

Sample &

Buv

SN74LVC2G08

SCES198N - APRIL 1999-REVISED DECEMBER 2015

SN74LVC2G08 Dual 2-Input Positive-AND Gate

1 Features

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.7 ns at 3.3 V
- Low Power Consumption, 10-µA Maximum I_{CC}
- ±24-mA Output Drive at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Can Be Used as a Down Translator to Translate Inputs From a Maximum of 5.5 V Down to the V_{CC} Level
- Latch-Up Performance Exceeds 100 mA Per • JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

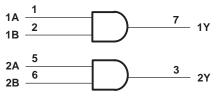
- IP Phones: Wired and Wireless
- Optical Networking: EPON and Video Over Fiber
- Point-to-Point Microwave Backhaul
- Power: Telecom DC/DC Module: Analog
- Power: Telecom DC/DC Module: Digital
- Private Branch Exchange (PBX)
- Telecom Shelter: Power Distribution Unit (PDU)
- Vector Signal Analyzers and Generators
- Wireless Communications Testers
- Wireless Repeaters
- xDSL Modem/DSLAM

3 Description

This dual 2-input positive-AND gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC2G08 device performs the Boolean function Y = A × B or Y = $\overline{A} + \overline{B}$ in positive logic.

NanoFree package technology is а major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC2G08DCT	SM8 (8)	2.95 mm × 2.80 mm
SN74LVC2G08DCU	VSSOP (8)	2.30 mm × 2.00 mm
SN74LVC2G08YZP	DSBGA (8)	1.91 mm × 0.91 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

1

Product Folder Links: SN74LVC2G08

Table of Contents Features 1

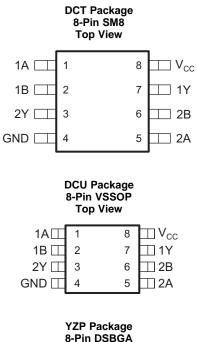
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 5
	6.4	Thermal Information 5
	6.5	Electrical Characteristics 6
	6.6	Switching Characteristics 6
	6.7	Typical Characteristics 7
7	Para	ameter Measurement Information
8	Deta	ailed Description
	8.1	Overview

	8.2	Functional Block Diagram	9
	8.3	Feature Description	9
	8.4	Device Functional Modes	9
9	App	lication and Implementation	10
	9.1	Application Information	10
	9.2	Typical Application	10
10	Pow	er Supply Recommendations	<mark>1</mark> 1
11	Lay	out	<mark>1</mark> 1
	11.1	Layout Guidelines	1 1
	11.2	Layout Example	1 1
12	Dev	ice and Documentation Support	12
	12.1	Community Resources	12
	12.2	Trademarks	12
	12.3	Electrostatic Discharge Caution	12
	12.4	Glossary	12
13		hanical, Packaging, and Orderable	
	Info	mation	12

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision M (April 2014) to Revision N


•	Added Pin Configuration and Functions section, ESD Ratings and Thermal Information tables, Feature Description
	section, Device Functional Modes section, Application and Implementation section, Power Supply
	Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
	Packaging, and Orderable Information section 1

www.ti.com

Page

5 Pin Configuration and Functions

8-Pin DSBGA Bottom View

GND	O4 50	2A
2Y	O36O	2B
1B	0270	1Y
1A	O1 8O	V _{cc}

Pin Functions⁽¹⁾

PIN		1/0	DESCRIPTION	
NAME	NO.	- I/O	DESCRIPTION	
1A	1	I	Channel 1 logic input	
1B	2	I	Channel 1 logic input	
1Y	7	0	Logic level output	
2A	5	Ι	Channel 2 logic input	
2B	6	Ι	Channel 2 logic input	
2Y	3	0	Logic level output	
GND	4	_	Ground	
V _{CC}	8	_	Power Supply	

(1) See Mechanical, Packaging, and Orderable Information for dimensions.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	6.5	V
VI	Input voltage ⁽²⁾		-0.5	6.5	V
Vo	Voltage applied to any output in the high-im	pedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage applied to any output in the high or	low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
Tj	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	M
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V	Supply voltage	Operating	1.65	5.5	V	
V _{CC}	Supply voltage	Data retention only	1.5		v	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
VIH	Liber Incol Construction	V _{CC} = 2.3 V to 2.7 V	1.7			
VIH	High-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	2		V	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$0.7 \times V_{CC}$			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
.,		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7		
V _{IL}	Low-level input voltage	$V_{CC} = 3 V$ to 3.6 V		0.8	V	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		$0.3 \times V_{CC}$		
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V		-4		
	H High-level output current	V _{CC} = 2.3 V		8		
I _{OH}		<u>)</u> / 2)/		-16	mA	
		$V_{CC} = 3 V$	$V_{CC} = 3 V$		-24	
		$V_{CC} = 4.5 V$		-32		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
l _{OL}	Low-level output current	<u> </u>		16	mA	
		$V_{CC} = 3 V$		24		
		V _{CC} = 4.5 V		32		
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20		
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V	
		$V_{CC} = 5 V \pm 0.5 V$		5		
		SN74LVC2G08DCU	-40	125		
T _A	Operating free-air temperature	SN74LVC2G08DCT	-40	125	°C	
		SN74LVC2G08YZP	-40	85		

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DCT (SM8)	DCU (VSSOP)	YZP (DSBGA)	UNIT
		8 PINS	8 PINS	8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	220	227	128	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	108	84	14	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

SN74LVC2G08

SCES198N-APRIL 1999-REVISED DECEMBER 2015

www.ti.com

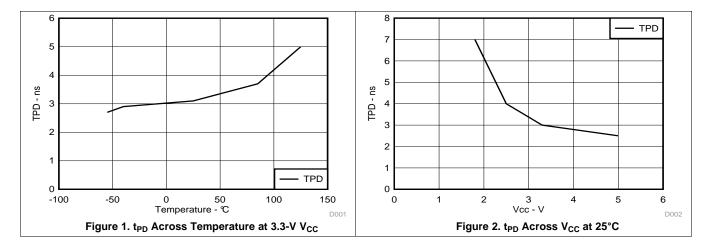
STRUMENTS

EXAS

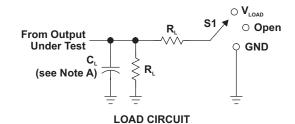
6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

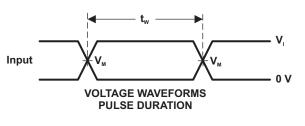
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
V _{OH}	I _{OH} = -8 mA	2.3 V	1.9			V
VOH	$I_{OH} = -16 \text{ mA}$	2.1/	2.4			v
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V			0.1	
V _{OL}	I _{OL} = 4 mA	1.65 V		0.45		
	I _{OL} = 8 mA	2.3 V		0.3	v	
	I _{OL} = 16 mA	3 V			0.4	v
	I _{OL} = 24 mA	3 V			0.55	
	I _{OL} = 32 mA	4.5 V	0.55			
II A or B inputs	V _I = 5.5 V or GND	0 to 5.5 V			±5	μA
l _{off}	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0			±10	μA
I _{cc}	$V_{I} = 5.5 \text{ V or GND}, I_{O} = 0$	1.65 V to 5.5 V			10	μA
ΔI _{CC}	One input at $V_{CC} = 0.6 V$, Other inputs at V_{CC} or GND, $T_A = -40^{\circ}C$ to 85°C	3 V to 5.5 V			500	μΑ
C _i	$V_{I} = V_{CC}$ or GND, $T_{A} = -40^{\circ}C$ to $85^{\circ}C$	3.3 V		5		
0		1.8 V to 3.3V		17		pF
C _{pd}	$f = 10 \text{ MHz}, T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	5 V		20		

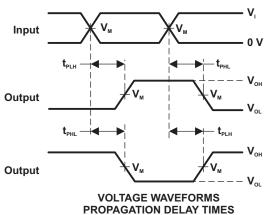

(1) All typical values are at V_{CC} = 3.3 V, T_{A} = 25°C.

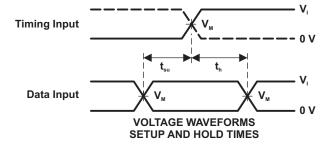
6.6 Switching Characteristics

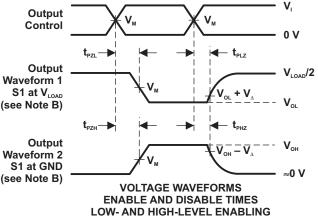

PARAMETER	FROM (INPUT)	TO (OUTPUT)	T _A	V _{cc}	MIN	МАХ	UNIT
				$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	2.6	9	
t _{pd}			–40°C to 85°C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1	5.1	
			-40°C 10 85°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1	4.7	
		~		$V_{CC} = 5 V \pm 0.5 V$	1	3.8	
	A or B	ř		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	2.6	9.8	ns
			–40°C to 125°C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1	5.8	
			-40°C 10 125°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1	5.3	
				$V_{CC} = 5 V \pm 0.5 V$	1	4.8	

6.7 Typical Characteristics




7 Parameter Measurement Information

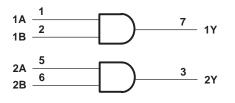

TEST	S1
t _{PLH} /t _{PHL}	Open
t_{PLZ}/t_{PZL}	VLOAD
t _{PHZ} /t _{PZH}	GND


	INF	PUTS	N		_	_	
V _{cc}	V,	t,/t,	V _M	VLOAD	C	R	ν _Δ
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
2.5 V ± 0.2 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3~V\pm0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
$5 V \pm 0.5 V$	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PHZ} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{en} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 3. Load Circuit and Voltage Waveforms

8 Detailed Description

The SN74LVC1G06 device contains two positive-AND gates with a maximum sink current of 24 mA. A very low tpd of 4.7ns at 3.3V makes the device ideal for high speed applications. Additionally, 5.5V tolerant inputs allow the device to be used as a down translator if needed.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Down Voltage Translation

SN74LVC2G08 allows for logic input and output signals up to 5.5 V. While operating at V_{CC} of 3.3 V, the device will still recognize 5.5 V as a valid high input, however, the resulting output will be 3.3 V. This is the same for other voltage levels in the device effectively down translating any input logic level higher than V_{CC} but lower or equal to 5.5 V.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74LVC2G08.

	INPUTS	OUTPUT
А	В	Y
Н	Н	Н
L	Х	L
Х	L	L

Table 1. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC2G08 is a high-drive CMOS device that can be used for implementing AND logic with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V, making it Ideal for driving multiple outputs and good for high-speed applications up to 100 MHz. The inputs are 5.5-V tolerant allowing it to translate down to V_{CC} .

9.2 Typical Application

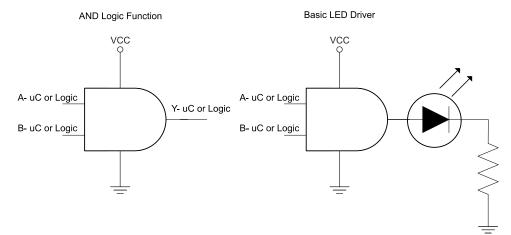
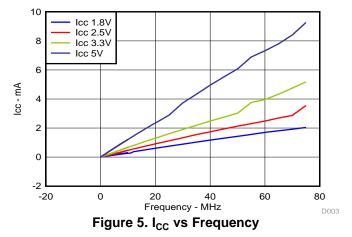


Figure 4. Typical Application

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Tak care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions must be considered to prevent ringing.


9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs. See ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V₁ maximum) in the *Recommended* Operating Conditions table at any valid V_{CC}.
- 2. Recommended Output Conditions
 - Load currents must not exceed (I_O maximum) per output and must not exceed total current (continuous current through V_{CC} or GND) for the part. These limits are located in the *Recommended Operating Conditions* table.
 - Outputs must not be pulled above V_{CC} in normal operating conditions.

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table. Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended and if there are multiple V_{CC} pins then 0.01- μ F or 0.022- μ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results


11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

11.2 Layout Example

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

NanoStar, NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC2G08DCTR	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(2WJ5, C08) (R, Z)	Samples
SN74LVC2G08DCTRE4	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(2WJ5, C08) (R, Z)	Samples
SN74LVC2G08DCTRG4	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(2WJ5, C08) (R, Z)	Samples
SN74LVC2G08DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(08, C08J, C08Q, C 08R) (CR, CZ)	Samples
SN74LVC2G08DCURE4	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C08R	Samples
SN74LVC2G08DCURG4	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C08R	Samples
SN74LVC2G08DCUT	ACTIVE	VSSOP	DCU	8	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C08J, C08Q, C08R) CR	Samples
SN74LVC2G08DCUTG4	ACTIVE	VSSOP	DCU	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C08R	Samples
SN74LVC2G08YZPR	ACTIVE	DSBGA	YZP	8	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(CE7, CEN)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

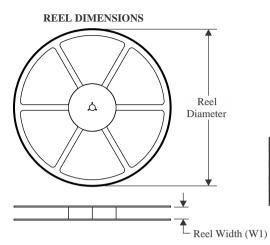
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

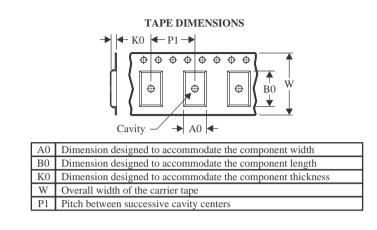
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC2G08 :

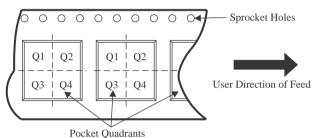
- Automotive : SN74LVC2G08-Q1
- Enhanced Product : SN74LVC2G08-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

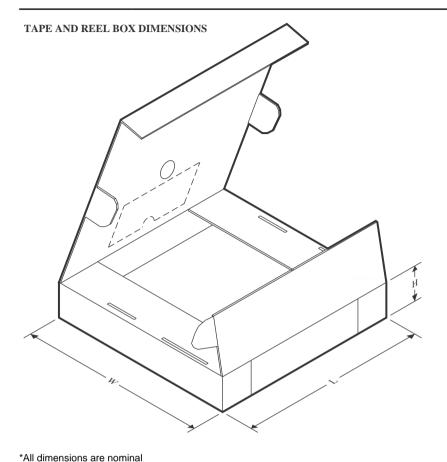


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

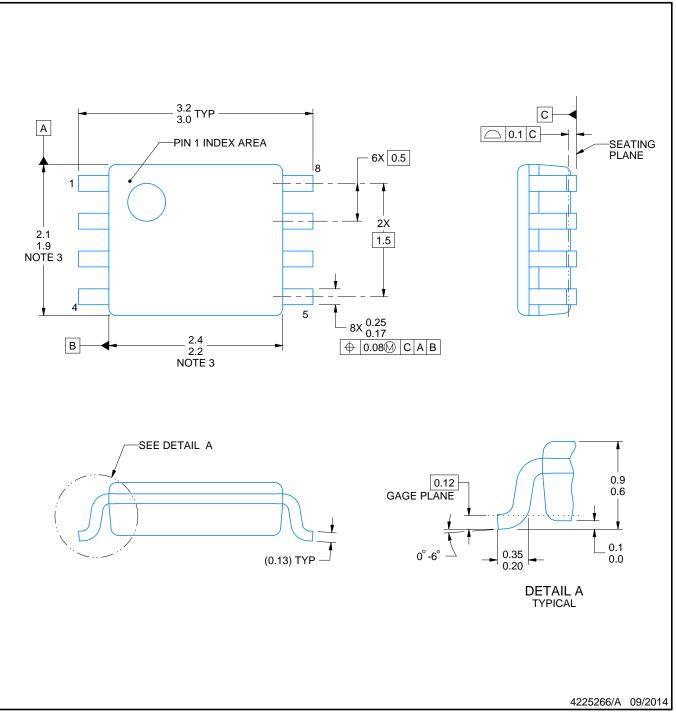


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2G08DCTR	SM8	DCT	8	3000	180.0	12.4	3.15	4.35	1.55	4.0	12.0	Q3
SN74LVC2G08DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2G08DCUR	VSSOP	DCU	8	3000	178.0	9.0	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G08DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G08DCUT	VSSOP	DCU	8	250	178.0	9.0	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G08DCUT	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G08DCUTG4	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G08YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

4-Nov-2023

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC2G08DCTR	SM8	DCT	8	3000	190.0	190.0	30.0
SN74LVC2G08DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC2G08DCUR	VSSOP	DCU	8	3000	180.0	180.0	18.0
SN74LVC2G08DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC2G08DCUT	VSSOP	DCU	8	250	180.0	180.0	18.0
SN74LVC2G08DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC2G08DCUTG4	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC2G08YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0


DCU0008A

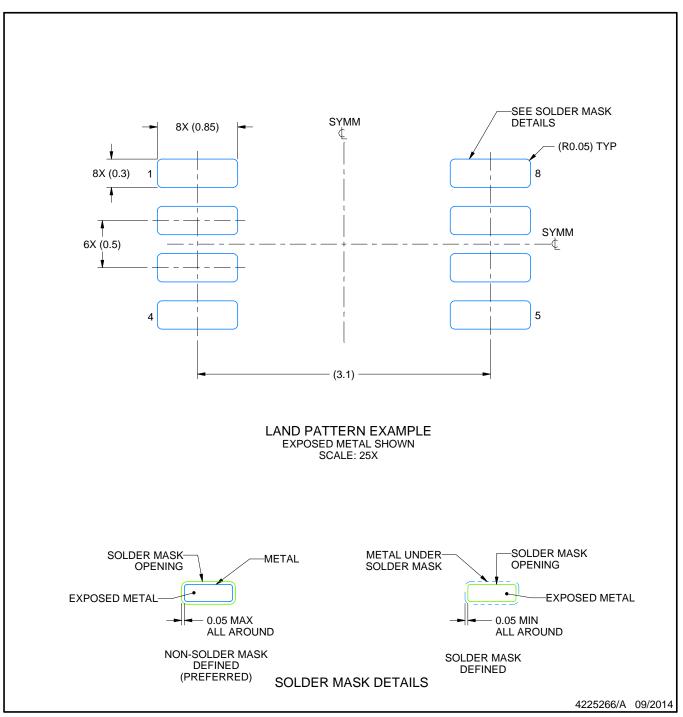
PACKAGE OUTLINE

VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-187 variation CA.



DCU0008A

EXAMPLE BOARD LAYOUT

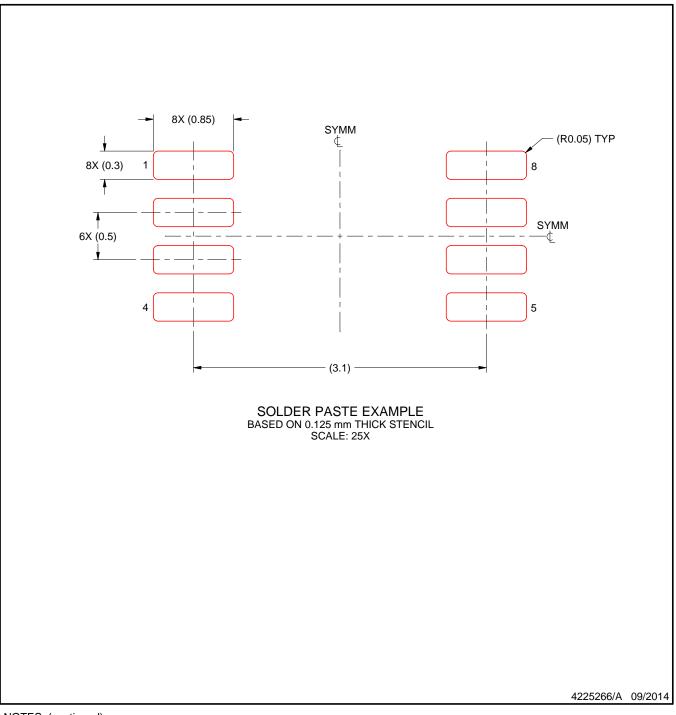
VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCU0008A

EXAMPLE STENCIL DESIGN

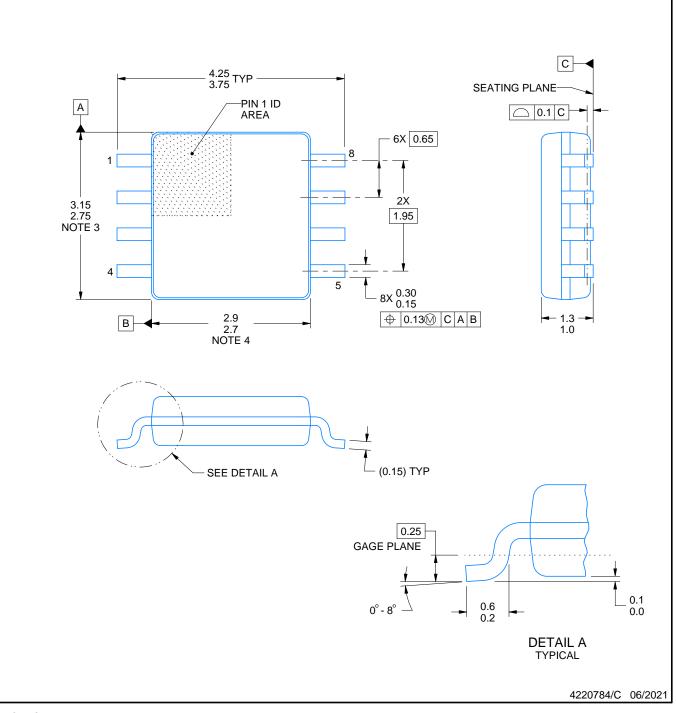
VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DCT0008A

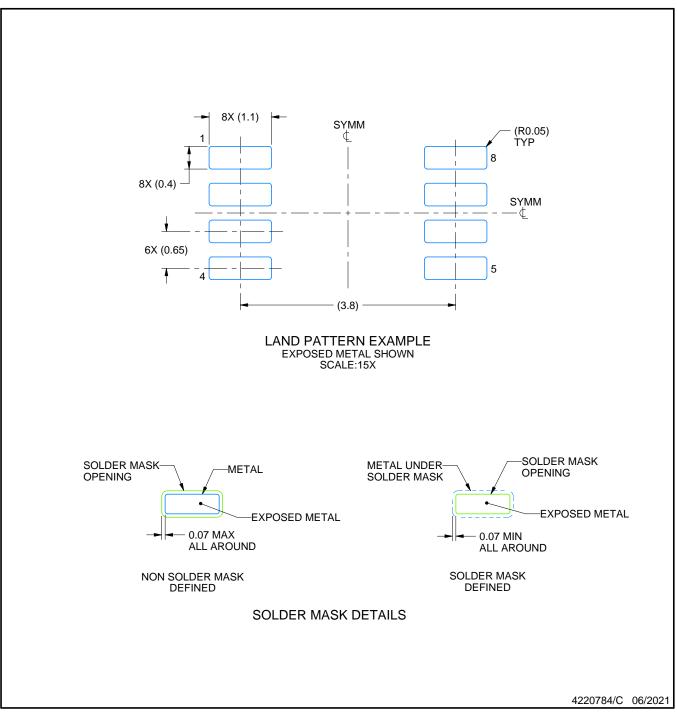
PACKAGE OUTLINE

SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.



DCT0008A

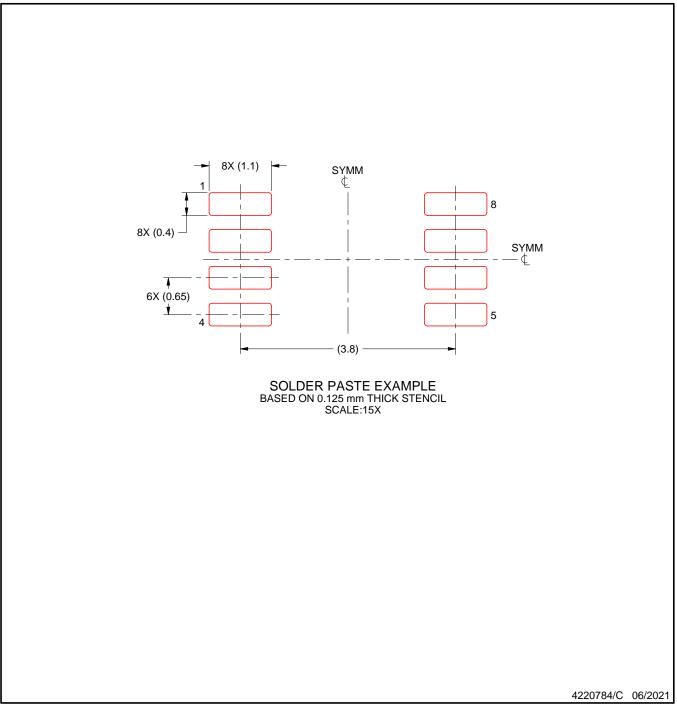
EXAMPLE BOARD LAYOUT

SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

Publication IPC-7351 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCT0008A

EXAMPLE STENCIL DESIGN

SSOP - 1.3 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

YZP0008

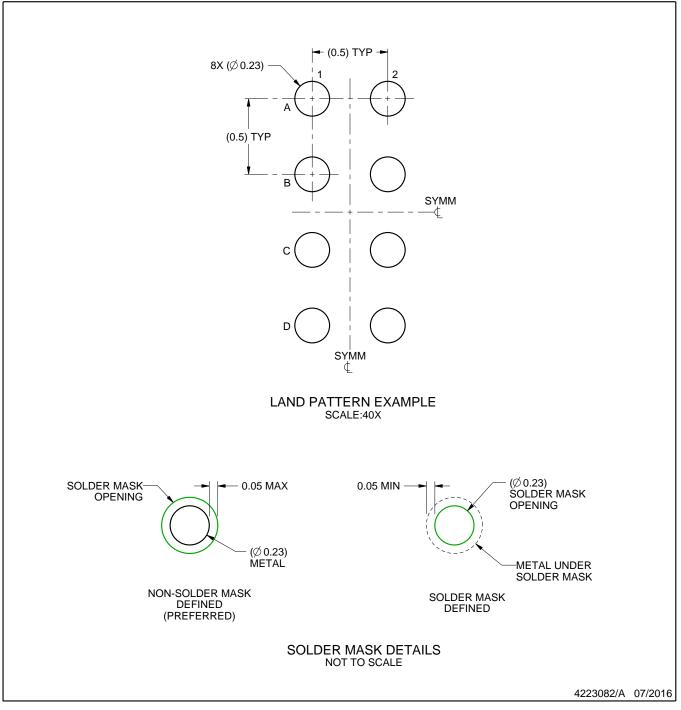
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



YZP0008

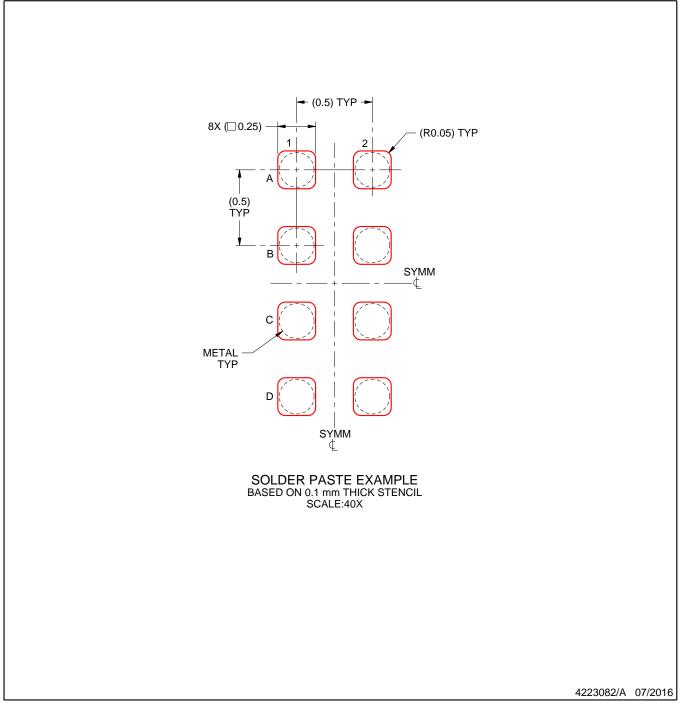
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YZP0008

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated