G965 Express chipset platform uses a PCI Express* graphics connector, the multiplexed SDVO ports may be used via an ADD2/Media Expansion card. The ADD2/Media Expansion card will be designed to fit a standard PCI Express (x16) connector. Refer to the latest ADD2/Media Expansion EDS and ADD2/Media Expansion card design kits for more details on ADD2/Media Expansion. #### 10.6.2.1.2 TMDS Capabilities The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external device and connector, the GMCH has a high speed interface to a digital display (e.g., flat panel or digital CRT). When combining the two multiplexed SDVO ports, the GMCH can drive a flat panel up to 2048x1536 or a dCRT/HDTV up to 1920x1080. Flat Panel is a fixed resolution display. The GMCH supports panel fitting in the transmitter, receiver or an external device, but has no native panel fitting capabilities. The GMCH will however, provide unscaled mode where the display is centered on the panel. #### 10.6.2.1.3 LVDS Capabilities The GMCH may use the multiplexed SDVO ports to drive a LVDS transmitter. Flat Panel is a fixed resolution display. The GMCH supports panel fitting in the transmitter, receiver or an external device, as well as using a built in 3x3 panel scalar for a single SDVO port. #### 10.6.2.1.4 TV-Out Capabilities Although traditional TVs are not digital displays, the GMCH uses a digital display channel to communicate with a TV-Out transmitter. For that reason, the GMCH considers a TV-Output to be a digital display. The GMCH supports NTSC/PAL/SECAM standard definition formats. The GMCH generates the proper timing for the external encoder. The external encoder is responsible for generation of the proper format signal. Since the multiplexed SDVO interface is a NTSC/PAL/SECAM display on the TV-Out, the port can be configured to be the boot device. It is necessary to ensure that appropriate BIOS support is provided. If EasyLink is supported in the GMCH, then this mechanism could be used to interrogate the display device. The TV-out interface on the GMCH is addressable as a master device. This allows an external TV encoder device to drive a pixel clock signal on SDVO_TVClk[+/-] that the GMCH uses as a reference frequency. The frequency of this clock is dependent on the output resolution required. #### Flicker Filter and Overscan Compensation The overscan compensation scaling and the flicker filter is done in the external TV encoder chip. Care must be taken to allow for support of TV sets with high performance de-interlacers and progressive scan displays connected to via a non-interlaced signal. Timing is generated with pixel granularity to allow more overscan ratios to be supported. #### **Direct YUV from Overlay** When source material is in the YUV format and is destined for a device that can take YUV format data in, it is desired to send the data without converting it to RGB. This avoids the truncation errors associated with multiple color conversion steps. The common situation will be that the overlay source data is in the YUV format and bypasses the conversion to RBG as it is sent to the TV port directly. #### Sync Lock Support Sync lock to the TV is done using the external encoders PLL combined with the display phase detector mechanism. The availability of this feature will be determined which external encoder is in use. #### **Analog Content Protection** Analog content protection will be provided through the external encoder using Macrovision 7.01. DVD software must verify the presence of a Macrovision TV encoder before playback continues. Simple attempts to disable the Macrovision operation must be detected. #### Connectors Target TV connectors support includes the CVBS, S-Video, Component, and SCART connectors. The external TV encoder in use will determine the method of support. #### 10.6.2.1.5 Control Bus Communication to SDVO registers and if used, ADD2 PROMs and monitor DDCs, are accomplished by using the SDVO_CTRLDATA and SDVO_CTRLCLK signals through the SDVO device. These signals run up to 1 MHz and connect directly to the SDVO device. The SDVO device is then responsible for routing the DDC and PROM data streams to the appropriate location. Consult SDVO device datasheets for level shifting requirements of these signals. #### Intel® SDVO Modes The port can be dynamically configured in
several modes: - **Standard**. This mode provides baseline SDVO functionality. Supports Pixel Rates between 25 and 270 MP/s. Utilizes three data pairs to transfer RGB data. - Extended. This mode adds Alpha support to data stream. Supports Pixel Rates between 25 and 270 MP/s. Utilizes four data channels and is only supported on SDVOB. Leverages channel C (SDVOC) Red pair as the Alpha pair for channel B (SDVOB). ## 10.6.3 Multiple Display Configurations Microsoft Windows* 2000 and Windows* XP operating systems have enabled support for multi-monitor display. Since the GMCH has several display ports available for its two pipes, it can support up to two different images on different display devices. Timings and resolutions for these two images may be different. The GMCH supports Intel® Dual Display Clone, Intel Dual Display Twin, Intel Dual Display Zoom, and Extended Desktop. Intel Dual Display Clone uses both display pipes to drive the same content, at the same resolution and color depth to two different displays. This configuration allows for different refresh rates on each display. Intel Dual Display Twin uses one of the display pipes to drive the same content, at the same resolution, color depth, and refresh rates to two different displays. Intel Dual Display Zoom uses both display pipes to drive different content, at potentially different resolutions, refresh rates, and color depths to two different displays. This configuration results in a portion of the primary display to be zoomed in on and displayed on the secondary display. Extended Desktop uses both display pipes to drive different content, at potentially different resolutions, refresh rates, and color depths to two different displays. This configuration allows for a larger Windows Desktop by using both displays as a work surface. **Note:** The GMCH is also not capable of operating in parallel with an external PCI Express graphics device. The GMCH can, however, work in conjunction with a PCI graphics adapter. # 10.7 Power Management Power management feature list is: - ACPI 1.0b support - ACPI S0, S1D, S3 (both Cold and Chipset Hot), S4, S5, C0, and C1 states - Enhanced power management state transitions for increasing time processor spends in low power states - Internal Graphics Display Device Control D0, D1, D2, D3 (82Q965, 82Q963, 82G965 GMCH only) - Graphics Adapter States: D0, D3 - PCI Express Link States: L0, L0s, L1, L2/L3 Ready, L3 (82Q965, 82G965, 82P965 (G)MCH only) ### 10.8 Thermal Sensor There are several registers that need to be configured to support the (G)MCH thermal sensor functionality and SMI# generation. Customers must enable the Catastrophic Trip Point at 118 °C as protection for the MCH. If the Catastrophic Trip Point is crossed, the MCH will instantly turn off all clocks inside the device. Users may optionally enable the Hot Trip Point between 85 °C and 105 °C to generate a SMI#. Users are then required to write their own SMI# handler in BIOS that will speed up the (G)MCH (or system) fan to cool the part. #### 10.8.1 PCI Device 0, Function 0 The SMICMD register requires that a bit be set to generate a SMI# when the Hot trip point is crossed. The ERRSTS register can be inspected for the SMI alert. | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|--------|---------------|------------------|---------------| | C8-C9h | ERRSTS | Error Status | 0000h | RO,
R/WC/S | | CC-CDh | SMICMD | SMI Command | 0000h | RO, RW | ## 10.8.2 MCHBAR Thermal Sensor Registers The Digital Thermometer Configuration Registers reside in the MCHBAR configuration space. | Address
Offset | Symbol | Register Name | Default
Value | Access | |-------------------|---------|--|------------------|-------------------------| | CD8h | TSC1 | Thermal Sensor Control 1 | 00h | R/W/L,
R/W,
RS/WC | | CD9h | TSC2 | Thermal Sensor Control 2 | 00h | R/W/L, RO | | CDAh | TSS | Thermal Sensor Status | 00h | RO | | CDCh-CDFh | TSTTP | Thermal Sensor
Temperature Trip Point | 00000000h | RO, R/W,
R/W/L | | CE2h | TCO | Thermal Calibration Offset | 00h | R/W/L/K,
R/W/L | | CE4h | THERM1 | Hardware Protection | 00h | R/W/L, RO,
R/W/L/K | | CE6h | THERM3 | TCO Fuses | 00h | RS/WC, RO | | CEA-CEBh | TIS | Thermal Interrupt Status | 0000h | RO, R/WC | | CF1h | TSMICMD | Thermal SMI Command | 00h | RO, R/W | ## 10.8.3 Programming Sequence The following sequence must be followed in BIOS to properly set up the Hot Trip Point and SMI# assertion. - 1. In Thermal Sensor Control 1 Register (TSC1), set thermal sensor enable bit (TSE) and the hysteresis value (DHA) by writing 99h to MCHBAR CD8h - 2. Program the Hot Trip Point Register (TSTTP[HTPS]) by writing the appropriate value to MCHBAR CDCh bits [15:8] - 3. Program the Catastrophic Trip Point Setting Register (TSTTP[CTPS]) by writing 2Ch to MCHBAR CDCh bits [7:0] - 4. In Thermal Sensor Control 2 Register (TSC2), program the Thermometer Mode Enable and Rate (TE) by writing 04h to MCHBAR CD9h bits [3:0] - 5. In the Hardware Protection Register (THERM1), program the Halt on Catastrophic bit (HOC) by writing 08h to MCHBAR CE4h bits [7:0] - 6. Lock the Hardware Protection by writing a 1 to the Lock bit (HTL) at MCHBAR CE4h bit [0] - 7. In Thermal SMI Command Register (TSMICMD), set the SMI# on Hot bit by writing a 02h to MCHBAR CF1h - 8. Program the SMI Command register (SMICMD[TSTSMI]) by writing a 1 to bit 11 to PCI CCh - 9. Program the TCO Register (TCO[TSLB]) to lock down the other register settings by writing a 1 to bit 7 of MCHBAR CE2h #### If the temperature rises above the Hot Trip point: The TIS[Hot Thermal Sensor Interrupt Event] is set when SMI# interrupt is generated. - 10. Clear this bit of the TIS register to allow subsequent interrupts of this type to get registered. - 11. Clear the global thermal sensor event bit in the Error Status Register, bit 11. - 12. In thermal sensor status register (TSS), the Hot trip indicator (HTI) bit is set if this condition is still valid by the time the software gets to read the register. ## 10.8.4 Trip Point Temperature Programming The Catastrophic and Hot trip points are programmed in the TSTTP Register. Bits 7:0 are for the Catastrophic trip point (CTPS), and bits 15:8 are for the Hot trip point (HTPS). Note: Based on Intel silicon test and calculations, the Catastrophic trip point must be fixed at 118 °C. The Hot trip point is recommended to be between 95 °C and 105 °C. Programming the Hot Trip Point above this range is not recommended. To program both trip point settings, the following polynomial equation should be used. Programmed temp = $(0.0016*value^2) - (1.10707*value) + 161.05$ In this case the "value" is a decimal number between 0 and 128. For the Catastrophic Trip Point, a decimal value of 41 (29h) should be used to hit 118 °C. $$(0.0016*41^2) - (1.10707*41) + 161.05 = 118.3 °C$$ The CTPS should then be programmed with 29h. The Hot Trip Point is also programmed in the same manner. # 10.9 Clocking The (G)MCH has a total of 5 PLLs providing many times that many internal clocks. The PLLs are: - Host PLL. This PLL generates the main core clocks in the host clock domain. It can also be used to generate memory and internal graphics core clocks. It uses the Host clock (H_CLKIN) as a reference. - Memory IO PLL. This PLL optionally generates low jitter clocks for memory IO interface, as opposed to from Host PLL. Uses the Host FSB differential clock (HPL_CLKINP/HPL_CLKINN) as a reference. Low jitter clock source from Memory IO PLL is required for DDR667 and higher frequencies. - PCI Express PLL (82Q965, 82G965, 82P965 (G)MCH only). This PLL generates all PCI Express related clocks, including the Direct Media that connect to the ICH8. This PLL uses the 100 MHz clock (G_CLKIN) as a reference. - Display PLL A. This PLL generates the internal clocks for Display A. It uses D REFCLKIN as a reference. - Display PLL B This PLL generates the internal clocks for Display B. It uses D_REFCLKIN as a reference. - CK505 is the new clock chip required for the Q965, Q963, G965, P965 Express chipset platforms. Figure 10-5. Platform Clocking Diagram Example § ## 11 Electrical Characteristics This chapter contains the (G)MCH absolute maximum electrical ratings, power dissipation values, and DC characteristics. Note: References to SDVO apply to the 82Q965, 82Q963, 82G965 GMCH only. Note: References to DDR2-800 apply to the 82Q965, 82G965 GMCH and 82P965 MCH only. **Note:** References to the PCI Express Interface apply to the 82Q965, 82G965 GMCH and 82P965 MCH only. ### 11.1 Absolute Minimum and Maximum Ratings Table 11-1 specifies the (G)MCH's absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits. At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time its reliability will be severely degraded or not function when returned to conditions within the functional operating condition limits. Although the (G)MCH contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields. Table 11-1. Absolute Minimum and Maximum Ratings | Symbol | Parameter | Min | Max | Uni
t | Note
s | | | |
---|--|------|-------|----------|-----------|--|--|--| | $T_{storage}$ | Storage Temperature | -55 | 150 | °C | 1 | | | | | (G)MCH Core | | | | | | | | | | VCC | 1.25 V Core Supply Voltage with respect to VSS | -0.3 | 1.375 | V | | | | | | Host Interface (533 MHz/800 MHz/1066 MHz) | | | | | | | | | | VTT | System Bus Input Voltage with respect to VSS | -0.3 | 1.32 | V | | | | | | Symbol | Parameter | Min | Max | Uni
t | Note
s | |-----------------|---|------|-------|----------|-----------| | VCCA_HPLL | 1.25 V Host PLL Analog Supply Voltage with respect to VSS | -0.3 | 1.375 | V | | | DDR2 Interfac | e (533 MHz/667 MHz/800MHz) | | | | | | VCCSM | 1.8 V DDR2 System Memory Supply
Voltage with respect to VSS | -0.3 | 4.0 | V | | | VCC_SMCLK | 1.8 V DDR2 Clock System Memory Supply Voltage with respect to VSS | -0.3 | 4.0 | V | | | VCCA_MPLL | 1.25 V System Memory PLL Analog Supply
Voltage with respect to VSS | -0.3 | 1.375 | V | | | PCI Express* | / Intel® SDVO / DMI Interface | | | | | | VCC_EXP | 1.25 V PCI Express* and DMI Supply
Voltage with respect to VSS | -0.3 | 1.375 | V | | | VCCA_EXP | 3.3 V PCI Express* Analog Supply Voltage with respect to VSS | -0.3 | 3.63 | V | | | VCCA_EXPPLL | 1.25 V PCI Express* PLL Analog Supply
Voltage with respect to VSS | -0.3 | 1.375 | V | | | R, G, B / CRT I | DAC Display Interface (8 bit) | | | | | | VCCA_DAC | 3.3 V Display DAC Analog Supply Voltage with respect to VSS | -0.3 | 3.63 | V | | | VCCD_CRT | 1.5 V Display DAC Digital Supply Voltage with respect to VSS | -0.3 | 1.98 | V | | | VCCDQ_CRT | 1.5 V Display DAC Quiet Digital Supply
Voltage with respect to VSS | -0.3 | 1.98 | V | | | VCCA_DPLLA | 1.25 V Display PLL A Analog Supply
Voltage with respect to VSS | -0.3 | 1.375 | V | | | VCCA_DPLLB | 1.25 V Display PLL B Analog Supply
Voltage with respect to VSS | -0.3 | 1.375 | V | | | Controller Link | (Interface | | | | | | VCC_CL | 1.25 V Supply Voltage with respect to VSS | -0.3 | 1.375 | V | | | CMOS Interfac | ee | | | | | | VCC3_3 | 3.3 V CMOS Supply Voltage with respect to VSS | -0.3 | 3.63 | V | | ### NOTE: Possible damage to the (G)MCH may occur if the (G)MCH temperature exceeds 150 °C. Intel does not warrant functionality for parts that have exceeded temperatures above 150 °C since this exceeds Intel's specification. ### 11.1.1 Current Consumption Table 11-2 shows the current consumption for the (G)MCH in the Advanced Configuration and Power Interface (ACPI) S0 state. $I_{\text{CC_MAX}}$ values are determined on a per-interface basis, at the highest frequencies for each interface. Sustained current values or maximum current values cannot occur simultaneously on all interfaces. Sustained values are *measured* sustained RMS maximum current consumption and include leakage estimates. The measurements are made with typical silicon at 45° C. The maximum values are maximum theoretical pre-silicon calculated values. In some cases, the sustained measured values have exceeded the maximum values. Table 11-2. Current Consumption in SO | Symbol | Parameter | Signal
Names | Sustained | Max | Unit | Notes | |--------------------------|---|-----------------|-----------|-------|------|-------| | I _{VCC} | 1.25 V Core Supply Current
(Discrete Gfx) (82Q965,
82G965 , 82P965 (G)MCH only) | VCC | 7.2 | 9.3 | А | 1,2 | | I _{VCC} | 1.25 V Core Supply Current
(Integrated Gfx) (82Q965,
82G965, 82Q963 GMCH only) | VCC | 15.5 | 18.9 | А | 1,2 | | I _{VCCSM} | DDR2 System Memory Interface (1.8 V) Supply Current | VCCSM | 2.26 | 3.7 | А | 1,2,3 | | I _{VCC_SMCLK} | DDR2 System Memory Clock
Interface (1.8 V) Supply Current | VCC_SMCLK | 2.20 | 250 | mA | | | I _{VCC_EXP} | 1.25 V PCI Express* / Intel®
SDVO and DMI Supply Current | VCC_EXP | 1.76 | 2.47 | А | 2 | | I _{VCC_CL} | 1.25 V Controller Supply Current | VCC_CL | 2.64 | 3.8 | Α | 2 | | I _{VTT} | System Bus Supply Current | VTT | 950 | 984 | mA | 1 | | I _{VCCA_EXP} | 3.3 V PCI Express* / Intel [®]
SDVO and DMI Analog Supply
Current | VCCA_EXP | 0.36 | 0.36 | mA | | | I _{VCCA_DAC} | 3.3 V Display DAC Analog Supply
Current | VCCA_DAC | 70 | 65.8 | mA | | | I _{VCC3_3} | 3.3 V CMOS Supply Current | VCC3_3 | 21 | 15.8 | mA | | | $I_{\text{VCCD_CRT}}$ | 1.5 V Display Digital Supply Current | VCCD_CRT | | 30 | mA | 3 | | I _{VCCDQ_CRT} | 1.5 V Display Quiet Digital Supply
Current | VCCDQ_CRT | 100 | 0.033 | mA | | | I _{VCCA_EXPPLL} | 1.25 V PCI Express* / Intel® SDVO and DMI PLL Analog Supply Current | VCCA_EXPPLL | 70 | 71.6 | mA | | | I _{VCCA_HPLL} | 1.25 V Host PLL Supply Current | VCCA_HPLL | 20 | 67.9 | mA | | | I _{VCCA_DPLLA} | 1.25 V Display PLL A and PLL B | VCCA_DPLLA | 30 | 90.6 | mA | | | I _{VCCA_DPLLB} | Supply Current | VCCA_DPLLB | 40 | 90.6 | | | | Symbol | Parameter | Signal
Names | Sustained | Max | Unit | Notes | |------------------|--|-----------------|-----------|-----|------|-------| | I_{VCCA_MPLL} | System Memory PLL Analog
(1.8 V) Supply Current | VCCA_MPLL | 90 | 225 | mA | | ### NOTES: - Measurements are for current coming through chipset's supply pins. Rail includes DLLs (and FSB sense amps on VCC). - 3. Sustained Measurements are combined because one voltage regulator on the platform supplies both rails on the (G)MCH. #### 11.2 **Signal Groups** The signal description includes the type of buffer used for the particular signal: | PCI
Express* /
SDVO | PCI Express* / Intel® SDVO interface signals. These signals are compatible with PCI Express* 1.0 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+-D-)*2 = 1.2V$ max. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V. | |---------------------------|---| | DMI | Direct Media Interface signals. These signals are compatible with PCI Express* 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+-D-)*2 = 1.2V$ max. Single-ended maximum = 1.25 V. Single-ended minimum = 0 V. | | GTL+ | Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification for complete details. The (G)MCH integrates most GTL+ termination resistors. | | HCSL | Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+ - D-) * 2 = 1.4V$. Single ended input tolerant from -0.35 V to 1.2 V. Typical crossing voltage 0.35 V. | | SSTL-1.8 | Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V tolerant. | | CMOS | CMOS buffers | | Analog | Analog reference or output. May be used as a threshold voltage or for buffer compensation. | Table 11-3. Signal Groups | Signal Type | Signals | |--|---| | Host Interface Signal Groups | | | GTL+ Input/Outputs | HADS#, HBNR#, HBREQ0#, HDBSY#, HDRDY#,
HDINV[3:0]#, HA[35:3]#, HADSTB[1:0]#, HD[63:0]#,
HDSTBP[3:0]#, HDSTBN[3:0]#, HHIT#, HHITM#,
HREQ[4:0]#, HLOCK# | | GTL+ Common Clock Outputs | HBPRI#, HCPURST#, HDEFER#, HTRDY#, HRS[2:0]# | | Analog Host Interface Reference and Compensation Signals | HDVREF, HACCVREF, HSWING, HRCOMP, HSCOMP, HSCOMP# | | GTL+ Input | BSEL[2:0] | | PCI Express* Graphics and Int | tel® SDVO Interface Signal Groups | | PCI Express* / Intel® sDVO Input | PCI Express* Interface ¹ :_EXP_RXN[15:0],
EXP_RXP[15:0], | | | SDVO Interface ¹ : SDVO_TVCLKIN+, SDVO_TVCLKIN-, SDVOB_INT+, SDVOB_INT-, SDVO_STALL+, SDVO_STALL-, SDVOC_INT+, SDVOC_INT- | | PCI Express* / SDVO Output | PCI Express* Interface ¹ : EXP_TXN[15:0],
EXP_TXP[15:0] | | | SDVO Interface ¹ : SDVOB_RED+, SDVOB_RED-, SDVOB_GREEN+, SDVOB_GREEN-, SDVOB_BLUE+, SDVOB_BLUE-, SDVOB_CLK+, SDVOB_CLK-, SDVOC_RED+/SDVOB_ALPHA+, SDVOC_RED-/SDVOB_ALPHA-, SDVOC_GREEN-, SDVOC_BLUE+, SDVOC_BLUE-, SDVOC_CLK+, SDVOC_CLK- | | CMOS I/O OD | SDVO_CTRLCLK, SDVO_CTRLDATA | | Analog PCI Express* / SDVO
Interface Compensation Signals | EXP_COMPO, EXP_COMPI | | Direct Media Interface Signal | Groups | | DMI Input | DMI_RXN[3:0], DMI_RXP[3:0] | | DMI Output | DMI_TXN[3:0], DMI_TXP[3:0] | | DDR2 Interface Signal Groups | | | SSTL - 1.8 DDR2 CMOS I/O | SDQ_A[63:0], SDQ_B[63:0], SDQS_A[7:0],
SDQS_A[7:0]#, SDQS_B[7:0], SDQS_B[7:0]# | | SSTL - 1.8 DDR2 CMOS Output | SDM_A[7:0], SDM_B[7:0], SMA_A[14:0], SMA_B[14:0], SBS_A[2:0], SBS_B[2:0], SRAS_A#, SRAS_B#, SCAS_A#, SCAS_B#, SWE_A#, SWE_B#, SODT_A[3:0], SODT_B[3:0], SCKE_A[3:0], SCKE_B[3:0], SCS_A[3:0]#, SCS_B[3:0]#, SCLK_A[5:0], SCLK_A[5:0]#, SCLK_B[5:0]# | | DDR2 Reference and Comp.
Voltages | SRCOMP[3:0], SMVREF, SRCOMP_VOL, SRCOMP_VOH | | Signal Type | Signals | |---|---| | Controller Link Signal Groups | | | CMOS I/O OD | CL_DATA, CL_CLK | | CMOS Input | CL_RST#, CL_PWROK | | Analog Controller Link
Reference Voltage | CL_VREF | | R, G, B / CRT DAC Display Sign | nal Groups | | Analog Current Outputs | RED, RED#, GREEN, GREEN#, BLUE, BLUE# | | Analog/Ref DAC Miscellaneous | REFSET ² | | CMOS I/O OD | DDC_CLK, DDC_DATA | | HVCMOS Output
| HSYNC, VSYNC | | HCSL | HCLKN, HCLKP, DREFCLKP, DREFCLKN, GCLKP, GCLKN | | Reset, and Miscellaneous Sign | al Groups | | CMOS Input | EXP_EN, EXP_SLR, RSTIN#, PWROK | | CMOS Output | ICH_SYNC# | | Misc. | TEST[2:0] | | I/O Buffer Supply Voltages | | | System Bus Input Supply Voltage | VIT | | 1.25 V PCI Express* / Intel®
sDVO Supply Voltages | VCC_EXP | | 3.3 V PCI Express* / Intel®
sDVO Analog Supply Voltage | VCCA_EXP | | 1.8 V DDR2 Supply Voltage | VCCSM | | 1.8 V DDR2 Clock Supply
Voltage | VCC_SMCLK | | 1.25 V (G)MCH Core Supply
Voltage | VCC | | 1.25 V Controller Supply
Voltage | VCC_CL | | 3.3 V CMOS Supply Voltage | VCC3_3 | | 3.3 V R, G, B / CRT DAC Display
Analog Supply Voltage | VCCA_DAC | | 1.5 V DAC Digital Supply
Voltages | VCCD_CRT, VCCDQ_CRT | | PLL Analog Supply Voltages | VCCA_HPLL, VCCA_EXPPLL, VCCA_DPLLA, VCCA_DPLLB, VCCA_MPLL | - See Chapter 2 for SDVO and PCI Express* Pin Mapping. Current Mode Reference pin. DC Specification is not required ### 11.3 Buffer Supply and DC Characteristics ### 11.3.1 I/O Buffer Supply Voltages The I/O buffer supply voltage is measured at the (G)MCH package pins. The tolerances shown in Table 11-4 are inclusive of all noise from DC up to 20 MHz. In the lab, the voltage rails should be measured with a bandwidth limited oscilloscope with a roll off of 3 dB/decade above 20 MHz under all operating conditions. Table 11-4 indicates which supplies are connected directly to a voltage regulator or to a filtered voltage rail. For voltages that are connected to a filter, they should me measured at the *input* of the filter. If the recommended platform decoupling guidelines cannot be met, the system designer will have to make tradeoffs between the voltage regulator output DC tolerance and the decoupling performance of the capacitor network to stay within the voltage tolerances listed in Table 11-4. Table 11-4. I/O Buffer Supply Voltage | Symbol | Parameter | Min | Nom | Max | Unit | Notes | |---|---|-------|------|-------|------|-------| | VCCSM | DDR2 I/O Supply Voltage | 1.7 | 1.8 | 1.9 | V | | | VCC_SMCLK | DDR2 I/O Supply Voltage | 1.7 | 1.8 | 1.9 | V | 2 | | VCC_EXP | SDVO, PCI-Express* Supply Voltage | 1.188 | 1.25 | 1.313 | V | | | VCCA_EXP | SDVO, PCI-Express* Analog Supply
Voltage | 3.135 | 3.3 | 3.465 | V | 2 | | VTT | System Bus Input Supply Voltage | 1.14 | 1.2 | 1.26 | V | | | VCC | (G)MCH Core Supply Voltage | 1.188 | 1.25 | 1.313 | V | | | VCC_CL | Controller Supply Voltage | 1.188 | 1.25 | 1.313 | V | | | VCC3_3 | CMOS Supply Voltage | 3.135 | 3.3 | 3.465 | V | | | VCCA_DAC | Display DAC Analog Supply Voltage | 3.135 | 3.3 | 3.465 | V | | | VCCD_CRT | Display Digital Supply Voltage | 1.425 | 1.5 | 1.575 | V | 1 | | VCCDQ_CRT | Display Quiet Digital Supply Voltage | 1.425 | 1.5 | 1.575 | V | 1 | | VCCA_HPLL,
VCCA_EXPPLL,
VCCA_DPLLA,
VCCA_DPLLB,
VCCA_MPLL | Various PLLs' Analog Supply Voltages | 1.188 | 1.25 | 1.313 | V | 2 | ### NOTES: - 1. The VCCD_CRT and VCCDQ_CRT can also operate at a nominal $1.8~V~\pm~5\%$ input voltage. Only the 1.5~V nominal voltage setting will be validated internally. - 2. These rails are filtered from other voltage rails on the platform and should be measured at the *input* of the filter. ### 11.3.2 General DC Characteristics **Table 11-5. DC Characteristics** | | 1 | | † | 1 | 1 | | |---------------------|--|------------------|----------------|----------------------------|------|------------------------------------| | Symbol | Parameter | Min | Nom | Max | Unit | Notes | | Reference | Voltages | | | | | | | HDVREF,
HACCVREF | Host Data, Address, and
Common Clock Signal
Reference Voltages | 0.63 x VTT -2% | 0.63 x VTT | 0.63 x VTT +2% | V | | | HSWING | Host Compensation
Reference Voltage | 0.25 x VTT -2% | 0.25 x VTT | 0.25 x VTT+2% | V | | | CL_VREF | Controller Link Reference
Voltage | 0.274 x VCC_CL | 0.279 x VCC_CL | 0.284 x VCC_CL | | | | SMVREF | DDR2 Reference Voltage | 0.49 x VCCSM | 0.50 x VCCSM | 0.51 x VCCSM | V | | | Host Inter | face | | | | | | | V_{IL_H} | Host GTL+ Input Low
Voltage | -0.10 | 0 | (0.63 x VTT) - 0.1 | V | | | V _{IH_H} | Host GTL+ Input High
Voltage | (0.63 x VTT)+0.1 | VTT | VTT +0.1 | V | | | V_{OL_H} | Host GTL+ Output Low
Voltage | Ι | _ | (0.25 x VTT)+0.1 | V | | | V _{ОН_Н} | Host GTL+ Output High
Voltage | VTT - 0.1 | _ | VTT | V | | | I _{OL_H} | Host GTL+ Output Low
Current | 1 | _ | VTTmax * (1-0.25) / Rttmin | mA | Rtt _{min} = 47.5Ω | | I _{LEAK_H} | Host GTL+ Input Leakage
Current | _ | _ | 20 | μА | $V_{OL} < V_{PD} < V_{TT}$ | | C _{PAD} | Host GTL+ Input
Capacitance | 2 | _ | 2.5 | pF | | | C _{PCKG} | Host GTL+ Input
Capacitance (common
clock) | 0.90 | _ | 2.5 | pF | | | DDR2 Inte | rface | | | | | | | V _{IL(DC)} | DDR2 Input Low Voltage | _ | _ | SMVREF - 0.125 | V | | | V _{IH(DC)} | DDR2 Input High Voltage | SMVREF + 0.125 | _ | | V | | | V _{IL(AC)} | DDR2 Input Low Voltage | _ | _ | SMVREF - 0.250 | V | | | V _{IH(AC)} | DDR2 Input High Voltage | SMVREF + 0.250 | _ | | V | | | V _{OL} | DDR2 Output Low Voltage | _ | _ | 0.3 | V | 1 | | V _{OH} | DDR2 Output High
Voltage | 1.5 | _ | | V | 1 | | I _{Leak} | Input Leakage Current | _ | _ | ±20 | μΑ | 4 | | I _{Leak} | Input Leakage Current | _ | _ | ±550 | μΑ | 5 | | , | | | | | | | | Symbol | Parameter | Min | Nom | Max | Unit | Notes | |--------------------------|---|-----------------|-------------------|-------|------|----------------| | C _{I/O} | DDR2 Input/Output Pin
Capacitance | 3.0 | _ | 6.0 | pF | | | 1.25 V PCI | Express* Interface 1.1 (i | ncludes PCI Exp | oress* and Intel® | SDVO) | | | | V _{TX-DIFF P-P} | Differential Peak to Peak
Output Voltage | 0.800 | _ | 1.2 | V | 2 | | V _{TX_CM-ACp} | AC Peak Common Mode
Output Voltage | _ | _ | 20 | mV | | | Z _{TX-DIFF-DC} | DC Differential TX
Impedance | 80 | 100 | 120 | Ω | | | V _{RX-DIFF p-p} | Differential Peak to Peak
Input Voltage | 0.175 | _ | 1.2 | V | 3 | | V_{RX_CM-ACp} | AC Peak Common Mode
Input Voltage | _ | _ | 150 | mV | | | Input Cloc | ks | | | | • | | | V _{IL} | Input Low Voltage | -0.150 | 0 | N/A | V | | | V _{IH} | Input High Voltage | 0.660 | 0.710 | 0.850 | V | | | V _{CROSS(ABS)} | Absolute Crossing Voltage | 0.300 | N/A | 0.550 | V | 6,7,8,9 | | $\Delta V_{CROSS(REL)}$ | Range of Crossing Points | N/A | N/A | 0.140 | V | 9 | | C _{IN} | Input Capacitance | 1 | _ | 3 | pF | | | SDVO_CTR | RLDATA, SDVO_CTRLCLK | | • | | | | | V _{IL} | Input Low Voltage | _ | _ | 0.75 | V | | | V _{IH} | Input High Voltage | 1.75 | _ | | V | | | I _{LEAK} | Input Leakage Current | _ | _ | ± 10 | μА | | | C _{IN} | Input Capacitance | _ | _ | 10.0 | pF | | | I_{OL} | Output Low Current
(CMOS Outputs) | _ | _ | 7.8 | mA | @ 50%
swing | | Іон | Output High Current
(CMOS Outputs) | -1 | _ | _ | mA | @ 50%
swing | | V _{OL} | Output Low Voltage
(CMOS Outputs) | _ | _ | 0.4 | V | | | V _{OH} | Output High Voltage
(CMOS Outputs) | 2.25 | _ | _ | V | | | DDC_DATA | A, DDC_CLK | | | | • | | | V _{IL} | Input Low Voltage | _ | _ | 0.9 | V | | | V _{IH} | Input High Voltage | 2.1 | _ | _ | V | | | I _{LEAK} | Input Leakage Current | _ | _ | ± 10 | μА | | | C _{IN} | Input Capacitance | _ | _ | 10.0 | pF | | | I_{OL} | Output Low Current
(CMOS Outputs) | _ | _ | 27.0 | mA | @ 50%
swing | | I_{OH} | Output High Current
(CMOS Outputs) | -1 | _ | _ | mA | @ 50%
swing | | Symbol | Parameter | Min | Nom | Max | Unit | Notes | |---------------------|---------------------------------------|------------------|-----|--------------------|------|----------------------------| | V _{OL} | Output Low Voltage
(CMOS Outputs) | _ | _ | 0.4 | V | | | V _{OH} | Output High Voltage
(CMOS Outputs) | 2.7 | _ | _ | V | | | CL_DATA | , CL_CLK | | | | | | | V _{IL} | Input Low Voltage | _ | _ | 0.277 | V | | | V _{IH} | Input High Voltage | 0.477 | _ | _ | V | | | I _{LEAK} | Input Leakage Current | _ | _ | ± 20 | μΑ | | | C _{IN} | Input Capacitance | _ | _ | 1.5 | pF | | | I_{OL} | Output Low Current (CMOS Outputs) | _ | _ | 1.0 | mA | @V _{oL_ні}
max | | Іон | Output High Current
(CMOS Outputs) | 6.0 | _ | _ | mA | @V _{он_ні}
min | | V _{OL} | Output Low Voltage
(CMOS Outputs) | _ | _ | 0.06 | V | | | V _{OH} | Output High Voltage
(CMOS Outputs) | 0.6 | _ | _ | V | | | PWROK, (| CL_PWROK, RSTIN# | | | | 1 | | | V_{IL} | Input Low Voltage | _ | _ | 0.3 | V | | | V_{IH} | Input High Voltage | 3.0 | _ | _ | V | | | \mathbf{I}_{LEAK} | Input Leakage Current | _ | _ | ±100 | μΑ | | | C_{IN} | Input Capacitance | _ | _ | 6.0 | pF | | | CL_RST# | | | | | | | | V _{IL} | Input Low Voltage | _ | _ | 0.13 | V | | | V _{IH} | Input High Voltage | 1.17 | _ | | V | | | I _{LEAK} | Input Leakage Current | _ | _ | ±20 | μА | | | C _{IN} | Input Capacitance | _ | _ | 5.0 | pF | | | ICH_SYN | C# | | | | | | | I _{OL} | Output Low Current
(CMOS Outputs) | _ | _ | 2.0 | mA | @V _{OL_HI}
max | | Іон | Output High Current
(CMOS Outputs) | -2.0 | _ | | mA | @V _{он_ні}
min | | V _{OL} | Output Low Voltage
(CMOS Outputs) | _ | _ | 0.33 | ٧ | | | V _{OH} | Output High Voltage
(CMOS Outputs) | 2.97 | _ | | V | | | EXP_SLR, | EXP_EN | | | | | | | V _{IL} | Input Low Voltage | -0.10 | 0 | (0.63 x VTT) - 0.1 | V | | | V _{IH} | Input High Voltage | (0.63 x VTT)+0.1 | VTT | VTT +0.1 | V | | | Symbol | Parameter | Min | Nom | Max | Unit | Notes | | | | |-------------------|---------------------------------------|-----|-----|------|------|-----------------------------|--|--|--| | I _{LEAK} | Input Leakage Current | _ | _ | 20 | μА | $V_{OL} < V_{Pad} < V_{TT}$ | | | | | C _{IN} | Input
Capacitance | 2 | _ | 2.5 | pF | | | | | | HSYNC, VS | HSYNC, VSYNC | | | | | | | | | | I _{OL} | Output Low Current
(CMOS Outputs) | _ | _ | 35.0 | mA | @V _{oL_ні}
max | | | | | І _{он} | Output High Current
(CMOS Outputs) | -1 | _ | | mA | @V _{он_ні}
min | | | | | V _{OL} | Output Low Voltage
(CMOS Outputs) | _ | _ | 0.5 | V | | | | | | V _{OH} | Output High Voltage
(CMOS Outputs) | 2.4 | _ | | V | | | | | ### NOTES: - 1. Determined with 2x (G)MCH DDR2 Buffer Strength Settings into a 50 Ω to 0.5xVCCSM test load. - 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Transmitter compliance eye diagram of PCI Express* specification and measured over any 250 consecutive TX UIs. - 3. Specified at the measurement point over any 250 consecutive Uls. The test load shown in Receiver compliance eye diagram of PCI Express* spec should be used as the RX device when taking measurements. - Applies to pin to VCC or VSS leakage current for the SDQ_A[63:0]# and SDQ_B[63:0]# signals. - 5. Applies to pin to pin leakage current between SDQS_A[7:0], SDQS_A[7:0]#, SDQS_B[7:0]#, and SDQS_B[7:0]# signals. - 6. Crossing voltage defined as instantaneous voltage when rising edge of BCLK0 equals falling edge of BCLK1. - 7. V_{Havg} is the statistical average of the V_{H} measured by the oscilloscope. - 8. The crossing point must meet the absolute and relative crossing point specifications simultaneously. # 11.3.3 R, G, B / CRT DAC Display DC Characteristics (Intel® 82Q965, 82Q963, 82G965 GMCH Only) Table 11-6. R, G, B / CRT DAC Display DC Characteristics: Functional Operating Range (VCCA_DAC = $3.3 \text{ V} \pm 5\%$) | Parameter | Min | Typical | Max | Unit
s | Notes | |--|---------|---------|-------|-----------|---| | DAC Resolution | 8 | _ | _ | Bits | 1 | | Max Luminance (full-scale) | 0.665 | 0.700 | 0.770 | V | 1, 2, 4 (white
video level
voltage) | | Min Luminance | _ | 0.000 | _ | V | 1, 3, 4 (black
video level
voltage) | | LSB Current | _ | 73.2 | _ | μА | 4,5 | | Integral Linearity (INL) | -1.0 | _ | +1.0 | LSB | 1,6 | | Differential Linearity (DNL) | -1.0 | _ | +1.0 | LSB | 1,6 | | Video channel-channel voltage amplitude mismatch | _ | _ | 6 | % | 7 | | Monotonicity | Ensured | | | | | ### NOTES: - 1. Measured at each R, G, B termination according to the VESA Test Procedure Evaluation of Analog Display Graphics Subsystems Proposal (Version 1, Draft 4, December 1, 2000). - 2. Maximum steady-state amplitude - 3. Minimum steady-state amplitude - 4. Defined for a double 75 Ω termination. - 5. Set by external reference resistor value. - 6. INL and DNL measured and calculated according to VESA Video Signal Standards. - 7. Maximum full-scale voltage difference among R, G, B outputs (percentage of steady-state full-scale voltage). § ## 12 Ballout and Package Information This chapter provides the ballout and package information. ### 12.1 Ballout Figure 12-1, Figure 12-2, and Figure 12-3 show the (G)MCH ballout from a top-of-package view. Table 12-1 provides ballout list ordered by signal name. *Note:* Notes for Figure 12-1, Figure 12-2, and Figure 12-3, and Table 12-1. - 1. Balls that are listed as RSVD are reserved. - Some balls marked as reserved (RSVD) are used in XOR testing. See Chapter 13 for details. - 3. Balls that are listed as NC are No Connects. - 4. Analog Display Signals (RED, RED#, GREEN, GREEN#, BLUE, BLUE#, REFSET, HSYNC, VSYNC, DDC_CLK, DDC_DATA) and the SDVO_CTRLCLK and SDVO_CTRLDATA signals are not used on the 82P965 MCH. Contact your Intel field representative for proper termination of the corresponding balls. - 5. For the 82Q965 and 82G965 GMCH, the PCI Express and SDVO signals are multiplexed. However, only the PCI Express signal name is included in the following ballout figures and table. See Section 2.10 for the PCI Express to SDVO signal name mapping. - 6. The 82Q963 GMCH does not have a PCI Express Interface. Thus, these balls are dedicated to the SDVO interface. See Section 2.10 for the PCI Express to SDVO signal name mapping. Figure 12-1. (G)MCH Ballout Diagram Ballout Diagram (Top View Left – Columns 43–30) | | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | | |--------|---------------|--------------------|---------------------|----------|----------------|--------------|--------------|----------|--------------|-----------------|----------------|----------|----------|---------|--------| | вс | TEST0 | NC | VSS | | VCCSM | | VSS | | | VCCSM | | VSS | | VCCSM | вс | | вв | NC | VCC_
SMCLK | VCC_
SMCLK | SRCOMP2 | VCCSM | SCS_A3# | VCCSM | | SODT_A2 | SWE_A# | SRAS_A# | VCCSM | SODT_B3 | SCS_B1# | ВВ | | ва | VCC_
SMCLK | VCC_
SMCLK | | SRCOMP3 | SODT_A3 | SODT_A1 | | | SCS_A1# | SCS_A2# | SBS_A0 | | SMA_A0 | SODT_B1 | ВА | | AY | | VCC_
SMCLK | VSS | VSS | | SMA_A13 | SODT_A0 | | SCAS_A# | | SMA_A10 | VCCSM | SCS_B3# | | AY | | AW | VSS | RSVD | VSS | | SDQS_B4 | | SDQ_B32 | | SCS_A0# | | SCLK_A2# | SBS_A1 | SCLK_B0# | | AW | | AV | | SDQ_A32 | SDQ_A37 | SDQ_A36 | | SDQ_B33 | VSS | | VSS | | SCLK_A2 | SCLK_B2 | SCLK_B0 | | AV | | AU | SDM_A4 | VSS | | SDQ_A33 | SDQS_B4# | VSS | SDM_B4 | | SDQ_B36 | | SCLK_A5# | VSS | SCLK_A0 | | AU | | AT | | | | | | | | | | | SCLK_A5 | SCLK_B2# | VSS | | AT | | AR | | SDQ_A38 | SDQS_A4 | SDQS_A4# | SDQ_B44 | VSS | SDQ_B39 | | SDQ_B37 | | VSS | VSS | SCLK_A0# | | AR | | AP | VSS | SDQ_A34 | SDQ_A39 | | | | | | | | | SCLK_B5# | SCLK_A3# | | AP | | AN | | SDQ_A45 | SDQ_A40 | SDQ_A44 | SDQ_A35 | VSS | SDQ_B35 | SDQ_B34 | SDQ_B38 | | SCLK_B5 | RSVD | VSS | | AN | | AM | SDM_A5 | VSS | | VSS | SDQ_A41 | SDQ_B41 | SDM_B5 | VSS | SDQ_B40 | SDQ_B45 | VSS | | RSVD | | AM | | AL | | SDQ_A46 | SDQS_A5 | SDQS_A5# | SDQ_A47 | SDQ_B43 | SDQ_B46 | VSS | SDQS_B5 | SDQS_B5# | VSS | SDQ_B47 | RSVD | | AL | | AK | VSS | SDQ_A42 | SDQ_A43 | | | | | | | | | | | VCC_CL | AK | | AJ | | SDQ_A52 | SDQ_A53 | SDQ_A48 | VSS | SDQ_B49 | SDQ_B52 | VSS | SDQ_B53 | SDQ_B42 | VSS | RSVD | VCC_CL | VCC_CL | AJ | | АН | SDQ_A49 | VSS | | | | | | | | | | | | | АН | | AG | | SDQS_A6 | SDQS_A6# | SDM_A6 | SDM_B6 | SDQ_B48 | VSS | SDQS_B6# | SDQS_B6 | VSS | SDQ_B54 | RSVD | VCC_CL | VCC_CL | AG | | AF | VSS | SDQ_A55 | SDQ_A54 | | SDQ_A50 | SDQ_B61 | VSS | VSS | SDQ_B50 | SDQ_B55 | SDQ_B51 | RSVD | VCC_CL | VCC_CL | AF | | AE | 000 457 | SDQ_A60 | SDQ_A61 | SDQ_A51 | 1400 | 0011 07 | 1400 | 000 056 | 1400 | 000 000 | 1/00 | 1400 01 | V(00, 0) | 1400 01 | AE | | AD | SDQ_A57 | VSS | CDOC 47# | SDQ_A56 | VSS
SDQ A62 | SDM_B7 | VSS | SDQ_B56 | VSS | SDQ_B60 | VSS | VCC_CL | VCC_CL | VCC_CL | AD | | AC | VSS | SDQS_A7
SDQ_A63 | SDQS_A7#
SDQ A58 | SDM_A7 | SDQ_A62 | VSS | SDQS_B7# | SDQS_B7 | VSS | SDQ_B62 | SDQ_B57 | VCC_CL | VCC_CL | VCC_CL | AC | | AB | 133 | HBREQ0# | HRS1# | SDQ_A59 | SM_ | VSS | HA35# | SDQ_B59 | VSS | SDQ_B58 | SDQ_B63 | VCC_CL | VCC_CL | VCC_CL | AB | | AA | LILITTA # | | 111/31# | | SLEWIN1 | | | | | | | VCC_CL_ | | | AA | | Υ | HHITM# | VSS | | HTRDY# | HA34# | HA33# | VSS | HA32# | VSS | HA29# | VSS | PLL | VCC_CL | VCC_CL | Υ | | w | VCC | HBNR# | HDRDY# | HADS# | VICC | 11421# | V/CC | 114.22.# | 11420# | VCC | 11427# | VICC | DCMD | VICE CI | w | | V | VSS | HA30#
HHIT# | HLOCK#
HRS0# | HDBSY# | VSS
HRS2# | HA31#
VSS | VSS
HA17# | HA22# | HA28#
VSS | VSS
HADSTB1# | HA27#
HA25# | VSS | RSVD | VCC_CL | V | | U
- | HDEFER# | VSS | TIK50# | HDB31# | TIK32# | V33 | TIA17# | HA24# | V33 | TIADSTB1# | TIA25# | HCLKN | RSVD | RSVD | U
_ | | T | TIDEI EK# | HD4 | HD2# | HD0# | HA21# | HA23# | HA19# | VSS | HA26# | HA14# | VSS | HCLKP | VSS | RSVD | T | | R
P | VSS | HA20# | HD1# | 1150# | TIAZIT | TIAZST | TIALS# | 133 | TIAZOT | TIALTI | V33 | TICERI | V33 | VSS | R
P | | N | | HD7 | HD6# | HD3# | HA18# | HA16# | HA12# | VSS | HA15# | HA10# | VSS | HA9# | VSS | | N | | м | HDSTBN0# | VSS | | HDINV0# | HD5# | HA11# | VSS | HA13# | VSS | HADSTB0# | VSS | | HD34# | | М | | L | | HD10# | HD8# | HDSTBP0# | HA4# | HREQ2# | HA6# | HA7# | HREQ1# | | VSS | VSS | VSS | | L | | к | VSS | HA8# | HD12# | | | | | | | | | HD29# | HD36# | | к | | J | | HA3# | HD11# | HA5# | HD9# | VSS | HREQ4# | | VSS | | HDINV1# | VSS | HD32# | | J | | н | | | | | | | | | | | HDSTBN1# | HD30# | VSS | | н | | G | HREQ3# | VSS | | HD13# | HBPRI# | VSS | HD19# | | HDSTBP1# | | HD25# | VSS | HD37# | | G | | F | | HD15# | HD14# | HREQ0# | | HD18# | VSS | | VSS | | HD27# | HD33# | HD39# | | F | | E | VSS | HD20# | HD50# | | HD21# | | HD22# | | HD28# | | HDINV3# | VSS | HD35# | | E | | D | | HD52# | HD17# | VSS | | HDSTBN3# | HD57# | | HD54# | | HD59# | HD63# | VSS | | D | | С | VSS | HD16# | | HD53# | HD23# | HD56# | | | HD49# | HD60# | HD48# | | HCPURST# | VTT | С | | В | NC | NC | HD51# | HD55# | HD24# | HDSTBP3# | VSS | | HD61# | HD31# | HD58# | VSS | VSS | VTT | В | | Α | TEST2 | NC | VSS | | VSS | | HD26# | | | VSS | | HD62# | | VTT | Α | | | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | | Figure 12-2. (G)MCH Ballout Diagram (Top View Middle– Columns 29–15) | | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | | |-------|----------------|-------|--------------|----------------|-------------|---------------|---------------|----------------|----------------|--------------|---------|--------------|---------------|--------------|-----------------|----| | вс | | VSS | | VCCSM | | VSS | | VCCSM | | SCKE_A0 | | VCCSM | | SMA_B3 | | вс | | вв | SODT_B2 | VCCSM | SCS_B0# | VCCSM | SMA_A1 | VCCSM | SMA_A8 | SMA_A11 | SBS_A2 | VCCSM | RSVD | VCCSM | SMA_B0 | VCCSM | SMA_B6 | ВВ | | ВА | SODT_B0 | | SWE_B# | SMA_A2 | SMA_A3 | | SMA_A5 | SMA_A9 | SMA_A14 | | SCKE_A3 | SBS_B1 | SMA_B2 | | SMA_B5 | ВА | | AY | SMA_B13 | | SCS_B2# | | SMA_A4 | SMA_A6 | SMA_A7 | | SCKE_A2 | SCKE_A1 | SBS_B0 | | SMA_B1 | | SMA_B8 | AY
 | AW | SCAS_B# | | SCLK_B4# | SRAS_B# | | VCCSM | SDQ_B29 | | SMA_A12 | VCCSM | | SMA_B10 | SDQ_B23 | | SMA_B4 | AW | | AV | SCLK_B4 | | VSS | VCCSM | | SDQ_B24 | VSS | | VSS | SDQ_A31 | | VCCSM | VSS | | SDQ_B22 | AV | | AU | SCLK_B3 | | SCLK_B1 | SDQS_
B3# | | VSS | SDQ_B28 | | SDQ_A26 | VSS | | SDQS_A3# | SDQ_B18 | | SDQ_B16 | AU | | AT | VSS | | SCLK_B1# | SDQ_B26 | | SDQS_B3 | SDQ_B25 | | SDQ_A27 | SDQS_A3 | | SDQ_A24 | SDQ_B19 | | VSS | AT | | AR | SCLK_B3# | | VSS | VSS | | SDQ_B30 | VSS | | VSS | VSS | | SDQ_A25 | VSS | | SDQS_B2# | AR | | AP | SCLK_A3 | | SCLK_A1 | SDQ_B27 | | VSS | SDM_B3 | | SM_
SLEWIN0 | SDQ_A30 | | VSS | SDQ_A28 | | SDQS_B2 | AP | | AN | VSS | | SCLK_A1# | SDQ_B31 | | VSS | VSS | | RSVD | VSS | | SDM_A3 | SDQ_A29 | | VSS | AN | | AM | VSS | | SCLK_A4# | SCLK_A4 | | VSS | VSS | | RSVD | VSS | | RSTIN# | PWROK | | CL_
PWROK | AM | | AL | VCC_CL | | VCC_CL | AL | | AK | VCC_CL | | VCC_CL | AK | | AJ | VCC_CL | | VCC_CL | AJ | | АН | | | | | | | | | | | | | | | | АН | | AG | VCC_CL | | VCC_CL | VCC_CL | VCC | VCC | AG | | AF | VCC_CL | | VCC_CL | VCC | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VCC | | VCC | AF | | AE | | | VCC | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VSS | VCC | | | AE | | AD | VCC_CL | | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VCC | | VCC | AD | | AC | VCC_CL | | VCC | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VSS | VCC | | VCC | AC | | AB | | | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VCC | | | АВ | | AA | VCC_CL | | VCC | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VSS | VCC | | VCC | AA | | Υ | VCC_CL | | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VCC | | VCC | Υ | | w | | | VCC | VCC | VCC | VSS | VCC | VSS | VCC | VSS | VCC | VCC | VCC | | | w | | v | VCC_CL | | VCC | VCC | ٧ | | U | VCC_CL | | VCC_CL | VCC | VCC | U | | Т | | | | | | | | | | | | | | | | Т | | R | RSVD | | VTT | VTT | | VTT | VTT | | VSS | VCC | | VCC | VCC | | VCC | R | | Р | VTT | | VTT | VTT | | VTT | VTT | | VSS | VCC | | VSS | VSS | | VCC | Р | | N | VTT | | VSS | VTT | | VTT | VTT | | VSS | NC . | | RSVD | RSVD | | RSVD | N | | М | VTT | | VSS | HD47# | | VTT | VTT | | VSS | RSVD | | RSVD | VSS | | VSS | М | | L | VSS | | HD42# | HD45# | | VTT | VTT | | VSS | VSS | | RSVD | RSVD | | RSVD | L | | к | HD38#
HD40# | | HD43#
VSS | VSS | | VTT | VTT | | VSS | ALLZTEST | | VSS
BSEL2 | RSVD | | EXP_RXP1 | | | J
 | VSS | | HDSTBN2# | HD46#
HD44# | | VTT | VTT | | VSS | BSEL1
VSS | | RSVD | EXP_EN
VSS | | EXP_RXN1
VSS | J | | н | | | HDSTBP2# | VTT | | VTT | VTT | | VSS | | | RSVD | SDVO_ | | EXP_RXN0 | н | | G | HDINV2# | | | | | | | | | BSEL0 | | | CTRLDATA | | | G | | F | HD41# | | VSS | VTT | | VTT | VTT | | VSS | XORTEST | | VSS | RSVD
SDVO_ | | EXP_RXP0 | F | | E | VTT | | VTT | VTT | HCCOMP | VSS | VTT | | VSS | VSS | | EXP_SLR | CTRLCLK | | VSS | E | | D | VTT | VTT | VTT | | HSCOMP
| HDVREF | HRCOMP | 1405 | VSS | BLUE# | GREEN# | | VSS | VSS | VSYNC | D | | С | VTT | | VTT | VSS | HSCOMP | | VCCA_
HPLL | VCCA_
DPLLB | VCCD_
CRT | | GREEN | RED# | VCCA_
DAC | | HSYNC | С | | В | VTT | VTT | VTT | VSS | HSWING | HACCVREF | VSS | VSS | VCCDQ_
CRT | BLUE | VSS | RED | VCC3_3 | VCCA_DA
C | VCCA_
EXPPLL | В | | Α | | VTT | | VSS | | VCCA_
MPLL | | VCCA_
DPLLA | | REFSET | | VSS | | VCCA_EXP | | Α | | | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | | Figure 12-3. (G)MCH Ballout Diagram (Top View Right – Columns 14–0) | | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | |----|----------|-----------|----------------|----------------|----------------|-----------|----------------|---------------|---------------|-----------|---------------|-----------|-----------|-----------|----| | вс | VCCSM | | SBS_B2 | | VSS | | | SDQ_A17 | | VSS | | VSS | NC | TEST1 | вс | | вв | SMA_B9 | SMA_B11 | VCCSM | SCKE_B2 | SDQ_A23 | SDQS_A2 | | VSS | SDQ_A20 | SDQ_A10 | SDQ_A15 | SDQS_A1 | RSVD | NC | вв | | ва | SMA_B7 | SMA_B12 | | SCKE_B3 | SDQ_A22 | SDQS_A2# | | | SDQ_A21 | SDQ_A14 | SDQS_A1# | | SDM_A1 | VSS | ва | | AY | | SMA_B14 | SCKE_B0 | SDQ_A19 | | SDM_A2 | | SDQ_A16 | SDQ_A11 | | VSS | SDQ_A9 | SDQ_A8 | | AY | | AW | | SDM_B2 | SCKE_B1 | SDQ_A18 | | SDM_B1 | | SDQ_B3 | | SDQ_B2 | | SDQ_A13 | SDQ_A12 | VSS | AW | | AV | | SDQ_B17 | SDQ_B14 | VSS | | VSS | | VSS | SDQS_B0 | | SDQ_A7 | SDQ_A2 | SDQ_A3 | | AV | | AU | | SDQ_B20 | SDQ_B15 | SDQ_B9 | | SDQ_B13 | | SDQ_B7 | VSS | SDQS_B0# | SDQS_A0 | | VSS | SDQ_A6 | AU | | AT | | VSS | VSS | SDQ_B8 | | | | | | | | | | | AT | | AR | | SDQ_B11 | SDQS_B1 | SDQ_B12 | | VSS | | SDM_B0 | VSS | SDQ_A0 | SDQ_A1 | SDQS_A0# | SDM_A0 | | AR | | AP | | SDQ_B10 | SDQS_B1# | | | | | | | | | SDQ_A4 | SDQ_A5 | VSS | AP | | AN | | VSS | VSS | VSS | CLAR COLARY | SDQ_B6 | SDQ_B1 | SDQ_B0 | SDQ_B5 | SDQ_B4 | VSS | SRCOMP1 | SRCOMP0 | | AN | | AM | | SDQ_B21 | | VSS | SMRCOMPV
OH | VSS | SMRCOMPV
OL | VSS | SVREF | CL_VREF | VSS | | VSS | VSS | AM | | AL | | VCC_CL | AL | | AK | VCC_CL | | | | | | | | | | | VCC_CL | VCC_CL | VCC_CL | AK | | AJ | VCC_CL | VCC_CL | VCC | AJ | | АН | | | | | | | | | | | VCC | | VCC | VCC | АН | | AG | VCC | AG | | AF | VCC | VCC | VCC | VCC | VSS | VSS | VSS | VSS | VSS | VSS | | VSS | VSS | VSS | AF | | AE | | | | | | | | | | | VCC_EXP | VCC_EXP | VCC_EXP | | AE | | AD | VCC | CL_CLK | CL_DATA
EXP | VCC_EXP
EXP | VCC_EXP | VCC_EXP | VCC_EXP | AD | | AC | VCC | VCC | COMPI | COMPO | VSS | DMI_TXN2 | DMI_TXP2 | VSS | VCC | VSS | VCC_EXP | VCC_EXP | VCC_EXP | | AC | | AB | | | | | | | | | | | | DMI_RXP3 | VSS | VSS | AB | | AA | VCC | VCC | CL_RST# | RSVD | RSVD | RSVD | VSS | DMI_RXP2 | DMI_RXN2 | VSS | DMI_RXN3 | VCC | DMI_TXN3 | | AA | | Υ | VCC | VCC | RSVD | VCC | VSS | DMI_RXN1 | DMI_RXP1 | VSS | VCC | VSS | DMI_TXN1 | | DMI_TXP3 | VSS | Υ | | w | | | | | | | | | | | DMI_TXP1 | VSS | DMI_RXP0 | | W | | V | VCC | VCC | VCC | VSS | VCC | VCC | VSS | DMI_TXP0 | DMI_TXN0 | VSS | EXP_ | EXP_TXP15 | VSS | DMI_RXN0 | V | | U | VCC | VCC | RSVD | RSVD | VCC | VCC | VSS | VSS | VCC | VSS | TXN15 | VCC | EXP_TXP14 | | U | | T | | | | | | | | EVD | | | EXP_RXP14 | | EXP_TXN14 | VSS | Т | | R | VCC | RSVD | RSVD | VSS | EXP_RXN13 | EXP_RXP13 | VSS | EXP_
RXN15 | EXP_RXP15 | VSS | EXP_
RXN14 | VSS | EXP_TXP13 | | R | | Р | VCC | | | | | | | | | | 5)/0 | EXP_TXP12 | VSS | EXP_TXN13 | Р | | N | | VSS | VCC | VCC | VSS | VCC | VCC | VSS | VCC | VSS | EXP_
TXN12 | VCC | EXP_TXP11 | | N | | М | | DDC_CLK | | VSS | VSS | EXP_RXN10 | EXP_RXP10 | VSS | EXP_
RXN12 | EXP_RXP12 | EXP_RXP11 | | EXP_TXN11 | VSS | М | | L | | DDC_DATA | VCC | VSS | | EXP_RXP9 | EXP_RXN9 | VSS | VCC | VSS | EXP_
RXN11 | VSS | EXP_TXP10 | | L | | к | | VSS | VSS | | | | | | | | | EXP_TXN9 | VSS | EXP_TXN10 | к | | J | | ICH_SYNC# | EXP_RXP3 | EXP_RXP4 | | VSS | | VSS | VCC | VSS | EXP_TXP9 | VCC | VCC | | J | | н | | VSS | EXP_RXN3 | EXP_RXN4 | | | | | | | | | | | н | | G | | VSS | VSS | VSS | | VSS | | VSS | EXP_RXP8 | EXP_RXN8 | EXP_TXN8 | | VCC | VSS | G | | F | | RSVD | EXP_RXP2 | VCC | | VCC | | EXP_RXP5 | EXP_RXN6 | | EXP_TXP8 | VSS | EXP_TXP7 | | F | | E | | VSS | EXP_RXN2 | VSS | | VSS | | EXP_
RXN5 | | EXP_RXP6 | | VSS | EXP_TXN7 | VSS | E | | D | | DREFCLKN | EXP_TXN0 | EXP_TXP0 | | EXP_TXN2 | | EXP_TXP4 | EXP_TXN4 | | VCC | VSS | EXP_RXN7 | | D | | С | DREFCLKP | VCC | | VSS | EXP_TXP2 | VCC | | | VSS | VSS | VSS | | EXP_RXP7 | VSS | С | | В | VSS | GCLKN | GCLKP | EXP_TXP1 | VSS | EXP_TXP3 | | EXP_TXN3 | EXP_TXN5 | EXP_TXP5 | EXP_TXN6 | EXP_TXP6 | NC | | В | | Α | RSVD | | VSS | | EXP_TXN1 | | | VSS | | VSS | | VSS | | | Α | | | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | Table 12-1. (G)MCH Ballout Sorted by Signal Name | Signal Name | Ball # | |-------------|--------| | ALLZTEST | K20 | | BLUE | B20 | | BLUE# | D20 | | BSEL0 | G20 | | BSEL1 | J20 | | BSEL2 | J18 | | CL_CLK | AD13 | | CL_DATA | AD12 | | CL_PWROK | AM15 | | CL_RST# | AA12 | | CL_VREF | AM5 | | DDC_CLK | M13 | | DDC_DATA | L13 | | DMI_RXN0 | V1 | | DMI_RXN1 | Y9 | | DMI_RXN2 | AA6 | | DMI_RXN3 | AA4 | | DMI_RXP0 | W2 | | DMI_RXP1 | Y8 | | DMI_RXP2 | AA7 | | DMI_RXP3 | AB3 | | DMI_TXN0 | V6 | | DMI_TXN1 | Y4 | | DMI_TXN2 | AC9 | | DMI_TXN3 | AA2 | | DMI_TXP0 | V7 | | DMI_TXP1 | W4 | | DMI_TXP2 | AC8 | | DMI_TXP3 | Y2 | | DREFCLKN | D13 | | DREFCLKP | C14 | | EXP_COMPI | AC12 | | EXP_COMPO | AC11 | | EXP_EN | J17 | | Signal Name | Ball # | |-------------|--------| | EXP_RXN0 | G15 | | EXP_RXN1 | J15 | | EXP_RXN2 | E12 | | EXP_RXN3 | H12 | | EXP_RXN4 | H11 | | EXP_RXN5 | E7 | | EXP_RXN6 | F6 | | EXP_RXN7 | D2 | | EXP_RXN8 | G5 | | EXP_RXN9 | L8 | | EXP_RXN10 | M9 | | EXP_RXN11 | L4 | | EXP_RXN12 | M6 | | EXP_RXN13 | R10 | | EXP_RXN14 | R4 | | EXP_RXN15 | R7 | | EXP_RXP0 | F15 | | EXP_RXP1 | K15 | | EXP_RXP2 | F12 | | EXP_RXP3 | J12 | | EXP_RXP4 | J11 | | EXP_RXP5 | F7 | | EXP_RXP6 | E5 | | EXP_RXP7 | C2 | | EXP_RXP8 | G6 | | EXP_RXP9 | L9 | | EXP_RXP10 | M8 | | EXP_RXP11 | M4 | | EXP_RXP12 | M5 | | EXP_RXP13 | R9 | | EXP_RXP14 | T4 | | EXP_RXP15 | R6 | | EXP_SLR | E18 | | EXP_TXN0 | D12 | | Signal Name | Ball # | |-------------|--------| | EXP_TXN1 | A10 | | EXP_TXN2 | D9 | | EXP_TXN3 | B7 | | EXP_TXN4 | D6 | | EXP_TXN5 | B6 | | EXP_TXN6 | B4 | | EXP_TXN7 | E2 | | EXP_TXN8 | G4 | | EXP_TXN9 | K3 | | EXP_TXN10 | K1 | | EXP_TXN11 | M2 | | EXP_TXN12 | N4 | | EXP_TXN13 | P1 | | EXP_TXN14 | T2 | | EXP_TXN15 | U4 | | EXP_TXP0 | D11 | | EXP_TXP1 | B11 | | EXP_TXP2 | C10 | | EXP_TXP3 | B9 | | EXP_TXP4 | D7 | | EXP_TXP5 | B5 | | EXP_TXP6 | В3 | | EXP_TXP7 | F2 | | EXP_TXP8 | F4 | | EXP_TXP9 | J4 | | EXP_TXP10 | L2 | | EXP_TXP11 | N2 | | EXP_TXP12 | Р3 | | EXP_TXP13 | R2 | | EXP_TXP14 | U2 | | EXP_TXP15 | V3 | | GCLKN | B13 | | GCLKP | B12 | | GREEN | C19 | | Signal Name | Ball # | |-------------|--------| | GREEN# | D19 | | HA3# | J42 | | HA4# | L39 | | HA5# | J40 | | HA6# | L37 | | HA7#
 L36 | | HA8# | K42 | | HA9# | N32 | | HA10# | N34 | | HA11# | M38 | | HA12# | N37 | | HA13# | M36 | | HA14# | R34 | | HA15# | N35 | | HA16# | N38 | | HA17# | U37 | | HA18# | N39 | | HA19# | R37 | | HA20# | P42 | | HA21# | R39 | | HA22# | V36 | | HA23# | R38 | | HA24# | U36 | | HA25# | U33 | | HA26# | R35 | | HA27# | V33 | | HA28# | V35 | | HA29# | Y34 | | HA30# | V42 | | HA31# | V38 | | HA32# | Y36 | | HA33# | Y38 | | HA34# | Y39 | | HA35# | AA37 | | HACCVREF | B24 | | Signal Name | Ball # | |-------------|--------| | HADS# | W40 | | HADSTB0# | M34 | | HADSTB1# | U34 | | HBNR# | W42 | | HBPRI# | G39 | | HBREQ0# | AA42 | | HCLKN | U32 | | HCLKP | R32 | | HCPURST# | C31 | | HD0# | R40 | | HD1# | P41 | | HD2# | R41 | | HD3# | N40 | | HD5# | M39 | | HD6# | N41 | | HD7# | N42 | | HD8# | L41 | | HD9# | J39 | | HD10# | L42 | | HD11# | J41 | | HD12# | K41 | | HD13# | G40 | | HD14# | F41 | | HD15# | F42 | | HD16# | C42 | | HD17# | D41 | | HD18# | F38 | | HD19# | G37 | | HD20# | E42 | | HD21# | E39 | | HD22# | E37 | | HD23# | C39 | | HD24# | B39 | | HD25# | G33 | | HD26# | A37 | | | | | Signal Name | Ball # | |-------------|--------| | HD27# | F33 | | HD28# | E35 | | HD29# | K32 | | HD30# | H32 | | HD31# | B34 | | HD32# | J31 | | HD33# | F32 | | HD34# | M31 | | HD35# | E31 | | HD36# | K31 | | HD37# | G31 | | HD38# | K29 | | HD39# | F31 | | HD4# | R42 | | HD40# | J29 | | HD41# | F29 | | HD42# | L27 | | HD43# | K27 | | HD44# | H26 | | HD45# | L26 | | HD46# | J26 | | HD47# | M26 | | HD48# | C33 | | HD49# | C35 | | HD50# | E41 | | HD51# | B41 | | HD52# | D42 | | HD53# | C40 | | HD54# | D35 | | HD55# | B40 | | HD56# | C38 | | HD57# | D37 | | HD58# | B33 | | HD59# | D33 | | HD60# | C34 | | Signal Name | Ball # | |-------------|--------| | HD61# | B35 | | HD62# | A32 | | HD63# | D32 | | HDBSY# | U40 | | HDEFER# | T43 | | HDINV0# | M40 | | HDINV1# | J33 | | HDINV2# | G29 | | HDINV3# | E33 | | HDRDY# | W41 | | HDSTBN0# | M43 | | HDSTBN1# | H33 | | HDSTBN2# | H27 | | HDSTBN3# | D38 | | HDSTBP0# | L40 | | HDSTBP1# | G35 | | HDSTBP2# | G27 | | HDSTBP3# | B38 | | HDVREF | D24 | | HHIT# | U42 | | HHITM# | Y43 | | HLOCK# | V41 | | HRCOMP | D23 | | HREQ0# | F40 | | HREQ1# | L35 | | HREQ2# | L38 | | HREQ3# | G43 | | HREQ4# | J37 | | HRS0# | U41 | | HRS1# | AA41 | | HRS2# | U39 | | HSCOMP | C25 | | HSCOMP# | D25 | | HSWING | B25 | | HSYNC | C15 | | | 1 | |-------------|--------| | Signal Name | Ball # | | HTRDY# | Y40 | | ICH_SYNC# | J13 | | NC | BC42 | | NC | BC2 | | NC | BB43 | | NC | BB1 | | NC | B43 | | NC | B42 | | NC | B2 | | NC | N20 | | NC | A42 | | PWROK | AM17 | | RED | B18 | | RED# | C18 | | REFSET | A20 | | RSVD | AJ32 | | RSVD | V31 | | RSVD | AL31 | | RSVD | A14 | | RSVD | F13 | | RSVD | F17 | | RSVD | H18 | | RSVD | K17 | | RSVD | G18 | | RSVD | M18 | | RSVD | L18 | | RSVD | L15 | | RSVD | M20 | | RSVD | N15 | | RSVD | N18 | | RSVD | N17 | | RSVD | L17 | | RSVD | Y12 | | RSVD | AA9 | | RSVD | AA10 | | | | | Signal Name | Ball # | |-------------|--------| | RSVD | AA11 | | RSVD | R29 | | RSVD | R30 | | RSVD | U30 | | RSVD | U31 | | RSVD | R13 | | RSVD | R12 | | RSVD | U11 | | RSVD | U12 | | RSVD | AA39 | | RSVD | AP21 | | RSVD | AW42 | | RSVD | BB2 | | RSVD | AF32 | | RSVD | AG32 | | RSVD | BB19 | | RSVD | AM21 | | RSVD | AM31 | | RSVD | AN32 | | RSVD | AN21 | | RSTIN# | AM18 | | SBS_A0 | BA33 | | SBS_A1 | AW32 | | SBS_A2 | BB21 | | SBS_B0 | AY19 | | SBS_B1 | BA18 | | SBS_B2 | BC12 | | SCAS_A# | AY35 | | SCAS_B# | AW29 | | SCKE_A0 | BC20 | | SCKE_A1 | AY20 | | SCKE_A2 | AY21 | | SCKE_A3 | BA19 | | SCKE_B0 | AY12 | | SCKE_B1 | AW12 | | Signal Name | Ball # | |-------------|--------| | SCKE_B2 | BB11 | | SCKE_B3 | BA11 | | SCLK_A0 | AU31 | | SCLK_A0# | AR31 | | SCLK_A1 | AP27 | | SCLK_A1# | AN27 | | SCLK_A2 | AV33 | | SCLK_A2# | AW33 | | SCLK_A3 | AP29 | | SCLK_A3# | AP31 | | SCLK_A4 | AM26 | | SCLK_A4# | AM27 | | SCLK_A5 | AT33 | | SCLK_A5# | AU33 | | SCLK_B0 | AV31 | | SCLK_B0# | AW31 | | SCLK_B1 | AU27 | | SCLK_B1# | AT27 | | SCLK_B2 | AV32 | | SCLK_B2# | AT32 | | SCLK_B3 | AU29 | | SCLK_B3# | AR29 | | SCLK_B4 | AV29 | | SCLK_B4# | AW27 | | SCLK_B5 | AN33 | | SCLK_B5# | AP32 | | SCS_A0# | AW35 | | SCS_A1# | BA35 | | SCS_A2# | BA34 | | SCS_A3# | BB38 | | SCS_B0# | BB27 | | SCS_B1# | BB30 | | SCS_B2# | AY27 | | SCS_B3# | AY31 | | SDM_A0 | AR2 | | Signal Name | Ball # | |-------------|--------| | SDM_A1 | BA2 | | SDM_A2 | AY9 | | SDM_A3 | AN18 | | SDM_A4 | AU43 | | SDM_A5 | AM43 | | SDM_A6 | AG40 | | SDM_A7 | AC40 | | SDM_B0 | AR7 | | SDM_B1 | AW9 | | SDM_B2 | AW13 | | SDM_B3 | AP23 | | SDM_B4 | AU37 | | SDM_B5 | AM37 | | SDM_B6 | AG39 | | SDM_B7 | AD38 | | SDQ_A0 | AR5 | | SDQ_A1 | AR4 | | SDQ_A2 | AV3 | | SDQ_A3 | AV2 | | SDQ_A4 | AP3 | | SDQ_A5 | AP2 | | SDQ_A6 | AU1 | | SDQ_A7 | AV4 | | SDQ_A8 | AY2 | | SDQ_A9 | AY3 | | SDQ_A10 | BB5 | | SDQ_A11 | AY6 | | SDQ_A12 | AW2 | | SDQ_A13 | AW3 | | SDQ_A14 | BA5 | | SDQ_A15 | BB4 | | SDQ_A16 | AY7 | | SDQ_A17 | BC7 | | SDQ_A18 | AW11 | | SDQ_A19 | AY11 | | Signal Name | Ball # | |-------------|--------| | SDQ_A20 | BB6 | | SDQ_A21 | BA6 | | SDQ_A22 | BA10 | | SDQ_A23 | BB10 | | SDQ_A24 | AT18 | | SDQ_A25 | AR18 | | SDQ_A26 | AU21 | | SDQ_A27 | AT21 | | SDQ_A28 | AP17 | | SDQ_A29 | AN17 | | SDQ_A30 | AP20 | | SDQ_A31 | AV20 | | SDQ_A32 | AV42 | | SDQ_A33 | AU40 | | SDQ_A34 | AP42 | | SDQ_A35 | AN39 | | SDQ_A36 | AV40 | | SDQ_A37 | AV41 | | SDQ_A38 | AR42 | | SDQ_A39 | AP41 | | SDQ_A40 | AN41 | | SDQ_A41 | AM39 | | SDQ_A42 | AK42 | | SDQ_A43 | AK41 | | SDQ_A44 | AN40 | | SDQ_A45 | AN42 | | SDQ_A46 | AL42 | | SDQ_A47 | AL39 | | SDQ_A48 | AJ40 | | SDQ_A49 | AH43 | | SDQ_A50 | AF39 | | SDQ_A51 | AE40 | | SDQ_A52 | AJ42 | | SDQ_A53 | AJ41 | | SDQ_A54 | AF41 | | Signal Name | Ball # | |-------------|--------| | SDQ_A55 | AF42 | | SDQ_A56 | AD40 | | SDQ A57 | AD43 | | SDQ A58 | AB41 | | SDQ A59 | AA40 | | SDQ_A60 | AE42 | | SDQ A61 | AE41 | | SDQ_A62 | AC39 | | SDQ_A63 | AB42 | | SDQ_B0 | AN7 | | SDQ_B1 | AN8 | | SDQ_B2 | AW5 | | SDQ_B3 | AW7 | | SDQ_B4 | AN5 | | SDQ_B5 | AN6 | | SDQ_B6 | AN9 | | SDQ_B7 | AU7 | | SDQ_B8 | AT11 | | SDQ_B9 | AU11 | | SDQ_B10 | AP13 | | SDQ_B11 | AR13 | | SDQ_B12 | AR11 | | SDQ_B13 | AU9 | | SDQ_B14 | AV12 | | SDQ_B15 | AU12 | | SDQ_B16 | AU15 | | SDQ_B17 | AV13 | | SDQ_B18 | AU17 | | SDQ_B19 | AT17 | | SDQ_B20 | AU13 | | SDQ_B21 | AM13 | | SDQ_B22 | AV15 | | SDQ_B23 | AW17 | | SDQ_B24 | AV24 | | SDQ_B25 | AT23 | | Signal Name | Ball # | |-------------|--------| | SDQ_B26 | AT26 | | SDQ_B27 | AP26 | | SDQ_B28 | AU23 | | SDQ_B29 | AW23 | | SDQ_B30 | AR24 | | SDQ_B31 | AN26 | | SDQ_B32 | AW37 | | SDQ_B33 | AV38 | | SDQ_B34 | AN36 | | SDQ_B35 | AN37 | | SDQ_B36 | AU35 | | SDQ_B37 | AR35 | | SDQ_B38 | AN35 | | SDQ_B39 | AR37 | | SDQ_B40 | AM35 | | SDQ_B41 | AM38 | | SDQ_B42 | AJ34 | | SDQ_B43 | AL38 | | SDQ_B44 | AR39 | | SDQ_B45 | AM34 | | SDQ_B46 | AL37 | | SDQ_B47 | AL32 | | SDQ_B48 | AG38 | | SDQ_B49 | AJ38 | | SDQ_B50 | AF35 | | SDQ_B51 | AF33 | | SDQ_B52 | AJ37 | | SDQ_B53 | AJ35 | | SDQ_B54 | AG33 | | SDQ_B55 | AF34 | | SDQ_B56 | AD36 | | SDQ_B57 | AC33 | | SDQ_B58 | AA34 | | SDQ_B59 | AA36 | | SDQ_B60 | AD34 | | · | | | Signal Name | Ball # | |-------------|--------| | SDQ_B61 | AF38 | | SDQ_B62 | AC34 | | SDQ_B63 | AA33 | | SDQS_A0 | AU4 | | SDQS_A0# | AR3 | | SDQS_A1 | BB3 | | SDQS_A1# | BA4 | | SDQS_A2 | BB9 | | SDQS_A2# | BA9 | | SDQS_A3 | AT20 | | SDQS_A3# | AU18 | | SDQS_A4 | AR41 | | SDQS_A4# | AR40 | | SDQS_A5 | AL41 | | SDQS_A5# | AL40 | | SDQS_A6 | AG42 | | SDQS_A6# | AG41 | | SDQS_A7 | AC42 | | SDQS_A7# | AC41 | | SDQS_B0 | AV6 | | SDQS_B0# | AU5 | | SDQS_B1 | AR12 | | SDQS_B1# | AP12 | | SDQS_B2 | AP15 | | SDQS_B2# | AR15 | | SDQS_B3 | AT24 | | SDQS_B3# | AU26 | | SDQS_B4 | AW39 | | SDQS_B4# | AU39 | | SDQS_B5 | AL35 | | SDQS_B5# | AL34 | | SDQS_B6 | AG35 | | SDQS_B6# | AG36 | | SDQS_B7 | AC36 | | SDQS_B7# | AC37 | | Signal Name | Ball # | |-------------------|--------| | SDVO_CTRLCLK | E17 | | SDVO_CTRLDAT
A | G17 | | SMA_A0 | BA31 | | SMA_A1 | BB25 | | SMA_A2 | BA26 | | SMA_A3 | BA25 | | SMA_A4 | AY25 | | SMA_A5 | BA23 | | SMA_A6 | AY24 | | SMA_A7 | AY23 | | SMA_A8 | BB23 | | SMA_A9 | BA22 | | SMA_A10 | AY33 | | SMA_A11 | BB22 | | SMA_A12 | AW21 | | SMA_A13 | AY38 | | SMA_A14 | BA21 | | SMA_B0 | BB17 | | SMA_B1 | AY17 | | SMA_B2 | BA17 | | SMA_B3 | BC16 | | SMA_B4 | AW15 | | SMA_B5 | BA15 | | SMA_B6 | BB15 | | SMA_B7 | BA14 | | SMA_B8 | AY15 | | SMA_B9 | BB14 | | SMA_B10 | AW18 | | SMA_B11 | BB13 | | SMA_B12 | BA13 | | SMA_B13 | AY29 | | SMA_B14 | AY13 | | SMRCOMPVOH | AM10 | | SMRCOMPVOL | AM8 | | Ball # | |--------| | AY37 | | BA38 | | BB35 | | BA39 | | BA29 | | BA30 | | BB29 | | BB31 | | BB33 | | AW26 | | AN2 | | AN3 | | BB40 | | BA40 | | AM6 | | BB34 | | BA27 | | BC43 | | BC1 | | A43 | | P20 | | Y11 | | AG25 | | AG24 | | AG23 | | AG22 | | AG21 | | AG20 | | AG19 | | AG18 | | AG17 | | AG15 | | AG14 | | AF26 | | AF25 | | | | Signal Name | Ball # | |-------------|--------| | | | | VCC | AF24 | | VCC | AF22 | | VCC | AF20 | | VCC | AF18 | | VCC | AF17 | | VCC | AF15 | | VCC | AF14 | | VCC | AE27 | | VCC | AE26 | | VCC | AE25 | | VCC | AE23 | | VCC | AE21 | | VCC | AE19 | | VCC | AE17 | | VCC | AD27 | | VCC | AD26 | | VCC | AD18 | | VCC | AD17 | | VCC | AD15 | | VCC | AD14 | | VCC | AC27 | | VCC | AC26 | | VCC | AC17 | | VCC | AC15 | | VCC | AC14 | | VCC | AB27 | | VCC | AB26 | | VCC | AB18 | | VCC | AB17 | | VCC | AA27 | | VCC | AA26 | | VCC | AA17 | | VCC | AA15 | | VCC | AA14 | | VCC | Y27 | | Signal Name | Ball # | |-------------|--------| | VCC | Y26 | | VCC | Y18 | | VCC | Y17 | | VCC | Y15 | | VCC | Y14 | | VCC | W27 | | VCC | W26 | | VCC | W25 | | VCC | W23 | | VCC | W21 | | VCC | W19 | | VCC | W18 | | VCC | W17 | | VCC | V27 | | VCC | V26 | | VCC | V25 | | VCC | V24 | | VCC | V23 | | VCC | V22 | | VCC | V21 | | VCC | V20 | | VCC | V19 | | VCC | V18 | | VCC | V17 | | VCC | V15 | | VCC | V14 | | VCC | U26 | | VCC | U25 | | VCC | U24 | | VCC | U23 | | VCC | U22 | | VCC | U21 | | VCC | U20 | | VCC | U19 | | VCC | U18 | | Signal
Name | Ball # | |-------------|--------| | VCC | U17 | | VCC | U15 | | VCC | U14 | | VCC | R20 | | VCC | R18 | | VCC | R17 | | VCC | R15 | | VCC | R14 | | VCC | P15 | | VCC | P14 | | VCC | AJ12 | | VCC | AJ11 | | VCC | AJ10 | | VCC | АЈ9 | | VCC | AJ8 | | VCC | AJ7 | | VCC | AJ6 | | VCC | AJ5 | | VCC | AJ4 | | VCC | AJ3 | | VCC | AJ2 | | VCC | AH4 | | VCC | AH2 | | VCC | AH1 | | VCC | AG13 | | VCC | AG12 | | VCC | AG11 | | VCC | AG10 | | VCC | AG9 | | VCC | AG8 | | VCC | AG7 | | VCC | AG6 | | VCC | AG5 | | VCC | AG4 | | VCC | AG3 | | Signal Name | Ball # | |-------------|--------| | VCC | AG2 | | VCC | AF13 | | VCC | AF12 | | VCC | AF11 | | VCC | AD24 | | VCC | AD22 | | VCC | AD20 | | VCC | AC25 | | VCC | AC23 | | VCC | AC21 | | VCC | AC19 | | VCC | AC13 | | VCC | AC6 | | VCC | AB24 | | VCC | AB22 | | VCC | AB20 | | VCC | AA25 | | VCC | AA23 | | VCC | AA21 | | VCC | AA19 | | VCC | AA13 | | VCC | AA3 | | VCC | Y24 | | VCC | Y22 | | VCC | Y20 | | VCC | Y13 | | VCC | Y6 | | VCC | V13 | | VCC | V12 | | VCC | V10 | | VCC | V9 | | VCC | U13 | | VCC | U10 | | VCC | U9 | | VCC | U6 | | Signal Name | Ball # | |-------------|--------| | VCC | U3 | | VCC | N12 | | VCC | N11 | | VCC | N9 | | VCC | N8 | | VCC | N6 | | VCC | N3 | | VCC | L6 | | VCC | Ј6 | | VCC | J3 | | VCC | J2 | | VCC | G2 | | VCC | F11 | | VCC | F9 | | VCC | D4 | | VCC | C13 | | VCC | C9 | | VCC | L12 | | VCC_CL | AJ26 | | VCC_CL | AJ24 | | VCC_CL | AJ23 | | VCC_CL | AJ21 | | VCC_CL | AJ20 | | VCC_CL | AJ18 | | VCC_CL | AJ17 | | VCC_CL | AJ15 | | VCC_CL | AJ14 | | VCC_CL | AA30 | | VCC_CL | AA29 | | VCC_CL | Y30 | | VCC_CL | Y29 | | VCC_CL | V30 | | VCC_CL | V29 | | VCC_CL | U29 | | VCC_CL | U27 | | Signal Name | Ball # | |-------------|--------| | VCC_CL | AL12 | | VCC_CL | AL11 | | VCC_CL | AL10 | | VCC_CL | AL9 | | VCC_CL | AL8 | | VCC_CL | AL7 | | VCC_CL | AL6 | | VCC_CL | AL5 | | VCC_CL | AL4 | | VCC_CL | AL3 | | VCC_CL | AL2 | | VCC_CL | AK26 | | VCC_CL | AK24 | | VCC_CL | AK23 | | VCC_CL | AK21 | | VCC_CL | AK20 | | VCC_CL | AK18 | | VCC_CL | AK17 | | VCC_CL | AK15 | | VCC_CL | AK3 | | VCC_CL | AK2 | | VCC_CL | AK1 | | VCC_CL | AJ13 | | VCC_CL | AD31 | | VCC_CL | AC31 | | VCC_CL | AA31 | | VCC_CL | Y31 | | VCC_CL | AJ30 | | VCC_CL | AJ29 | | VCC_CL | AJ27 | | VCC_CL | AG30 | | VCC_CL | AG29 | | VCC_CL | AG27 | | VCC_CL | AG26 | | VCC_CL | AF30 | | | | | Signal Name | Ball # | |-------------|--------| | VCC_CL | AF29 | | VCC_CL | AF27 | | VCC_CL | AD30 | | VCC_CL | AD29 | | VCC_CL | AC30 | | VCC_CL | AC29 | | VCC_CL | AL26 | | VCC_CL | AL24 | | VCC_CL | AL23 | | VCC_CL | AL21 | | VCC_CL | AL20 | | VCC_CL | AL18 | | VCC_CL | AL17 | | VCC_CL | AL15 | | VCC_CL | AK30 | | VCC_CL | AK29 | | VCC_CL | AK27 | | VCC_CL | AJ31 | | VCC_CL | AG31 | | VCC_CL | AF31 | | VCC_CL | AD32 | | VCC_CL | AC32 | | VCC_CL | AA32 | | VCC_CL | AL29 | | VCC_CL | AL27 | | VCC_CL | AL13 | | VCC_CL | AK14 | | VCC_CL_PLL | Y32 | | VCC_EXP | AD11 | | VCC_EXP | AD10 | | VCC_EXP | AD9 | | VCC_EXP | AD8 | | VCC_EXP | AD7 | | VCC_EXP | AD6 | | VCC_EXP | AD5 | | Signal Name | Ball # | |-------------|--------| | VCC_EXP | AD4 | | VCC_EXP | AD2 | | VCC_EXP | AD1 | | VCC_EXP | AC4 | | VCC_EXP | AC3 | | VCC_EXP | AC2 | | VCC_EXP | AE4 | | VCC_EXP | AE3 | | VCC_EXP | AE2 | | VCC_SMCLK | BB42 | | VCC_SMCLK | BA43 | | VCC_SMCLK | BB41 | | VCC_SMCLK | BA42 | | VCC_SMCLK | AY42 | | VCC3_3 | B17 | | VCCA_DAC | C17 | | VCCA_DAC | B16 | | VCCA_DPLLA | A22 | | VCCA_DPLLB | C22 | | VCCA_EXP | A16 | | VCCA_EXPPLL | B15 | | VCCA_HPLL | C23 | | VCCA_MPLL | A24 | | VCCD_CRT | C21 | | VCCDQ_CRT | B21 | | VCCSM | BC39 | | VCCSM | BC34 | | VCCSM | BC30 | | VCCSM | BC26 | | VCCSM | BC22 | | VCCSM | BC18 | | VCCSM | BC14 | | VCCSM | BB39 | | VCCSM | BB37 | | VCCSM | BB32 | | Signal Name | Ball # | |-------------|--------| | VCCSM | BB28 | | VCCSM | BB26 | | VCCSM | BB24 | | VCCSM | BB20 | | VCCSM | BB18 | | VCCSM | BB16 | | VCCSM | BB12 | | VCCSM | AY32 | | VCCSM | AW24 | | VCCSM | AW20 | | VCCSM | AV26 | | VCCSM | AV18 | | VSS | D16 | | VSS | BC41 | | VSS | BC3 | | VSS | BA1 | | VSS | AY40 | | VSS | AF23 | | VSS | AF21 | | VSS | AF19 | | VSS | AE24 | | VSS | AE22 | | VSS | AE20 | | VSS | AE18 | | VSS | AC18 | | VSS | AA18 | | VSS | W24 | | VSS | W22 | | VSS | W20 | | VSS | R21 | | VSS | E1 | | VSS | C43 | | VSS | C1 | | VSS | A41 | | VSS | A5 | | | | | | 1 | |-------------|--------| | Signal Name | Ball # | | VSS | A3 | | VSS | BC37 | | VSS | BC32 | | VSS | BC28 | | VSS | BC24 | | VSS | BC10 | | VSS | BC5 | | VSS | BB7 | | VSS | AY41 | | VSS | AY4 | | VSS | AW43 | | VSS | AW41 | | VSS | AW1 | | VSS | AV37 | | VSS | AV35 | | VSS | AV27 | | VSS | AV23 | | VSS | AV21 | | VSS | AV17 | | VSS | AV11 | | VSS | AV9 | | VSS | AV7 | | VSS | AU42 | | VSS | AU38 | | VSS | AU32 | | VSS | AU24 | | VSS | AU20 | | VSS | AU6 | | VSS | AU2 | | VSS | AT31 | | VSS | AT29 | | VSS | AT15 | | VSS | AT13 | | VSS | AT12 | | VSS | AR38 | | | | | Signal Name | Ball # | |-------------|--------| | VSS | AR33 | | VSS | AR32 | | VSS | AR27 | | VSS | AR26 | | VSS | AR23 | | VSS | AR21 | | VSS | AR20 | | VSS | AR17 | | VSS | AR9 | | VSS | AR6 | | VSS | AP43 | | VSS | AP24 | | VSS | AP18 | | VSS | AP1 | | VSS | AN38 | | VSS | AN31 | | VSS | AN29 | | VSS | AN24 | | VSS | AN23 | | VSS | AN20 | | VSS | AN15 | | VSS | AN13 | | VSS | AN12 | | VSS | AN11 | | VSS | AN4 | | VSS | AM42 | | VSS | AM40 | | VSS | AM36 | | VSS | AM33 | | VSS | AM29 | | VSS | AM24 | | VSS | AM23 | | VSS | AM20 | | VSS | AM11 | | VSS | AM9 | | Ball # | |--------| | AM7 | | AM4 | | AM2 | | AM1 | | AL36 | | AL33 | | AK43 | | AJ39 | | AJ36 | | AJ33 | | AH42 | | AG37 | | AG34 | | AF43 | | AF37 | | AF36 | | AF10 | | AF9 | | AF8 | | AF7 | | AF6 | | AF5 | | AF3 | | AF2 | | AF1 | | AD42 | | AD39 | | AD37 | | AD35 | | AD33 | | AD25 | | AD23 | | AD21 | | AD19 | | AC38 | | | | Signal Name | Ball # | |-------------|--------| | VSS | AC35 | | VSS | AC24 | | VSS | AC22 | | VSS | AC20 | | VSS | AC10 | | VSS | AC7 | | VSS | AC5 | | VSS | AB43 | | VSS | AB25 | | VSS | AB23 | | VSS | AB21 | | VSS | AB19 | | VSS | AB2 | | VSS | AB1 | | VSS | AA38 | | VSS | AA35 | | VSS | AA24 | | VSS | AA22 | | VSS | AA20 | | VSS | AA8 | | VSS | AA5 | | VSS | Y42 | | VSS | Y37 | | VSS | Y35 | | VSS | Y33 | | VSS | Y25 | | VSS | Y23 | | VSS | Y21 | | VSS | Y19 | | VSS | Y10 | | VSS | Y7 | | VSS | Y5 | | VSS | Y1 | | VSS | W3 | | VSS | V43 | | Signal Name | Ball # | |-------------|--------| | VSS | V39 | | VSS | V37 | | VSS | V34 | | VSS | V32 | | VSS | V11 | | VSS | V8 | | VSS | V5 | | VSS | V2 | | VSS | U38 | | VSS | U35 | | VSS | U8 | | VSS | U7 | | VSS | U5 | | VSS | T42 | | VSS | T1 | | VSS | R36 | | VSS | R33 | | VSS | R31 | | VSS | R11 | | VSS | R8 | | VSS | R5 | | VSS | R3 | | VSS | P43 | | VSS | P30 | | VSS | P21 | | VSS | P18 | | VSS | P17 | | VSS | P2 | | VSS | N36 | | VSS | N33 | | VSS | N31 | | VSS | N27 | | VSS | N21 | | VSS | N13 | | VSS | N10 | | VSS N7 VSS M42 VSS M37 VSS M35 VSS M33 VSS M27 VSS M21 VSS M17 VSS M10 VSS M1 VSS L33 VSS L31 VSS L29 VSS L21 VSS L21 VSS L11 VSS L5 VSS L5 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J27 VSS J21 | Signal Name | Ball # | |---|-------------|--------| | VSS M42 VSS M37 VSS M35 VSS M27 VSS M21 VSS M17 VSS M15 VSS M10 VSS M1 VSS L33 VSS L32 VSS L31 VSS L29 VSS L21 VSS L11 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K12 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J32 | VSS | N7 | | VSS M37 VSS M35 VSS M27 VSS M21 VSS M17 VSS M15 VSS M10 VSS M7 VSS L33 VSS L31 VSS L29 VSS L21 VSS L11 VSS L5 VSS L3 VSS L3 VSS L5 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J32 | VSS | N5 | | VSS M35 VSS M27 VSS M21 VSS M17 VSS M15 VSS M10 VSS M7 VSS L33 VSS L32 VSS L31 VSS L29 VSS L21 VSS L7 VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K12 VSS J38 VSS J35 VSS J32 VSS J32 | VSS | M42 | | VSS M33 VSS M27 VSS M21 VSS M17 VSS M15 VSS M10 VSS M7 VSS L33 VSS L32 VSS L31 VSS L29 VSS L21 VSS L11 VSS L5 VSS L3 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M37 | | VSS M27 VSS M21 VSS M17 VSS M15 VSS M10 VSS M7 VSS L33 VSS L32 VSS L31 VSS L29 VSS L21 VSS L7 VSS L7 VSS L3 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M35 | | VSS M21 VSS M17 VSS M15 VSS M10 VSS M7 VSS M1 VSS L33 VSS L32 VSS L29 VSS L21 VSS L21 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M33 | | VSS M17 VSS M10 VSS M7 VSS M7 VSS M1 VSS L33 VSS L32 VSS L29 VSS L21 VSS L20 VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K21 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M27 | | VSS M15 VSS M7 VSS M7 VSS M1 VSS L33 VSS L32 VSS L29 VSS L21 VSS L11 VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS K2 VSS J38 VSS J35 VSS J32 | VSS | M21 | | VSS M10 VSS M7 VSS M1 VSS L33 VSS L32 VSS L29 VSS L21 VSS L11 VSS L5 VSS L3 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M17 | | VSS M7 VSS M1 VSS L33 VSS L32 VSS L29 VSS L21 VSS L20 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K21 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M15 | | VSS M1 VSS L32 VSS L31 VSS L29 VSS L21 VSS L11 VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K21 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 |
VSS | M10 | | VSS L33 VSS L31 VSS L29 VSS L21 VSS L20 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M7 | | VSS L32 VSS L29 VSS L21 VSS L20 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | M1 | | VSS L31 VSS L29 VSS L21 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS K3 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L33 | | VSS L29 VSS L21 VSS L20 VSS L11 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS K3 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L32 | | VSS L21 VSS L11 VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K12 VSS K2 VSS K3 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L31 | | VSS L20 VSS L11 VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L29 | | VSS L11 VSS L7 VSS L5 VSS K43 VSS K26 VSS K21 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L21 | | VSS L7 VSS L5 VSS L3 VSS K43 VSS K26 VSS K18 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L20 | | VSS L5 VSS K43 VSS K26 VSS K21 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L11 | | VSS L3 VSS K43 VSS K26 VSS K21 VSS K18 VSS K12 VSS K2 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L7 | | VSS K43 VSS K26 VSS K21 VSS K18 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L5 | | VSS K26 VSS K21 VSS K18 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | L3 | | VSS K21 VSS K18 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | K43 | | VSS K18 VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | K26 | | VSS K13 VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | K21 | | VSS K12 VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | K18 | | VSS K2 VSS J38 VSS J35 VSS J32 VSS J27 | VSS | K13 | | VSS J38 VSS J35 VSS J32 VSS J27 | VSS | K12 | | VSS J35 VSS J32 VSS J27 | VSS | K2 | | VSS J32 VSS J27 | VSS | J38 | | VSS J27 | VSS | J35 | | | VSS | J32 | | VSS J21 | VSS | J27 | | | VSS | J21 | | Signal Name | Ball # | |-------------|--------| | VSS | J9 | | VSS | J7 | | VSS | J5 | | VSS | H31 | | VSS | H29 | | VSS | H21 | | VSS | H20 | | VSS | H17 | | VSS | H15 | | VSS | H13 | | VSS | G42 | | VSS | G38 | | VSS | G32 | | VSS | G21 | | VSS | G13 | | VSS | G12 | | VSS | G11 | | VSS | G9 | | VSS | G7 | | VSS | G1 | | VSS | F37 | | VSS | F35 | | VSS | F27 | | VSS | F21 | | VSS | F18 | | VSS | F3 | | VSS | E43 | | VSS | E32 | | VSS | E24 | | VSS | E21 | | VSS | E20 | | VSS | E15 | | VSS | E13 | | VSS | E11 | | VSS | E9 | ### Ballout and Package Information | Signal Name | Ball # | |-------------|--------| | VSS | E3 | | VSS | D40 | | VSS | D31 | | VSS | D21 | | VSS | D17 | | VSS | D3 | | VSS | C26 | | VSS | C11 | | VSS | C6 | | VSS | C5 | | VSS | C4 | | VSS | B37 | | VSS | B32 | | VSS | B31 | | VSS | B26 | | VSS | B23 | | VSS | B22 | | VSS | B19 | | VSS | B14 | | VSS | B10 | | VSS | A39 | | VSS | A34 | | VSS | A26 | | VSS | A18 | | VSS | A12 | | Signal Name | Ball # | |-------------|--------| | VSS | A7 | | VSS | M11 | | VSYNC | D15 | | VTT | R27 | | VTT | R26 | | VTT | R24 | | VTT | R23 | | VTT | P29 | | VTT | P27 | | VTT | P26 | | VTT | P24 | | VTT | P23 | | VTT | N29 | | VTT | N26 | | VTT | N24 | | VTT | N23 | | VTT | M29 | | VTT | M24 | | VTT | M23 | | VTT | L24 | | VTT | L23 | | VTT | K24 | | VTT | K23 | | VTT | J24 | | VTT | J23 | | Signal Name | Ball # | |-------------|--------| | VTT | H24 | | VTT | H23 | | VTT | G26 | | VTT | G24 | | VTT | G23 | | VTT | F26 | | VTT | F24 | | VTT | F23 | | VTT | E29 | | VTT | E27 | | VTT | E26 | | VTT | E23 | | VTT | D29 | | VTT | D28 | | VTT | D27 | | VTT | C30 | | VTT | C29 | | VTT | C27 | | VTT | B30 | | VTT | B29 | | VTT | B28 | | VTT | B27 | | VTT | A30 | | VTT | A28 | | XORTEST | F20 | ## 12.2 Package Dimensions The (G)MCH package measures 34 mm \times 34 mm (see Figure 12-4). The 1226 balls are located in a non-grid pattern (see Figure 12-5). For additional details, refer to the Intel® 965 and Q963 Express Chipset Family Thermal and Mechanical Design Guide. Figure 12-4. (G)MCH Package Dimensions Figure 12-5. (G)MCH Non-Grid Ball Array ## 13 Testability In the (G)MCH, testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one input pin connected to it which allows for pad to ball to trace connection testing. The XOR testing methodology is to boot the part using straps to enter XOR mode (A description of the boot process follows). Once in XOR mode, all of the pins of an XOR chain are driven to logic 1. This action will force the output of that XOR chain to either a 1 if the number of the pins making up the chain is even, and a 0 if the number of the pins making up the chain is odd. Once a valid output is detected on the XOR chain output, a walking 0 pattern is moved from one end of the chain to the other. Every time the walking 0 is applied to a pin on the chain, the output will toggle. If the output does not toggle, there is a disconnect somewhere between die, package, and board and the system can be considered a failure. ### 13.1 XOR Test Mode Initialization Figure 13-1 shows the wave forms to be able to boot the part into XOR mode. The straps that need to be controlled during this boot process are BSEL[2:0], SDVO_CTRLDATA, EXP_EM, EXP_SLR, and XORTEST. On Q965, Q963, G965, P965 Express chipset platforms, all strap values must be driven before PWROK asserts. BSEL0 must be a 1. BSEL[2:1] need to be defined values, but logic value in any order will do. XORTEST must be driven to 0. If SDVO is present in the design, SDVO_CTRLDATA must be pulled to logic 1. Depending on if Static Lane Reversal is used and if the SDVO/PCI Express Coexistence is selected, EXP SLR and EXP EN must be pulled in a valid manner. Because of the different functionalities of the SDVO/PCI Express interface, not all of the pins will be used in all implementations. Due to the need to minimize test points and unnecessary routing, the XOR Chain 14 is dynamic depending on the values of SDVO_CTRLDATA, EXP_SLR, and EXP_EN. See Table 13-1 for what parts of XOR Chain 14 become valid XOR inputs depending on the use of SDVO_CTRLDATA, EXP_SLR, and EXP_EN. Table 13-1. XOR Chain 14 functionality | SDVO_CTRLDATA | EXP_EN | EXP_SLR | XOR Chain 14 | |---------------|--------|---------|--| | 0 | 1 | 0 | EXP_RXP[15:0]
EXP_RXN[15:0]
EXP_TXP[15:0]
EXP_TXN[15:0] | | 0 | 1 | 1 | EXP_RXP[15:0]
EXP_RXN[15:0]
EXP_TXP[15:0]
EXP_TXN[15:0] | | 1 | 0 | 0 | EXP_RXP[15:8]
EXP_RXN[15:8]
EXP_TXP[15:8]
EXP_TXN[15:8] | | 1 | 0 | 1 | EXP_RXP[7:0]
EXP_RXN[7:0]
EXP_TXP[7:0]
EXP_TXN[7:0] | | 1 | 1 | 0 | EXP_RXP[15:0]
EXP_RXN[15:0]
EXP_TXP[15:0]
EXP_TXN[15:0] | | 1 | 1 | 1 | EXP_RXP[15:0]
EXP_RXN[15:0]
EXP_TXP[15:0]
EXP_TXN[15:0] | ### 13.2 XOR Chain Definition The (G)MCH chipset has 15 XOR chains. The XOR chain outputs are driven out on the following output pins. During full width testing, XOR chain outputs will be visible on both pins. **Table 13-2. XOR Chain Outputs** | XOR Chain | Output Pins | Coordinate Location | |-----------|-------------|---------------------| | xor_out0 | ALLZTEST | K20 | | xor_out1 | XORTEST | F20 | | xor_out2 | ICH_SYNC# | J13 | | xor_out3 | RSV | F17 | | xor_out4 | RSV | AA9 | | xor_out5 | RSV | AA10 | | xor_out6 | BSEL1 | J20 | | xor_out7 | BSEL2 | J18 | | xor_out8 | RSV | AA11 | | xor_out9 | RSV | Y12 | | xor_out10 | EXP_SLR | E18 | | xor_out11 | EXP_EN | J17 | | xor_out12 | MTYPE | G18 | | xor_out13 | RSV | K17 | | xor_out14 | BSEL0 | G20 | ## 13.3 XOR Chains Table 13-3 through Table 13-17 show the XOR chains. Section 0 has a pin exclusion list Table 13-3. XOR Chain 0 | Table 13 | 1-3. AOI | Chairio | |--------------|-----------|-------------| | Pin
Count | Ball
| Signal Name | | 1 | C35 | HD49 | | 2 | D42 | HD52 | | 3 | B35 | HD61 | | 4 | B33 | HD58 | | 5 | D37 | HD57 | | 6 | A32 | HD62 | | 7 | C33 | HD48 | | 8 | D32 | HD63 | | 9 | B40 | HD55 | | 10 | D35 | HD54 | | 11 | C38 | HD56 | | 12 | C34 | HD60 | | 13 | B41 | HD51 | | 14 | E41 | HD50 | | 15 | D33 | HD59 | | 16 | C40 | HD53 | | 17 | B34 | HD31 | | 18 | C42 | HD16 | | 19 | E39 | HD21 | | 20 | E35 | HD28 | | 21 | D41 | HD17 | | 22 | C39 | HD23 | | 23 | F33 | HD27 | | 24 | E37 | HD22 | | 25 | G33 | HD25 | | 26 | F38 | HD18 | | 27 | B39 | HD24 | | 28 | G37 | HD19 | | 29 | K32 | HD29 | | 30 | H32 | HD30 | | 31 | E42 | HD20 | | 32 | A37 | HD26 | | 33 | L27 | HD42 | Table 13-3. XOR Chain 0 | Pin
Count | Ball
| Signal Name | |--------------|-----------|-------------| | 34 | F31 | HD39 | | 35 | F29 | HD41 | | 36 | J26 | HD46 | | 37 | E31 | HD35 | | 38 | H26 | HD44 | | 39 | K27 | HD43 | | 40 | J31 | HD32 | | 41 | F32 | HD33 | | 42 | L26 | HD45 | | 43 | J29 | HD40 | | 44 | K31 | HD36 | | 45 | M31 | HD34 | | 46 | K29 | HD38 | | 47 | G31 | HD37 | | 48 | M26 | HD47 | | 49 | J41 | HD11 | | 50 | F42 | HD15 | | 51 | G40 | HD13 | | 52 | L42 | HD10 | | 53 | F41 | HD14 | | 54 | N42 | HD7 | | 55 | K41 | HD12 | | 56 | N41 | HD6 | | 57 | J39 | HD9 | | 58 | M39 | HD5 | | 59 | N40 | HD3 | | 60 | L41 | HD8 | | 61 | P41 | HD1 | | 62 | R40 | HD0 | | 63 | R41 | HD2 | | 64 | R42 | HD4 | Table 13-4. XOR Chain 1 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | G43 | HREQ4# | | 2 | F40 | HREQ0# | | 3 | J42 | HA3# | | 4 | L36 | HA7# | | 5 | L37 | HA6# | | 6 | L35 | HREQ1# | | 7 | N32 | HA9# | | 8 | N35 | HA15# | | 9 | M36 | HA13# | | 10 | J40 | HA5# | | 11 | M34 | HADSTB0# | | 12 | M38 | HA11# | | 13 | N37 | HA12# | | 14 | G43 | HREQ3# | | 15 | K42 | HA8# | | 16 | N38 | HA16# | | 17 | L39 | HA4# | | 18 | L38 | HREQ2# | | 19 | N34 | HA10# | | 20 | R34 | HA14# | | 21 | R39 | HA21# | | 22 | N39 | HA18# | | 23 | V38 | HA31# | | 24 | Y36 | HA32# | | 25 | R42 | HA20# | | 26 | V35 | HA28# | | 27 | R38 | HA23# | | 28 |
U33 | HA25# | | 29 | R37 | HA19# | | 30 | R35 | HA26# | | 31 | U34 | HADSTB1# | | 32 | Y38 | HA33# | | 33 | V42 | HA30# | | 34 | U36 | HA24# | | 35 | V36 | HA22# | | 36 | U37 | HA17# | | 37 | AA37 | HA35# | | 38 | Y39 | HA34# | | 39 | V33 | HA27# | | 40 | Y34 | HA29# | Table 13-5. XOR Chain 2 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | H33 | HDSTBN1# | | 2 | G35 | HDSTBP1# | | 3 | AA41 | HRS1# | | 4 | U42 | HHIT# | | 5 | Y40 | HTRDY# | | 6 | Y43 | HHITM# | | 7 | H27 | HDSTBN2# | | 8 | G27 | HDSTBP2# | | 9 | M43 | HDSTBN0# | | 10 | L40 | HDSTBP0# | | 11 | W42 | HBNR# | | 12 | G39 | HBPRI# | | 13 | V41 | HLOCK# | | 14 | C31 | HCPURST# | Table 13-6. XOR Chain 3 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | D38 | HDSTBN3# | | 2 | B38 | HDSTBP3# | | 3 | E33 | HDINV3# | | 4 | J33 | HDINV1# | | 5 | T43 | HDEFER# | | 6 | U41 | HRS0# | | 7 | W41 | HDRDY# | | 8 | U40 | HDBSY# | | 9 | U39 | HRS2# | | 10 | G29 | HDINV2# | | 11 | M40 | HDINV0# | | 12 | W40 | HADS# | | 13 | F40 | HBREQ0# | Table 13-7. XOR Chain 4 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | BA38 | SODT_A1 | | 2 | BA35 | SCS_A1# | | 3 | AY37 | SODT_A0 | | 4 | AW35 | SCS_A0# | | 5 | BA31 | SMA_A0 | | 6 | AY33 | SMA_A10 | | 7 | AY25 | SMA_A4 | | 8 | BB25 | SMA_A1 | | 9 | BA26 | SMA_A2 | | 10 | BA25 | SMA_A3 | | 11 | AV33 | SCLK_A2 | | 12 | AW33 | SCLK_A2# | | 13 | AU31 | SCLK_A0 | | 14 | AR31 | SCLK_A0# | | 15 | AN27 | SCLK_A1# | | 16 | AP27 | SCLK_A1 | | 17 | BA23 | SMA_A5 | | 18 | BA22 | SMA_A9 | | 19 | BB23 | SMA_A8 | | 20 | AY24 | SMA_A6 | | 21 | BC20 | SCKE_A0 | | 22 | AY23 | SMA_A7 | | 23 | AY20 | SCKE_A1 | | 24 | AU18 | SDQS_A3# | | 25 | AN18 | SDM_A3 | | 26 | BA9 | SDQS_A2# | | 27 | AY9 | SDM_A2 | | 28 | BA4 | SDQS_A1# | | 29 | BA2 | SDM_A1 | | 30 | AR3 | SDQS_A0# | | 31 | AR2 | SDM_A0 | Table 13-8. XOR Chain 5 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | AC41 | SDQS_A7# | | 2 | AC40 | SDM_A7 | | 3 | AG41 | SDQS_A6# | | 4 | AG40 | SDM_A6 | | 5 | AL40 | SDQS_A5# | | 6 | AM43 | SDM_A5 | | 7 | AR40 | SDQS_A4# | | 8 | AU43 | SDM_A4 | | 9 | AY38 | SMA_A13 | | 10 | AY35 | SCAS_A# | | 11 | BB33 | SRAS_A# | | 12 | BA33 | SBS_A0 | | 13 | BB34 | SWE_A# | | 14 | AW32 | SBS_A1 | | 15 | BB22 | SMA_A11 | | 16 | BA21 | SMA_A14 | | 17 | BB21 | SBS_A2 | | 18 | AW21 | SMA_A12 | | 19 | AD12 | CL_DATA | | 20 | AD13 | CL_CLK | Table 13-9. XOR Chain 6 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | AC42 | SDQS_A7 | | 2 | AD43 | SDQ_A57 | | 3 | AB42 | SDQ_A63 | | 4 | AE41 | SDQ_A61 | | 5 | AE42 | SDQ_A60 | | 6 | AD40 | SDQ_A56 | | 7 | AC39 | SDQ_A62 | | 8 | AB41 | SDQ_A58 | | 9 | AA40 | SDQ_A59 | | 10 | AG42 | SDQS_A6 | | 11 | AF41 | SDQ_A54 | | 12 | AE40 | SDQ_A51 | | 13 | AJ42 | SDQ_A52 | | 14 | AJ41 | SDQ_A53 | | 15 | AF39 | SDQ_A50 | | 16 | AJ40 | SDQ_A48 | | 17 | AF42 | SDQ_A55 | | 18 | AH43 | SDQ_A49 | | 19 | AL41 | SDQS_A5 | | 20 | AN40 | SDQ_A44 | | 21 | AK41 | SDQ_A43 | | 22 | AM39 | SDQ_A41 | | 23 | AL39 | SDQ_A47 | | 24 | AN41 | SDQ_A40 | | 25 | AL42 | SDQ_A46 | | 26 | AN42 | SDQ_A45 | | 27 | AK42 | SDQ_A42 | | 28 | AR41 | SDQS_A4 | | 29 | AV42 | SDQ_A32 | | 30 | AP42 | SDQ_A34 | | 31 | AR42 | SDQ_A38 | | 32 | AV41 | SDQ_A37 | | 33 | AU40 | SDQ_A33 | | 34 | AN39 | SDQ_A35 | | 35 | AP41 | SDQ_A39 | | 36 | AV40 | SDQ_A36 | | 37 | AT20 | SDQS_A3 | Table 13-9. XOR Chain 6 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 38 | AV20 | SDQ_A31 | | 39 | AU21 | SDQ_A26 | | 40 | AT18 | SDQ_A24 | | 41 | AR18 | SDQ_A25 | | 42 | AT21 | SDQ_A27 | | 43 | AN17 | SDQ_A29 | | 44 | AP20 | SDQ_A30 | | 45 | AP17 | SDQ_A28 | | 46 | BB9 | SDQS_A2 | | 47 | AY11 | SDQ_A19 | | 48 | BA10 | SDQ_A22 | | 49 | BC7 | SDQ_A17 | | 50 | BB10 | SDQ_A23 | | 51 | AW11 | SDQ_A18 | | 52 | BA6 | SDQ_A21 | | 53 | BB6 | SDQ_A20 | | 54 | AY7 | SDQ_A16 | | 55 | BB3 | SDQS_A1 | | 56 | BA5 | SDQ_A14 | | 57 | AW2 | SDQ_A12 | | 58 | BB5 | SDQ_A10 | | 59 | BB4 | SDQ_A15 | | 60 | AY6 | SDQ_A11 | | 61 | AY3 | SDQ_A9 | | 62 | AY2 | SDQ_A8 | | 63 | AW3 | SDQ_A13 | | 64 | AU4 | SDQS_A0 | | 65 | AV4 | SDQ_A7 | | 66 | AP2 | SDQ_A5 | | 67 | AP3 | SDQ_A4 | | 68 | AR4 | SDQ_A1 | | 69 | AR5 | SDQ_A0 | | 70 | AU1 | SDQ_A6 | | 71 | AV2 | SDQ_A3 | | 72 | AV3 | SDQ_A2 | Table 13-10. XOR Chain 7 | 1 | | . | |--------------|--------|-------------| | Pin
Count | Ball # | Signal Name | | 1 | BA39 | SODT_A3 | | 2 | BB38 | SCS_A3# | | 3 | BB35 | SODT_A2 | | 4 | BA34 | SCS_A2# | | 5 | AP29 | SCLK_A3 | | 6 | AP31 | SCLK_A3# | | 7 | AU33 | SCLK_A5# | | 8 | AT33 | SCLK_A5 | | 9 | AM26 | SCLK_A4 | | 10 | AM27 | SCLK_A4# | | 11 | AY21 | SCKE_A2 | | 12 | BA19 | SCKE_A3 | Table 13-11. XOR Chain 8 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | BB30 | SCS_B1# | | 2 | BA30 | SODT_B1 | | 3 | BA29 | SODT_B0 | | 4 | BB27 | SCS_B0# | | 5 | AV32 | SCLK_B2 | | 6 | AT32 | SCLK_B2# | | 7 | AV31 | SCLK_B0 | | 8 | AW31 | SCLK_B0# | | 9 | AU27 | SCLK_B1 | | 10 | AT27 | SCLK_B1# | | 11 | AW18 | SMA_B10 | | 12 | BB17 | SMA_B0 | | 13 | AU26 | SDQS_B3# | | 14 | AP23 | SDM_B3 | | 15 | BC16 | SMA_B3 | | 16 | BA15 | SMA_B5 | | 17 | AY17 | SMA_B1 | | 18 | BA17 | SMA_B2 | | 19 | AW15 | SMA_B4 | | 20 | BB14 | SMA_B9 | Table 13-11. XOR Chain 8 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 21 | AY15 | SMA_B8 | | 22 | BB15 | SMA_B6 | | 23 | BA14 | SMA_B7 | | 24 | AW12 | SCKE_B1 | | 25 | AY12 | SCKE_B0 | | 26 | AR15 | SDQS_B2# | | 27 | AW13 | SDM_B2 | | 28 | AP12 | SDQS_B1# | | 29 | AW9 | SDM_B1 | | 30 | AU5 | SDQS_B0# | | 31 | AR7 | SDM_B0 | Table 13-12. XOR Chain 9 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | AC37 | SDQS_B7# | | 2 | AD38 | SDM_B7 | | 3 | AG36 | SDQS_B6# | | 4 | AG39 | SDM_B6 | | 5 | AL34 | SDQS_B5# | | 6 | AM37 | SDM_B5 | | 7 | AU39 | SDQS_B4# | | 8 | AU37 | SDM_B4 | | 9 | AY29 | SMA_B13 | | 10 | AW29 | SCAS_B# | | 11 | BA27 | SWE_B# | | 12 | AW26 | SRAS_B# | | 13 | BA18 | SBS_B1 | | 14 | AY19 | SBS_B0 | | 15 | BB13 | SMA_B11 | | 16 | BC12 | SBS_B2 | | 17 | BA13 | SMA_B12 | | 18 | AY13 | SMA_B14 | **Table 13-13. XOR Chain 10** | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | AC36 | SDQS_B7 | | 2 | AF38 | SDQ_B61 | | 3 | AD36 | SDQ_B56 | | 4 | AA36 | SDQ_B59 | | 5 | AA33 | SDQ_B63 | | 6 | AD34 | SDQ_B60 | | 7 | AC34 | SDQ_B62 | | 8 | AC33 | SDQ_B57 | | 9 | AA34 | SDQ_B58 | | 10 | AG35 | SDQS_B6 | | 11 | AJ37 | SDQ_B52 | | 12 | AJ38 | SDQ_B49 | | 13 | AG38 | SDQ_B48 | | 14 | AF34 | SDQ_B55 | | 15 | AF33 | SDQ_B51 | | 16 | AG33 | SDQ_B54 | | 17 | AF35 | SDQ_B50 | | 18 | AJ35 | SDQ_B53 | | 19 | AL35 | SDQS_B5 | | 20 | AL38 | SDQ_B43 | | 21 | AL32 | SDQ_B47 | | 22 | AR39 | SDQ_B44 | | 23 | AJ34 | SDQ_B42 | | 24 | AM38 | SDQ_B41 | | 25 | AM35 | SDQ_B40 | | 26 | AL37 | SDQ_B46 | | 27 | AM34 | SDQ_B45 | | 28 | AW39 | SDQS_B4 | | 29 | AN37 | SDQ_B35 | | 30 | AR37 | SDQ_B39 | | 31 | AW37 | SDQ_B32 | | 32 | AN36 | SDQ_B34 | | 33 | AV38 | SDQ_B33 | | 34 | AR35 | SDQ_B37 | | 35 | AN35 | SDQ_B38 | | 36 | AU35 | SDQ_B36 | | 37 | AT24 | SDQS_B3 | Table 13-13. XOR Chain 10 | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 38 | AP26 | SDQ_B27 | | 39 | AW23 | SDQ B29 | | 40 | AR24 | SDQ B30 | | 41 | AV24 | SDQ B24 | | 42 | AT23 | SDQ B25 | | 43 | AT26 | SDQ_B26 | | 44 | AN26 | SDQ_B31 | | 45 | AU23 | SDQ_B28 | | 46 | AP15 | SDQS_B2 | | 47 | AU17 | SDQ_B18 | | 48 | AW17 | SDQ_B23 | | 49 | AV15 | SDQ_B22 | | 50 | AT17 | SDQ_B19 | | 51 | AU15 | SDQ_B16 | | 52 | AM13 | SDQ_B21 | | 53 | AV13 | SDQ_B17 | | 54 | AU13 | SDQ_B20 | | 55 | AR12 | SDQS_B1 | | 56 | AP13 | SDQ_B10 | | 57 | AU12 | SDQ_B15 | | 58 | AV12 | SDQ_B14 | | 59 | AR13 | SDQ_B11 | | 60 | AU11 | SDQ_B9 | | 61 | AT11 | SDQ_B8 | | 62 | AU9 | SDQ_B13 | | 63 | AR11 | SDQ_B12 | | 64 | AV6 | SDQS_B0 | | 65 | AN6 | SDQ_B5 | | 66 | AN8 | SDQ_B1 | | 67 | AU7 | SDQ_B7 | | 68 | AN9 | SDQ_B6 | | 69 | AN7 | SDQ_B0 | | 70 | AW5 | SDQ_B2 | | 71 | AW7 | SDQ_B3 | | 72 | AN5 | SDQ_B4 | **Table 13-14. XOR Chain 11** | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | AY31 | SCS_B3# | | 2 | BB31 | SODT_B3 | | 3 | AY27 | SCS_B2# | | 4 | BB29 | SODT_B2 | | 5 | AV29 | SCLK_B4 | | 6 | AP32 | SCLK_B5# | | 7 | AN33 | SCLK_B5 | | 8 | AW27 | SCLK_B4# | | 9 | AR29 | SCLK_B3# | | 10 | ZU29 | SCLK_B3 | | 11 | BA11 | SCKE_B3 | | 12 | BB11 | SCKE_B2 | Table 13-15. XOR Chain 12 | Pin
Count | Ball # | Signal Name | |--------------|--------|---------------| | 1 | G17 | SDVO_CTRLDATA | | 2 | E17 | SDVO_CTRLCLK | | 3 | L13 | DDC_DATA | | 4 | M13 | DDC_CLK | **Table 13-16. XOR Chain 13** | Pin
Count | Ball # | Signal Name | |--------------|--------|-------------| | 1 | AA2 | DMI_TXN3 | | 2 | Y2 | DMI_TXP3 | | 3 | AA4 | DMI_RXN3 | | 4 | AB3 | DMI_RXP3 | | 5 | AC9 | DMI_TXN2 | | 6 | AC8 | DMI_TXP2 | | 7 | AA6 | DMI_RXN2 | | 8 | AA7 | DMI_RXP2 | | 9 | Y4 | DMI_TXN1 | | 10 | W4 | DMI_TXP1 | | 11 | Y9 | DMI_RXN1 | | 12 | Y8 | DMI_RXP1 | | 13 | V6 | DMI_TXN0 | **Table 13-16. XOR Chain 13** | Pin
Count | Ball # | Signal Name | | |--------------|--------|-------------|--| | 14 | V7 | DMI_TXP0 | | | 15 | V1 | DMI_RXN0 | | | 16 | W2 | DMI_RXP0 | | **Table 13-17. XOR Chain 14** | Pin
Count | Ball # | Signal Name | | |--------------|--------|-------------|--| | 1 | U4 | EXP_TXN15 | | | 2 | V3 | EXP_TXP15 | | | 3 | R7 | EXP_RXN15 | | | 4 | R6 | EXP_RXP15 | | | 5 | T2 | EXP_TXN14 | | | 6 | U2 | EXP_TXP14 | | | 7 | R4 | EXP_RXN14 | | | 8 | T4 | EXP_RXP14 | | | 9 | P1 | EXP_TXN13 | | | 10 | R2 | EXP_TXP13 | | | 11 | R10 | EXP_RXN13 | | | 12 | R9 | EXP_RXP13 | | | 13 | N4 | EXP_TXN12 | | | 14 | P3 | EXP_TXP12 | | | 15 | M6 | EXP_RXN12 | | | 16 | M5 | EXP_RXP12 | | | 17 | M2 | EXP_TXN11 | | | 18 | N2 | EXP_TXP11 | | | 19 | L4 | EXP_RXN11 | | | 20 | M4 | EXP_RXP11 | | | 21 | K1 | EXP_TXN10 | | | 22 |
L2 | EXP_TXP10 | | | 23 | M9 | EXP_RXN10 | | | 24 | M8 | EXP_RXP10 | | | 25 | K3 | EXP_TXN9 | | | 26 | J4 | EXP_TXP9 | | | 27 | L8 | EXP_RXN9 | | | 28 | L9 | EXP_RXP9 | | | 29 | G4 | EXP_TXN8 | | | 30 | F4 | EXP_TXP8 | | | 31 | G5 | EXP_RXN8 | | | 32 | G6 | EXP_RXP8 | | | 33 | E2 | EXP_TXN7 | | Table 13-17. XOR Chain 14 | Pin
Count | Ball # | Signal Name | | |--------------|--------|-------------|--| | 34 | F2 | EXP_TXP7 | | | 35 | D2 | EXP_RXN7 | | | 36 | C2 | EXP_RXP7 | | | 37 | B4 | EXP_TXN6 | | | 38 | В3 | EXP_TXP6 | | | 39 | F6 | EXP_RXN6 | | | 40 | E5 | EXP_RXP6 | | | 41 | В6 | EXP_TXN5 | | | 42 | B5 | EXP_TXP5 | | | 43 | E7 | EXP_RXN5 | | | 44 | F7 | EXP_RXP5 | | | 45 | D6 | EXP_TXN4 | | | 46 | D7 | EXP_TXP4 | | | 47 | H11 | EXP_RXN4 | | | 48 | J11 | EXP_RXP4 | | | 49 | В7 | EXP_TXN3 | | | 50 | В9 | EXP_TXP3 | | **Table 13-17. XOR Chain 14** | Pin
Count | Ball # | Signal Name | | |--------------|--------|-------------|--| | 51 | H12 | EXP_RXN3 | | | 52 | J12 | EXP_RXP3 | | | 53 | D9 | EXP_TXN2 | | | 54 | C10 | EXP_TXP2 | | | 55 | E12 | EXP_RXN2 | | | 56 | F12 | EXP_RXP2 | | | 57 | A10 | EXP_TXN1 | | | 58 | B11 | EXP_TXP1 | | | 59 | J15 | EXP_RXN1 | | | 60 | K15 | EXP_RXP1 | | | 61 | D12 | EXP_TXN0 | | | 62 | D11 | EXP_TXP0 | | | 63 | G15 | EXP_RXN0 | | | 64 | F15 | EXP_RXP0 | | ## 13.4 PADs Excluded from XOR Mode(s) A large number of pads do not support XOR testing. The majority of the pads that fall into this category are analog related pins (see Table 13-18). Table 13-18. XOR Pad Exclusion List | PCI Express* | FSB | SM | Miscellaneous | |--------------|----------|-------------|---------------| | GCLKN | HCLKN | SRCOMP[3:0] | RED | | GCLKP | HCLKP | SVREF | RED# | | EXP_COMPO | HRCOMP | SMRCOMPVOL | GREEN | | EXP_COMPI | HSCOMP | SMRCOMPVOH | GREEN# | | | HSCOMP# | | BLUE | | | HSWING | | BLUE# | | | HDVREF | | DREFCLKN | | | HACCVREF | | DREFCLKP | | | | | REFSET | | | | | HSYNC | | | | | VSYNC | | | | | DREFCLKN | | | | | DREFCLKP | | | | | TEST[2:0] | | | | | CL_DATA | | | | | CL_CLK | | | | | CL_VREF | §