MARKING

DIAGRAMS

ANxYW=

АЗМ

8 8 8 8 8

1 8888

1 1 1 1 1

2K32 AYW=

Operational Amplifiers, High Slew Rate, Low Voltage, Rail-to-Rail Output

NCS2003/A, NCV2003, NCS20032, NCV20032, NCS20034, NCV20034

The NCS2003 family of op amps features high slew rate, low voltage operation with rail-to-rail output drive capability. The 1.8 V operation allows high performance operation in low voltage, low power applications. The fast slew rate and wide unity-gain bandwidth (5 MHz at 1.8 V) make these op amps suited for high speed applications. The low input offset voltage (4 mV max) allows the op amp to be used for current shunt monitoring. Additional features include no output phase reversal with overdriven inputs and ultra low input bias current of 1 pA.

The NCS2003 family is the ideal solution for a wide range of applications and products. The single channel NCS2003, dual channel NCS20032, and quad channel NCS20034 are available in a variety of compact and space-saving packages. The NCV prefix denotes that the device is AEC-Q100 Qualified and PPAP Capable.

Features

- Unity Gain Bandwidth: 7 MHz at $V_S = 5 \text{ V}$
- Fast Slew Rate: 8 V/ μ s rising, 12.5 V/ μ s falling at V_S = 5 V
- Rail-to-Rail Output
- No Output Phase Reversal for Over-Driven Input Signals
- Low Offset Voltage: 0.5 mV typical
- Low Input Bias Current: 1 pA typical
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

1

Applications

- Current Shunt Monitor
- Signal Conditioning
- Active Filter
- Sensor Buffer

End Products

- Motor Control Drives
- Hard Drives
- Medical Devices
- White Goods and Air Conditioners

SOT23-5 **CASE 483** (NCS/NCV2003)

SOT553, 5 LEAD CASE 463B (NCS2003)

Micro8 **DM SUFFIX** CASE 846A

SOIC-8 **CASE 751**

TSSOP-8 T SUFFIX **CASE 948S**

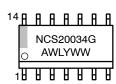
SOIC-14 NB **CASE 751A**

WL, L = Wafer Lot = Year WW, W = Work Week

G or = = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.



Publication Order Number: NCS2003/D

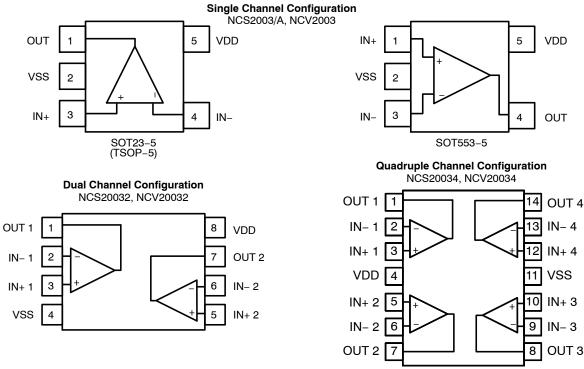


Figure 1. Pin Connections

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS2003SN2T1G	Single	No	AN3	SOT23-5 (Pb-Free)	3000 / Tape and Reel
NCS2003ASN2T1G		No	AN4	SOT23-5 (Pb-Free)	3000 / Tape and Reel
NCS2003XV53T2G		No	А3	SOT553-5 (Pb-Free)	4000 /Tape and Reel
NCV2003SN2T1G*		Yes	AN3	SOT23-5 (Pb-Free)	3000 / Tape and Reel
NCS20032DMR2G	Dual	No	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCS20032DR2G			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20032DTBR2G			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCV20032DMR2G*		Yes	2K32	Micro8 (Pb-Free)	4000 / Tape and Reel
NCV20032DR2G*			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20032DTBR2G*			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCS20034DR2G	Quad	No	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20034DR2G*		Yes	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated

Parameter		Symbol	Limit	Unit
Supply Voltage (V _{DD} - V _{SS})		V _S	7.0	V
INPUT AND OUTPUT PINS				
Input Voltage (Note 1)		V _{IN}	V _{SS} – 0.3 to 7.0	V
Input Current		I _{IN}	10	mA
Output Short Current (Note 2)		Io	100	mA
TEMPERATURE				
Storage Temperature		T _{STG}	-65 to 150	°C
Junction Temperature		TJ	150	°C
ESD RATINGS (Note 3)				
Human Body Model	NCx2003, A NCx20032 NCx20034	НВМ	3000 2000 3000	V
Machine Model	NCx2003, A NCx20032 NCx20034	MM	200 100 150	V
Charged Device Model	NCx2003, A NCx2003x	CDM	1000 2000	V
OTHER PARAMETERS				•
Moisture Sensitivity Level (Note 5)		MSL	Level 1	
Latch-up Current (Note 4)		I _{LU}	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Neither input should exceed the range of V_{SS} 300 mV to 7.0 V. This device contains internal protection diodes between the input pins and V_{DD}. When V_{IN} exceeds V_{DD}, the input current should be limited to the specified value.
- Indefinite duration; however, maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.
- 3. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per AEC-Q100-002 and JESD22-A114
 - ESD Machine Model tested per AEC-Q100-003 and JESD22-A115
 - ESD Charged Device Model tested per AEC-Q100-011 and ANSI/ESD S5.3.1-2009
- 4. Latch-up current tested per JEDEC Standard JESD78.
- 5. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A.

THERMAL INFORMATION

Thermal Metric	Symbol	Package	Single Layer Board (Note 6)	Multi Layer Board (Note 7)	Unit	
		SOT23-5/TSOP-5	408	355		
		SOT553-5	428	406		
Junction to Ambient	Δ.,	0	Micro8/MSOP8	235	163	°C/W
Thermal Resistance		SOIC-8	240	179	-0/00	
		TSSOP-8	300	238		
		SOIC-14	167	123		

- 6. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area
- 7. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm2 copper area

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (V _{DD} – V _{SS})	V _S	1.7	5.5	V
Specified Operating Range NCS2003, A NCV2003, NCx20032, NCx20034	T _A	-40 -40	+85 +125	°C
Input Common Mode Range	V_{CM}	V _{SS}	V _{DD} -0.6	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V

At T_A = +25°C, R_L = 10 k Ω connected to midsupply, V_{CM} = V_{OUT} = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.5 0.5 2.0 1 1 100 1 1.2 80	3.0 4.0 5.0 6.0	mV mV mV μV/°C μV/°C pA
NCx2003, NCx20032, NCx20034 Offset Voltage Drift ΔV _{OS} /ΔΤ Input Bias Current I _{IB} NCS2003A (Note 8) Input Offset Current I _{OS} Channel Separation XTLK DC, NCx20032, NCx20034 Input Resistance R _{IN} Common Mode Rejection Ratio CMRR V _{IN} = V _{SS} to V _{DD} – 0.6 V 70 OUTPUT CHARACTERISTICS Open Loop Voltage Gain A _{VOL} R _L = 10 kΩ 80 TS R _L = 2 kΩ TO Output Current Capability (Note 8) Sourcing 5	0.5 2.0 1 1 100 1 1.2	4.0 5.0	mV mV μV/°C μV/°C pA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0 1 1 100 1	5.0	mV μV/°C μV/°C pA
Input Bias Current IIB Input Offset Current IOS Input Offset Current IOS Input Offset Current IOS Input Offset Current IOS Input Resistance RIN Input Capacitance CIN Input Capacitance CMRR VIN = VSS to VDD - 0.6 V 70 VIN = VSS + 0.2 V to VDD - 0.6 V 65	1 1 100 1 1.2		μV/°C μV/°C pA
Input Bias Current IIB Input Offset Current IOS Input Offset Current IOS Input Offset Current IOS Input Offset Current IOS Input Resistance RIN Input Capacitance CIN Input Capacitance CMRR VIN = VSS to VDD - 0.6 V 70 VIN = VSS + 0.2 V to VDD - 0.6 V 65	1 1 100 1 1.2	6.0	μV/°C pA
$ \begin{array}{ c c c } \hline \text{Input Bias Current} & I_{IB} \\ \hline \text{Input Offset Current} & I_{OS} \\ \hline \text{Channel Separation} & \text{XTLK} & DC, NCx20032, NCx20034} \\ \hline \text{Input Resistance} & R_{IN} \\ \hline \text{Input Capacitance} & C_{IN} \\ \hline \text{Common Mode Rejection} & CMRR & V_{IN} = V_{SS} \text{ to } V_{DD} - 0.6 \text{ V} & 70 \\ \hline \text{Ratio} & V_{IN} = V_{SS} + 0.2 \text{ V to } V_{DD} - 0.6 \text{ V} & \textbf{65} \\ \hline \textbf{OUTPUT CHARACTERISTICS} \\ \hline \textbf{Open Loop Voltage Gain} & A_{VOL} & R_{L} = 10 \text{ k}\Omega & 80 \\ \hline \textbf{75} \\ \hline \textbf{R}_{L} = 2 \text{ k}\Omega & \hline \textbf{70} \\ \hline \textbf{Output Current Capability} & I_{SC} & Sourcing & 5 \\ \hline \end{array} $	1 100 1 1.2	6.0	pA
$ \begin{array}{ c c c } \hline \text{Input Offset Current} & I_{OS} & & & \\ \hline \text{Channel Separation} & XTLK & DC, NCx20032, NCx20034 & \\ \hline \text{Input Resistance} & R_{IN} & & & \\ \hline \text{Input Capacitance} & C_{IN} & & & \\ \hline \text{Common Mode Rejection} & CMRR & V_{IN} = V_{SS} \text{ to } V_{DD} - 0.6 \text{ V} & 70 \\ \hline \text{Ratio} & & V_{IN} = V_{SS} + 0.2 \text{ V to } V_{DD} - 0.6 \text{ V} & \textbf{65} \\ \hline \textbf{OUTPUT CHARACTERISTICS} & & & & \\ \hline \textbf{Open Loop Voltage Gain} & A_{VOL} & R_L = 10 \text{ k}\Omega & & & \\ \hline \textbf{R}_L = 2 \text{ k}\Omega & & & \\ \hline \textbf{70} & & & \\ \hline \textbf{Output Current Capability} & I_{SC} & & & \\ \hline \textbf{Sourcing} & 5 & & \\ \hline \end{array} $	1 100 1 1.2		
$ \begin{array}{ c c c c } \hline \text{Channel Separation} & \text{XTLK} & \text{DC, NCx20032, NCx20034} \\ \hline \text{Input Resistance} & R_{\text{IN}} & & & & \\ \hline \text{Input Capacitance} & C_{\text{IN}} & & & & \\ \hline \text{Common Mode Rejection} & \text{CMRR} & V_{\text{IN}} = V_{\text{SS}} \text{ to V}_{\text{DD}} - 0.6 \text{ V} & 70 \\ \hline \text{Ratio} & V_{\text{IN}} = V_{\text{SS}} + 0.2 \text{ V to V}_{\text{DD}} - 0.6 \text{ V} & \textbf{65} \\ \hline \textbf{OUTPUT CHARACTERISTICS} & & & & & & \\ \hline \textbf{Open Loop Voltage Gain} & A_{\text{VOL}} & R_{\text{L}} = 10 \text{ k}\Omega & & & & \\ \hline \textbf{R}_{\text{L}} = 2 \text{ k}\Omega & & & & \\ \hline \textbf{Output Current Capability} & I_{\text{SC}} & & & & & \\ \hline \textbf{Note 8)} & & & & & & \\ \hline \end{array} $	100 1 1.2		pA
$ \begin{array}{ c c c c c } \hline \text{Input Resistance} & R_{\text{IN}} & & & & & & \\ \hline \hline \text{Input Capacitance} & C_{\text{IN}} & & & & & & \\ \hline \hline \text{Common Mode Rejection} & CMRR & V_{\text{IN}} = V_{\text{SS}} \text{ to } V_{\text{DD}} - 0.6 \text{ V} & 70 \\ \hline \hline \text{Ratio} & V_{\text{IN}} = V_{\text{SS}} + 0.2 \text{ V to } V_{\text{DD}} - 0.6 \text{ V} & \textbf{65} \\ \hline \hline \textbf{OUTPUT CHARACTERISTICS} & & & & & & \\ \hline \hline \hline \textbf{Open Loop Voltage Gain} & A_{\text{VOL}} & R_{\text{L}} = 10 \text{ k}\Omega & & & & \\ \hline \hline \textbf{R}_{\text{L}} = 2 \text{ k}\Omega & & & & \\ \hline \hline \textbf{70} & & & & & \\ \hline \textbf{Output Current Capability} & I_{\text{SC}} & & & & \\ \hline \textbf{Sourcing} & & 5 \\ \hline \end{array} $	1 1.2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2		dB
$ \begin{array}{c c} Common \ Mode \ Rejection \\ Ratio \\ \hline $			TΩ
	80		pF
$\begin{array}{c c} V_{\text{IN}} = V_{\text{SS}} + 0.2 \text{ V to } V_{\text{DD}} - 0.6 \text{ V} & \textbf{65} \\ \hline \textbf{OUTPUT CHARACTERISTICS} & & & & & & & & & \\ \hline \textbf{Open Loop Voltage Gain} & A_{\text{VOL}} & R_{\text{L}} = 10 \text{ k}\Omega & & & & & & \\ \hline \textbf{R}_{\text{L}} = 2 \text{ k}\Omega & & & & & & \\ \hline \textbf{R}_{\text{L}} = 2 \text{ k}\Omega & & & & & \\ \hline \textbf{Output Current Capability} & I_{\text{SC}} & & & & & & \\ \hline \textbf{Note 8)} & & & & & & & \\ \hline \end{array}$			dB
$\begin{array}{ c c c c c c }\hline Open Loop Voltage Gain & A_{VOL} & R_L = 10 \text{ k}\Omega & 80\\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & $			=
$R_{L} = 2 \text{ k}\Omega$ Output Current Capability (Note 8) Output Sourcing 5			.1
	92		dB
Output Current Capability I _{SC} Sourcing 5 (Note 8)			-
Output Current Capability I _{SC} Sourcing 5 (Note 8)	92		1
(Note 8)			
(Note 8)	8		mA
` ' Sinking 10	14		
Output Voltage High V_{OH} $R_L = 10 \text{ k}\Omega$ 1.75	1.798		V
$R_L = 2 k\Omega$ 1.7	1.78		1
Output Voltage Low VoL $R_L = 10 \text{ k}\Omega$ NCx2003, A	7	50	mV
NCx2003x	7	100	
$R_L = 2 k\Omega$	20	100	
NOISE PERFORMANCE			<u>.I.</u>
Voltage Noise Density e _N f = 1 kHz	20		nV/√ Hz
Current Noise Density i _N f = 1 kHz	0.1		pA√ Hz
DYNAMIC PERORMANCE		I	,I
Gain Bandwidth Product GBWP	5		MHz
Rising Edge, $R_L = 2 k\Omega$, $A_V = +1$	6		
Slew Rate at Unity Gain $R_L = 2 k\Omega$, $R_V = +1$	9		V/μs
Phase Margin ψ_{m} $R_{L} = 10 \text{ k}\Omega, C_{L} = 5 \text{ pF}$	53	1	0
Gain Margin A_m $R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$ NCx2003, A	12	1	dB
NCx2003x	+	1	†
Settling Time t_S $V_O = 1 \text{ Vpp},$ Settling time to $Gain = 1, C_L = 20 \text{ pF}$ 0.1%	8		┼──

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{8.} Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: $V_S = +1.8 V$ (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
DYNAMIC PERORMANCE						•	
Total Harmonics Distortion +	THD+N	$V_O = 1 V_{pp}, R_L = 2 k\Omega, A_V$		0.005		%	
Noise		$V_O = 1 V_{pp}, R_L = 2 k\Omega, A_V$	= +1, f = 10 kHz		0.025		
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	NCx2003		72	80		dB
				65			
	•	NCx20032, NCx	20034	80	100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		230	560	μΑ
						1000	
		NCx20032,			275	375	
			NCx20034			575	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	S					
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003		0.5	4.0	mV
		NCx20032, NCx20034			5.0	mV
Offset Voltage Drift	ΔV _{OS} /ΔT			2.0		μV/°C
		NCS2003A (Note 9)			6.0	μV/°C
Input Bias Current	I _{IB}			1		рА
Input Offset Current	los			1		рА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		TΩ
Input Capacitance	C _{IN}			1.2		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{9.} Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditi	ons	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	•		,				1
Common Mode Rejection Ratio	CMRR	NCx2003, A	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	65	90		dB
			$V_{IN} = V_{SS} + 0.2 \text{ V}$ to $V_{DD} - 0.6 \text{ V}$	63			
		NCx20032, NCx20034	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	70	90		
			$V_{IN} = V_{SS} + 0.2 \text{ V}$ to $V_{DD} - 0.6 \text{ V}$	65			
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	A _{VOL}	R _L = 10	kΩ	86	92		dB
				78			
		R _L = 2	kΩ	83	92		
				78			
Output Current Capability	I _{SC}	Sourcing Sinking		40	76		mA
(Note 9)				50	96		
Output Voltage High	V _{OH}	R_L = 10 kΩ R_L = 2 kΩ		4.95	4.99		V
				4.9	4.97		
Output Voltage Low	Vol	R _L = 10 kΩ	NCx2003, A		8	50	mV
					8	100	
		R _L = 2	kΩ		24	100	
NOISE PERFORMANCE							
Voltage Noise Density	e _N	f = 1 k	Hz		20		nV/√ Hz
Current Noise Density	i _N	f = 1 k	Hz		0.1		pA√ Hz
DYNAMIC PERORMANCE							•
Gain Bandwidth Product	GBWP				7		MHz
Slew Rate at Unity Gain	SR	Rising Edge, R _L =	2 kΩ, AV = +1		8		V/μs
		Falling Edge, R _L =	2 kΩ, AV = +1		12.5		
Phase Margin	Ψm	$R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$	NCx2003, A		64		۰
			NCx2003x		56		
Gain Margin	A _m	$R_L = 10 \text{ k}\Omega$, (C _L = 5 pF		9		dB
Settling Time	t _S	$V_{O} = 1 V_{pp},$ Gain = 1, $C_{L} = 20 pF$	Settling time to 0.1%		0.6		μs
Total Harmonics Distortion +	THD+N	$V_O = 4 V_{pp}, R_L = 2 k\Omega,$	A _V = +1, f = 1 kHz		0.002		%
Noise		$V_O = 4 V_{pp}$, $R_L = 2 k\Omega$,	A _V = +1, f = 10 kHz		0.01		7

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	NCx2003	NCx2003, A NCx20032, NCx20034		80		dB
		NCx20032, N			100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		300	660	μΑ
						1000	
		NCx20032,			325	450	
			NCx20034			675	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{9.} Guaranteed by design and/or characterization.

TYPICAL CHARACTERISTICS

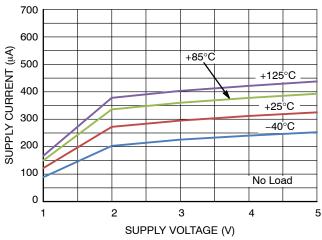


Figure 2. Quiescent Supply Current vs. Supply Voltage

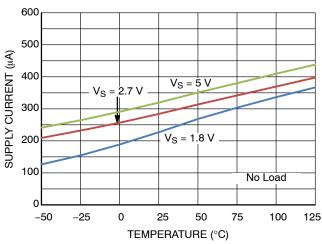


Figure 3. Quiescent Supply Current vs.
Temperature

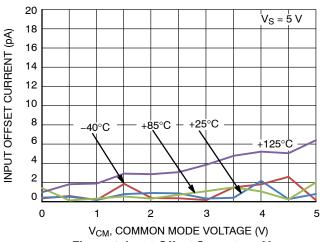


Figure 4. Input Offset Current vs. V_{CM}

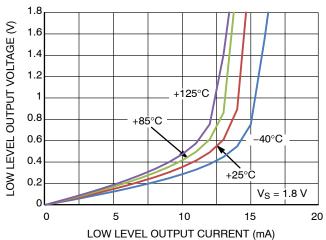


Figure 5. Low Level Output Voltage vs. Output Current @ V_S = 1.8 V

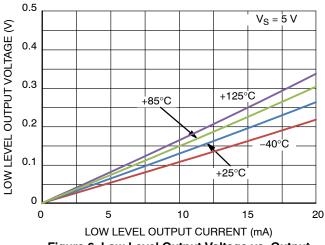


Figure 6. Low Level Output Voltage vs. Output Current @ $V_S = 5 V$

Figure 7. High Level Output Voltage vs. Output Current @ $V_S = 1.8 \text{ V}$

TYPICAL CHARACTERISTICS (Continued)

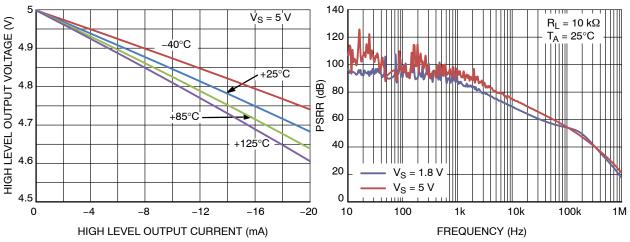


Figure 8. High Level Output Voltage vs. Output Current @ $V_S = 5 V$

Figure 9. PSRR vs. Frequency

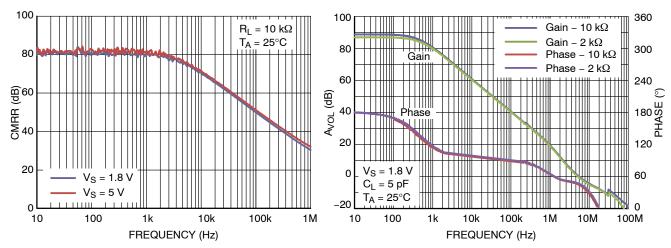


Figure 10. CMRR vs. Frequency

Figure 11. Open Loop Gain and Phase vs. Frequency @ $V_S = 1.8 \text{ V}$

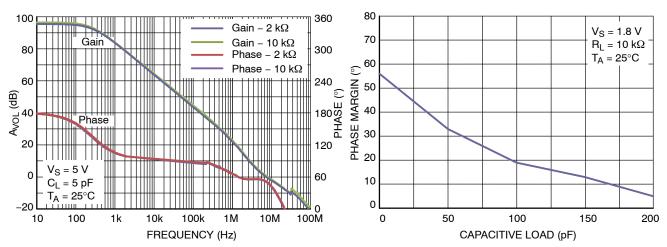


Figure 12. Open Loop Gain and Phase vs. Frequency @ $V_S = 5 \text{ V}$

Figure 13. Phase Margin vs. Capacitive Load

TYPICAL CHARACTERISTICS (Continued)

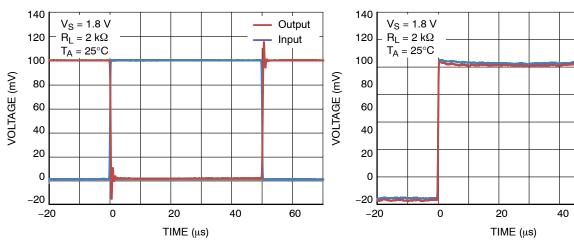


Figure 14. Inverting Small Signal Transient Response

Figure 15. Non-Inverting Small Signal Transient Response

Output

60

Input

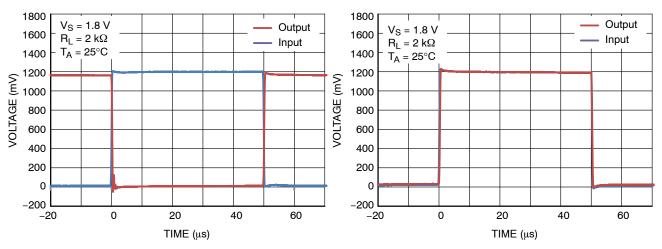


Figure 16. Inverting Large Signal Transient Response

Figure 17. Non-Inverting Large Signal Transient Response

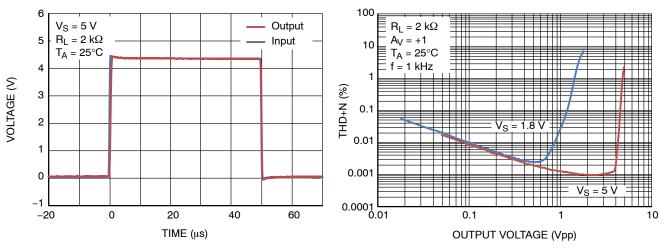
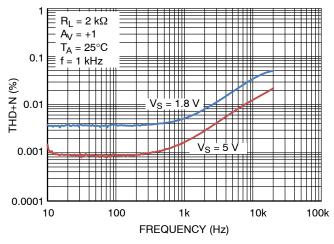
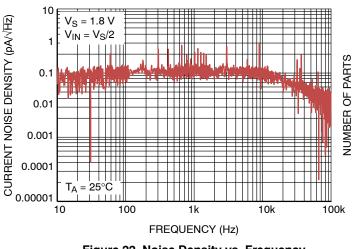



Figure 18. Non-Inverting Large Signal Transient Response

Figure 19. THD+N vs. Output Voltage


TYPICAL CHARACTERISTICS (Continued)

140 120 VOLTAGE NOISE (nV/√Hz) = 25°C 100 80 60 40 20 0 10 100 1k 10k 100k FREQUENCY (Hz)

Figure 20. THD+N vs. Frequency

Figure 21. Input Voltage Noise vs. Frequency

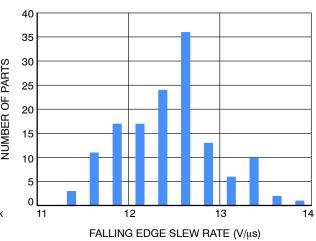
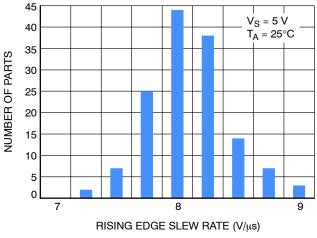



Figure 22. Noise Density vs. Frequency

Figure 23. Falling Edge Slew Rate @ Vs = 5 V

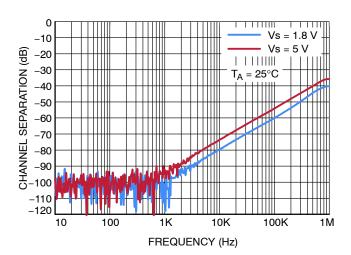
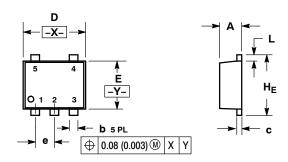
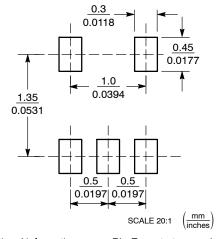


Figure 24. Rising Edge Slew Rate @ Vs = 5 V


Figure 25. Channel Separation



SOT-553, 5 LEAD CASE 463B **ISSUE C**

DATE 20 MAR 2013

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES

- IES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

	М	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BS0	
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

5. ANODE

= Pb-Free Package

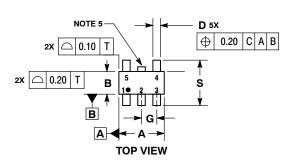
(Note: Microdot may be in either location)

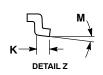
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

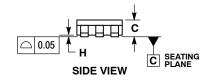
STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	CATHODE 3	4. CATHODE 2	4. GATE 1	COLLECTOR
COLLECTOR	CATHODE 4	CATHODE 1	5. GATE 2	CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

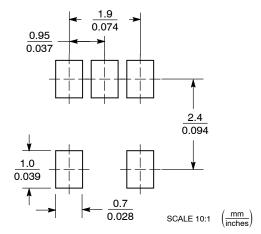

5. COLLECTOR 2/BASE 1





TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- DIMENSIONING AND TOLERANCING PER ASME
 Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
С	0.90	1.10	
D	0.25	0.50	
G	0.95 BSC		
Н	0.01	0.10	
J	0.10	0.26	
K	0.20	0.60	
М	0 °	10 °	
S	2.50	3.00	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

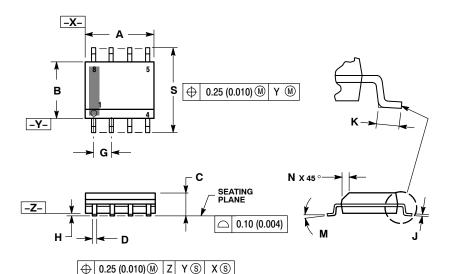
= Year = Pb-Free Package

= Work Week W

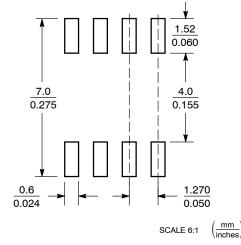
= Pb-Free Package

(Note: Microdot may be in either location)

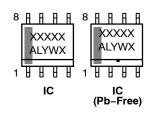
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER: 98ARB18753C		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-5		PAGE 1 OF 1

SOIC-8 NB CASE 751-07 **ISSUE AK**


DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 ° 8 °		0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX XXXXXX AYWW AYWW Ŧ \mathbb{H} Discrete **Discrete** (Pb-Free)

XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

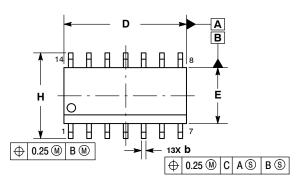
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

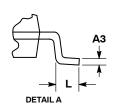
SOIC-8 NB CASE 751-07 ISSUE AK

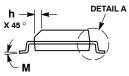
DATE 16 FEB 2011

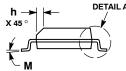
STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE. #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 7. COLLECTOR, DIE #2 8. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW TO GND 2. DASIC OFF 3. DASIC SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		' '
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

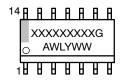





△ 0.10


SOIC-14 NB CASE 751A-03 ISSUE L

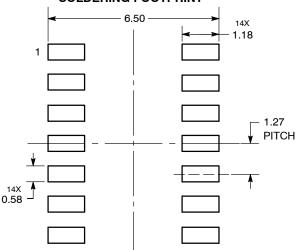
DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION
 - SHALL BE 0.13 TOTAL IN EXCESS OF AT
 - MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0 °	7°	0 °	7°

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

C SEATING PLANE

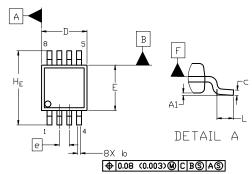
STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2

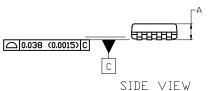
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

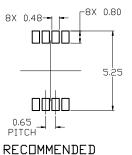

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2



Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

MOUNTING FOOTPRINT

DIM	MI	LLIMETE	RS
ואזמ	MIN.	N□M.	MAX.
Α	-	-	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
c	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
е	0.65 BSC		
HE	4.75	4.90	5.05
L	0.40	0.55	0.70

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

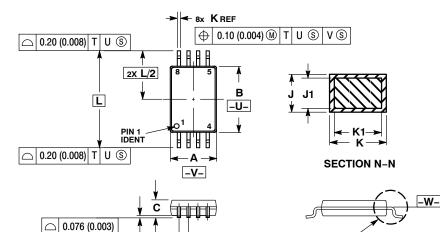
(Note: Microdot may be in either location)

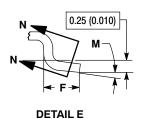
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
SOURCE	2. GATE 1	2. N-GATE
SOURCE	3. SOURCE 2	3. P-SOURCE
GATE	4. GATE 2	4. P-GATE
DRAIN	5. DRAIN 2	5. P-DRAIN
DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	MICRO8		PAGE 1 OF 1	

-T- SEATING


D



TSSOP-8 CASE 948S **ISSUE C**

DATE 20 JUN 2008

DETAIL E

- IOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	4.30	4.50	0.169	0.177	
C		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65 BSC		0.026 BSC		
7	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
M	0°	8°	0°	8°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-8		PAGE 1 OF 1	

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales