Altmel

Atmel SHMART

APPLICATION NOTE

AT09423: SAM-BA Overview and Customization Process

ATSAMAS5D3x

Introduction

To help customers to benefit of the Atmel® SAM-BA® (SAM Boot Assistant) In-
System Programmer functionalities, this application note provides a full detailed
overview to understand how to customize SAM-BA by creating new custom
boards based on the Atmel evaluation kits.

The aim of the customization is to reuse the existing architecture proposed in
SAM-BA.

The customization guide proposed is based on the SAMASD3-EK board.

Moreover, this customization process can be reproduced on any Atmel SAM
device based board to get a real custom/user board fully implemented and
accessible from the SAM-BA Graphical User Interface.

Prerequisites

e Hardware:
— Atmel SAMA5D3x-EK
— Any SAMA5D3x custom board

e Software:
— Atmel SAM-BA 2.12 or higher
— Atmel SAM-BA 2.12 patch 6 or higher
— Sourcery™ CodeBench Lite 2013.05-23 for ARM® EABI
— GNU Make 3.81
— GNU Core utils 5.3
— Notepad ++ (text editor)

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Contents

Y N Yy N @ AV VT N 4
0 R [0110 To [o 1T o S PRRP T UOTPPPRTR 4
O O R N o 11 =T (= PRSPPI 4
1.1.2 How to get SAM-BA INStallation File.........cccuiiiiiiiiiiiiie e 5

1.2 SAM-BA Directory Organization 0N WINAOWSccueiiiiiiiiiiiiiee it siiee e sieee e sibeeessninee e e 5
O R A o o [F PSPPSR 6
2 o [T o R U SRTUPRPR 7
N B o | VA (11 V=T o TSP PP PUPRRPP 7

R o 1 1] [T PSP PP PUPRRP 7
125 TOL_ D oottt ettt e et ettt e ettt 7

1.3 Graphical User Interface (SAM-BA GUI)oiiiiiiieiiiie ettt tee et e e s e e sneeeeesntneeeenes 8
1.3.1 SAM-BA GUI OVEIVIEW. ...cceitiiieieiieeeeitiee ettt e ettt e e sttt e e ettt e e s sste e e e asteeeesasteeeeanneeeeantbeeesnnseeeeannes 9

2 Customization ProCeSS OVEIVIEW ...cccceeeeeeeeeeeeeeeeeeee e 12
2.1 Customization Level DefiMItIONcocuiiiiiiiiieiiieeie ettt e e 12
2.2 First Level of Customization: The Applet Configuration TCL FileScocovviiiiiiiiiiiieeeniee e 12
2.3 Second Level of Customization: The Applets Source Code Customizationcccvvveeeeeereiinennnen. 13
2.4 Third Level of Customization: The Applets Source Code Library Customizationc.ccceevvvernnnee. 13
2.5 Last level of Customization: Applet COMPIlALIONc..oiiiiiiiiiiie e 14
2.6 Understand Interactions Between tcl/tk Scripts and APPIELSeeviiiiiieiiiiiieie e 14
2.6.1 Customized_board_example.tCl DESCHPLON.cutiiiiiieeeiiiee et eeee e 15
2.6.2 LOWLEVELICI DESCHIPLONeiiiiiiie ittt ettt ettt e et e e et e s e e s nneee s 19

3 SOftWAre Prer@QUISITES oo 21
3.1 Sourcery CodeBench Lite 2013.05-23 for ARM EABIcoiiiiiiiiiieiiieee e 21
0 0 I A 1o o To [F 3 o] o 1R PSR 21
0 2 1 1 = | - 11T o ISR 21

3.2 GNU MAEKE 381 ...ttt ettt etttk a ekt a e h e sa e ek bt e ea bt s bt e sab e e e st e ea bt et e nan e e e 23
0% R 1 { (oo [V T 1o o FO OO O PO TP ST U PP TP VPP PPN 23
3.2.2 INSTAALION ..ttt ettt 23

TR I €1 N LU R @] (LU 1] T U EUPT R 25
0 TR 5 A 1o o To [F 3 o o 1RO ESRT 25
3.3.2 INSTAALION ..t 25

4 Customization Step 1: Duplicate an Existing Solution as a Base for the

CUSTOMIZALION 1.ttt e e e e e et e e e e e e e e e et e e e e eeeas 26

4.1 Duplicate the TCL Folder Organization from an EXiSting ONe...........ccuuiiiiiiiiiiiiiiiiiee e 26

4.2 Duplicate the Applet Folder Organization from an EXiSting ONecociiiiiiiiiiiiiiieeee e 27

5 Customization Step 2: Add a New Custom Board to the Existing TCL Database. 28
5.1 Add @ NEW BOAIT ENEIY ...ttt ettt e e e e ettt e e e e e e st bae et e e e e e s anbbbbeeeeeeeaannnereeeas 28
5.1.1 Modify the “BoardS.tCl” Filecoiiiiiiiiiiiiiiee e 28

6 Customization Step 3: Customize the SAM-BA Graphical User Interface............. 30
6.1 Add a New Crystal Value in SAM-BA GUI'Socciiiiiiiiieiiie et 30

6.2 Add a New Memory Tab in the SAM-BA GUI Main WiNAOWccvviiiieiiiiiiiiicccc e 31

7 Customization Step 5: Modify SAM-BA Applets to fit with a Custom Hardware... 34

7.1 Customize Low-Level Initialization APPIELcc.uuiiiiiie e 34
T7.1.1 SIMPIE EXAMPIE... .. ettt e e e e et e e e e e s e e e e e s e r e e e e e e arraaes 34
2 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7.1.2 Adapt Existing Applets to the New HardWarecccoeeiiiiii e 36

7.2 Low Level Customization to Implement the Oscillator Bypass Modeccoocovvveiiieeeiniiiieenneee e 38
7.2.1 BYPASS MOUE OVEIVIEWeiiiiiiieiiiiie e iitie e ettt e sttt e sttt e e ettt e e stbe e e e sabe e e e anbbeeesanbeeessnbeeeeanneeenn 38

7.2.2 Summary of the Different Steps t0 PErfOrmMcceeiiiiiiiiiiiie e 40

7.2.3 Step 1: Understanding the Initial Clock Setting During the Boot ROMcccccccviiviieeiinenn. 40

7.2.4 Step 2: Understanding the Clock Switching Mechanismcccccconiiveiiiieiie e 41

7.2.5 Step 3: Defining the Bypass Mode Program FIOWccccviiiiiieiiiieeiieee e 42

7.2.6 Step 4: Bypass Mode Code IMplementation.............cooveeeirrieeiiiiie e 43

7.3 Customize an External Memory APPIELcoiuuiiiiiiie ettt 46
7.3.1 External Memory Customization ProCeSS OVEIVIEWccuueeeriiiieiniiieniiieeessiieeessveeeesnnieee s 46

7.3.2 CustoMIzation FilE@S OVEIVIEWcocuiiiiiiiiiiiiie ittt 46

7.3.3 SDR/DDR Customization EXamMPIE..........cooiiiiiiiiiiiee et a7

8 Compile the SAM-BA Applets and Test Your Modifications..........ccccceeeeeeeeeenennnn. 62
O REIBIENCES i 67
Appendix A Full Implementation of the Bypass Modecccccvvvvvvvviiiiiiiiiiiiiiiiiiene, 68
AppendiXx B ReVISION HISTOIY ..o e e 71

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

3

11

111

SAM-BA Overview

Introduction

Atmel SAM Boot Assistance (SAM-BA) software provides an open set of tools for programming Atmel AT91SAM
ARM Thumb-based microcontrollers. They are based on a common dynamic linked library (DLL), the
AT91Boot DLL. It is used by SAM-BA, and all ISP tools.

Customers can use SAM-BA as a tool to program their own board, designed by themselves. But, SAM-BA default
settings are based on Atmel ARM-based evaluation kits and customers might have different crystals and
memories on their own design. In that case SAM-BA needs to be customized.

Before starting the different hands-on assignments let’s clarify start by an overview of SAM-BA.

Architecture
The SAM-BA is composed of two parts; the host and the target device board, as shown in the figure below:

Board user API1

external memory SAM-BA

command line
TCL-SH

applets : Q
| I at91boot_tal.dll

internal
memory
sam-ba.dll

Jlinkarm.dll usbser.sys com drivers

U U

peay JTAG JLINK usB CDC COM port

O
vy AR
!

cOoM DBGU

The host part runs on computer. It sends programming files and programming instructions over a download
cable to the target.

The target part is a hardware design, running in the ARM Thumb-based devices. It accepts the programming
data content and required information about the target external memory device which was sent by the host,
and follows the instructions to write/read data to/from the external memory device.
e SAM-BA key features:
— Perform in-system programming through JTAG, RS232, or USB interfaces
— Provides both AT91SAM embedded flash programing and external flash programing solutions
— May be used via a Graphical User Interface (GUI) or started in batch mode from a DOS window
— Runs under Windows® 2000, XP, and 7
— Memory and peripheral display content
— User scripts executable from SAM-BA Graphical User Interface or a shell
To learn more about SAM-BA, refer to the AT91 ISP/SAM-BA user guide document available at the following

link: http://www.atmel.com/images/6421b.pdf. Or simply use the SAM-BA user guide document located in
C:\Program Files (x86)\Atmel\sam-ba_X.xx\doc.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

http://www.atmel.com/images/6421b.pdf

1.1.2 How to get SAM-BA Installation File
SAM-BA is available for free directly from this Atmel web page:

http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx
Several components are available:
e SAM-BA for Windows (XP, Vista, and 7 editions)
— Install file for the SAM-BA package. SAM-BA User's Guide is included in the package.
e SAM-BA 2.12 for Linux®
— SAM-BA Package for Linux
e atm6124 USB CDC signed driver for Windows XP, Windows Vista®, Win7, and Win8
— Signed version of atm6124 USB CDC driver
e SAM-BA Patch
— This file provides the new features and bugs corrected of the current release of SAM-BA

1.2 SAM-BA Directory Organization on Windows

Once installed on a Windows computer, the runtime directory for SAM-BA is C:\Program Files (x86)\Atmel\sam-
ba_X.xx. In this folder, you will find the sam-ba.exe file and all the files required by SAM-BA when it is running:

/. » Computer » OSDisk (C:) » Program Files (86) » Atmel » sam-ba 212 »

Organize v [Open Bum Newfolder

. MSOCache Name Date modified Type
. oracle

. applets
I, Perflogs 5

I, Program Files

. Program Files (x86)
). 1ClickDownload
J. Adobe

|, Atempo

1. Atmel

, doc

. examples
| tel lib
4. usr
v patch.exe
¥ | patch3.diff

!
'
S drv
J
5

3/26/2013 2:43 PM
3/26/2013 2:43 PM
/26/2013 2:43 PM
/18/2012 4:05 PM
/26/2013 2:43 PM
7/18/2012 405 PM
5/15/2007 1:19 AM
3/15/2013 7:20 AM

File folder
File folder
File folder
File folder
File folder
File folder
Application

DIFF File

Atmel Software Framework
sam-ba.exe

3/26/2013 243 PM

Application

. Atmel Studio 6.0
. Atmel Studio 6.1

b

- €3 Uninstall.exe
i

). Atmel Studio Extensions

J

5

’

J

% Unpatch_patch3.exe

. Atmel Toolchain
. Atmel USB
. AVR QTouch Studio

. sam-ba 212
. applets

. doc

. drv

. examples
L tel_lib

. usr

sam-ba.exe

Application
Date modified: 3/26/2013 2:43 PM
. Sze: 1.51 MB

Date created: 6/27/2012 7:42 AM

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7/18/2012 405 PM
3/26/2013 2:43 PM

Application

Application

http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx

121

The SAMB-BA directory is organized as:

SAM-BA 2.12
directory

SAM-EA.exe

Applets:
source code

Tcl_lib:

common file
directory & Board
specific Directories

SAM-BA User Guide Sam-ba.dll

Samba_dll_VCe
folder

Release notes

Samba_tcl_script at91samaSd3x-ek

readme

Applets

The base directory of sources is: C:\Program Files (x86)\Atmel\sam-ba_X.xx\applets. This folder is not used
when SAM-BA is running. It just contains the applet sources and instructions on how to build them.

An applet is a small program which is used by SAM-BA in order to be able to program non-volatile memories,

low-level initialization, or other peripherals. For each Atmel AT91SAM

device, there is one dedicated applet to

each external memory device the chip can deal with. Each applet contains the programming algorithm for its

dedicated memory.

usB
COM
JTAG

Internal RAM
SAMASD3x-EK

LowLevellnit

applet

For instance, with the AT91SAMA5D3x-ek, SAM-BA has to be able to program SDRAM, NAND flash, Data

flash, Serial flash, and NOR flash, which are located in

C:\Program Files (x86)\Atmel\sam-ba_2.12\applets\sama5d3x\sam-ba_applets.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

1.2.2 doc
This folder contains all documents to help the user to learn more about SAM-BA, such as:

e SAM-BA User Guide

e releasenote.txt

e readme.txt

1.2.3 drv (Driver)
This folder contains all the drivers required by SAM-BA GUI to communicate with the board or with the targeted
memory, such as:

e AT91Boot_TCL.dll: an intermediate DLL is used to transform TCL commands.

e sam-ba.dll: an OLE COM component for SAM-BA.

e atm6124 cdc.inf: Windows USB CDC Driver Setup File for ATMEL AT91 USB to Serial Converter.

e JLinkARM.dII: a DLL for using J-Link / J-Trace with third-party programs from SEGGER.

e SAMBA_DLL.tlb: type library file of sam-ba.dll.

1.2.4 Example
This folder contains several examples on how to use SAM-BA in different contexts:
e samba_dll_usage VC6 directory
— Example OLE_MFC project under Visual C++ 6.0
— Example OLE_without_MFC project under Visual C++ 6.0
e samba_tcl_script
— Example tcl script file to access NAND flash
1.25 TCL_lib
The TCL_lib directory which contains:

e acommon files directory, with all generic TCL scripts used to load applets, communicate with them, and
perform read / write operations,

e several board specific folders (into at91sama5d3x-ek for the at91sama5d3x-ek for example), containing
the applet binary files and the TCL file used to describe the SAM-BA GUI for each board (what memory
is on the board, what is the applet name for each memory).

Just after having installed SAM-BA, in order to make it able to program these peripherals, all the applets are

already precompiled. That explains why these five binary files and many others are located in the C:\Program

Files (x86)\Atmel\sam-ba_X.xx\tcl_lib\at91sama5d3x-ek folder and ready to be used by SAM-BA to make

the connection successful.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 7

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

1.3

Graphical User Interface (SAM-BA GUI)
Once installed on a Windows computer, SAM-BA is opened by double-clicking on the SAM-BA icon;

N

(-

The connection window should appear:

Select the connection : [\USBseriaNCOM18

Select your board : at91 samaSd3x-ek v

JLink speed : Idefaul(j

JLink TimeoutMultiplier : [0 ~]

[T Customize lowlevel

Connect | Exit |

If the settings are correct, the SAM-BA GUI window is opened a few seconds after having clicked on “connect”:

f .
™ SAM-BA 212 - at91samaSd3x-ek QESTRCT X

File ScriptFile Help

at91samaSd3x Memory Display

Start Address : (0x300000 Refresh | [Display format Applet traces on DBGU

i -bi -bi - bi inf ~| A
Size in byte(s) : 0x100 © ascii C 8-bit C 16-bit & 32-bit infos pply
0x00300000 0x00000004 0x01012124 OxESAARB2C 0x37DCDSOD -

0x00300010 OxBS81CE311 O0x34943C01 OxFe49117D OxFACBCBSS
0x00300020 Ox1A890338 0x02043110 Ox159D49EE OxEAF3EOCS
0x00300030 Ox30A2488E Ox604CD2ES Ox0SES0D04 0x0BS5S51C?

Awnnsnanan P LY Y LY Awrrginnen ANET2IDEN2 AwORRErDNY
« m »

DDRAM | DataFlash AT4SDB/DCE | EEPROM AT24 | NandFlash | NorFlash | OTP | One-wire EEPROM | SRAM SerialFlash AT25/AT26 |

Download / Upload File
Send File Name : | Send File
Receive File Name : 2"] Receive File
Address : 0x0 Size (For Receive File) : 0x1000 byte(s) Compare sent file with memory
Scripts
|Enable Serialflash (5P CS0) _:J Execute I
loading history file ... 0 events added =

SAM-BA console display active (Tcl8.5.9 / Tk8.5.9)
(sam-ba_2.12) 1 %
(sam-ba_2.12) 1 %l

\USBseriaNCOMIS8 Board : at91samaSd3x-ek .

Before starting the description of the different fields of the main SAM-BA GUI window, let’'s spend some lines to
clarify what has been executed by SAM-BA just before the main window is displayed.

To make the connection between the board and the PC available, several applet executions have been
performed, such as:

e Board low-level initialization

e Clock settings (PLL, oscillators, crystals, etc.)

e Communication (USB, RS232)

e eMPU case: dedicated applet to initialize the DDR memories.

Once the low-level initialization is done and the connection is well detected, the communication can start between
the PC and the board. Then the main SAM-BA GUI main window is displayed.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

1.3.1 SAM-BA GUI Overview

SAM-BA GUI main window provides several different fields as described in the figure below:

(B sam-84212 - at91zamaSdix-ek
File ScriptFile Help

Memory Display a91sama5d3x Memory Display
Area Start Address : 0300000 Ty Display format Applet traces on DEGU
Sizein byte(s): a0 © asei © 8-bit © 16-bit & 3-bit jofos = ﬂl
0x00300000 Ox00000004 0x01012124 OxESAARBIC Ox37DCDS0D =
0x00300010 0xBE1CE311 O0x34943C01 OxFE49117D OxFACBCBIS window tabs
0x00300020 O0xiAS90338 O0x02043110 Ox1SSD4SEE OXEAF3EOCY dedicated to

0x00300030 Ox30AZ488E Ox604CDIES Ox0SE20D04 OxOBSSSICS . 5
< particular memories

ACARBARRAR ALmAmAIASE ALt SEiASEE ALERIIDEAS AcSBDIsBRL
. [0 v

DDRAM | DataFlash ATASDB/DCE | EEPROM AT24 | NandFlash | NoFlash | OTP | One-wire EEPROM | SRAM SenalFlash AT25/AT26 }(

Memory Download

Area "~ Downlcad / Upload File ™
Send File Mame : = Send File
| Receive File Mame : = Receive File
Address : (0 Size (For Receive File) : 0l 000 byte(s) Compare sent file with memary
Seripts
|Enable Serialflash (P10 C50) | Execute
N J
TCL Shell Area loading history file ... 0 events added =

|SAM-BA console display active (Tcl8.5.9 / TkB.5.9)
(sam-ba_2.12) 1 %
(sam-ba_2.12) 1 %]

& —)'|\U$39erial\COMl8 [Board : atd1samaSd3x-ek] _:

Information about the connection =

The user can find:

e The memory display area: Memory dump.

e Memory Download area: Applet Graphical User Interface composed of dedicated memory window tabs
such as:

— EEPROM tabs
— DataFlash tabs
— Serial Flash
— NAND Flash
— Etc.
e TCL Shell area: TCL script execution trace.
— With some information about the ongoing connection

The base of the main window stays the Applet Graphical User Interface where the user spends most of time to
program the targeted device memory.

For instance, the NAND FLASH window tabs Memory Download area window tabs, provides a simple way to
upload and download data into internal and external memories. For each memory, files can be sent and received,
and the target’s memory content can be compared with a file on our computer:

DDRAM | DataFlash AT4SDB/DCE | EEPROM AT24 FandFIash lNorF!ash | OTP | One-wire EEPROM | SRAM | SerialFlash AT25/AT26 |

(" —Download / Upload File)
Send File Name : | §J Send File
Receive File Name : | ﬂ Receive File
Address : 00 Size (For Receive File) : 0x1000 byte(s) Compare sent file with memory
: Scripts
|Enable NandFlasH j Execute
. . vy

Only binary file format is supported by SAM-BA GUI.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 9

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

10

This area also gives an access to some specific scripts for the different memories available on the board through
a drop-down menu:

DDRAM | DataFlash AT4SDB/DCB | EEPROMAT24 NandFlash | NorFlash | OTP | One-wire EEPROM | SRAM | SerialFlash AT25/AT26

Download / Upload File

Send File Name : !"I Send File
Receive File Name : | g Receive File
Address : 00 Size (For Receive File) : 0x1000 byte(s) Compare sent file with memory

Scripts

-

(safPmecc configuration
>5a rub NandFlash
\

-1 f>end Boot File

During a script execution, the TCL Shell window is used to display the different steps of the applet execution:

(sam-ba_2.12) 2 % NANDFLASH::Init -
-I- NANDFLASH: :Init (trace level : 4)

-I- Loading applet applet-nandfiash-sama5d3x.bin at address 020000000

- Memory Size : 0x10000000 bytes

-I- Buffer address : (x20010BED 3
-I- Buffer size: (20000 bytes B
-I- Applet initialization done

\USBseriaCOMILE Board : at¥lsamaSd3x-ek |-

At this time, the target handles the programming algorithm by loading applets into the on board XIP memory.
The target switches between two modes:

e SAM-BA Monitor Mode: is the command interpreter that runs in the ROM memory when the chip is
connected with USB or COM port to the computer. It allows the computer to send or receive data to/from
the target. All transfers between host and device are done when the device is in SAM-BA monitor mode.
The SAM-BA monitor mnemonics commands are given in the table below:

Command | Action Argument(s) ' Example

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

N Set Normal Mode No argument N#

T Set Terminal Mode No argument T#

(0] Write a byte Address, Value# 0200001,CA#

(o} Read a byte Address,# 0200001 ,#

H Write a half word Address, Value# H200002,CAFE#
h Read a half word Address,# h200002,#

W Write a word Address, Value# W200000,CAFEDECA#
W Read a word Address,# w200000,#

S Send a file Address,# S200000,#

R Receive a file Address, NbOfBytes# R200000, 1234#
G Go Address# G200200#

Vv Display version No argument V#

SAM-BA commands are indeed very basic. They are sent to the applet by using TCL commands as
TCL_WriteData (applet, appletAddr), TCL_Writelnt (applet, appletAddr), TCL_ ReadInt (applet, ap-
pletAddr) from the PC, etc.

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

e Applet Mode: in this mode, the device performs programming operations and is not able to communicate
with the host. As reminder, an applet is a small piece of software running on the target. It is loaded in the
device memory while the device is in SAM-BA monitor mode using TCL_Write command.

The device switches from SAM-BA monitor mode to Applet mode using the TCL_Go command. The device
executes the applet code. At the end of the current operation, the device switches back to SAM-BA monitor mode
as described below:

vste: <S$ammm)>

HOST TARGET
-
| |
|
'] AT91BootROM
TCL_WriteData(applet. appletAddr) T I
|
ICL_WriteData(payload. appletBufferAddr) 1} I TP SAM-BA Monitor Mode
TCL_Writeint(appletArg. appletArgAddr) |
TCL_Go(appletAddr) | | Applet
| |
—————— —_———
TCL_Readint(appletArg. appletArgAddr) E :- | ’ I tMode
i H
i '
¥ |
FCL_WriteData(payload. appletBufferAddr) # I o SAM-BA Monitor Mode
TCL_Writeint(appletArg. appletArgAddr) | I
TCL_Go{appletAddr) 8
| |
TCL_Readint(appletArg, appletArgAddr) ., — — — — — I_ R —r. Frogrem Faped Applet Mode
! E
i [
i B
| |
| | SAM-BA Monitor Mode
||

To learn more on the SAM-BA monitor, refer to the SAMA5D3 product family datasheet found here:
http://www.atmel.com/products/microcontrollers/arm/samab.aspx?tab=documents.

An applet can execute different programming or initialization commands. Before switching to applet mode, the
host prepares command and arguments data required by the applet in a mailbox mapped in the device
memory.

During its execution, the applet decodes the commands and arguments prepared by the host and execute the
corresponding function. The applet returns state, status and result values in the mailbox area. Usually, applets
include INIT, buffer read, buffer write functions. To program large files, the whole programming operation is
split by the host into payloads. Each payload is sent to a device memory buffer using SAM-BA monitor
command TCL_Write. The host prepares the mailbox with the Buffer write command value, the buffer address
and the buffer size. The host then forces the device in Applet mode using a TCL_Go command. The host polls
the end of payload programming by trying to read the state value in the mailbox. The device will answer to the
host as soon as it returns to SAM-BA monitor mode. In case of USB connection, when the host polls while the
device is in Applet mode, the device NACK IN packets sent by the host.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 11

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

http://www.atmel.com/products/microcontrollers/arm/sama5.aspx?tab=documentshttp://www.atmel.com/products/microcontrollers/arm/sama5.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sama5.aspx?tab=documents

2 Customization Process Overview

2.1 Customization Level Definition

Customization means that the user will have to reuse most of the existing part of the SAM-BA architecture. The
customization of SAM-BA requires to understand what the different levels of the customization, which
summarizes what the main possibilities that SAM-BA offers are. The figure below introduces the levels of the
customization.

In case users want to use SAM-BA on their own custom board, which is different from the Atmel Evaluation Kit,
they may need to adapt the code of the applets and recompile some of them. All the sources are provided with
the SAM-BA installer, and the applets are written in C.

Consider the figure below.

/" SAM-BA Folder \ > Applets Source

rrrrrrrrrrrrrrr TCL Scripts Folder <— 5 Code Folder Applets Source Code Library
~—>{ . customized_board_example]
. devices l. doc 1. legacy - . (. * h!
|, no_board i | drv .. libboard_sama5d3x-ek
’ . sam3n
b f231usb-rd | . example B sam3s I. libchip_sama5d3x
. samd20_xplained_pro LpE— N
samd21_xplained_pro bisiates i libnandflash
- I use —
] o e e .. libraries H
eiboadetd e eead ™ sam-ba.exe . e < i libnorflash
I sam-ba_a| ey .
@ Uninstall.exe 2 SPPe | I liboweeprom
Applets Configuration Appl:ets Source Code | . libpmecc
\ J ustomization ; .
| lowlevelinit.tcl femmeeeeeneeeenmeeesenmeeeseneed I libsdmmc
B customized_board_example.tcl f_y— K Iibspiflash
"_| applet-serialflash-samaSd3x.bin common ~ - J
| applet-sdmme-samaSd3x.bin dataflash {
|| applet-oweeprom-samaSd3x.bin)i eeprom
| applet-otp-samaSd3x.bin _ :xt_':"l ________
|| applet-norflash-samaSd3x.bin Ve A I lowlevelini
| applet-nandflash-sama5d3x.bin @ (ODESOUR(ERY I nandflash
|| applet-lowlevelinit-samaSd3x.bin o | norflash
applet-extram-samaSd3x.bin { = 1 | otp ¢
) applet-eeprom-samaSd3xbin o ‘,;S,u/ i oweeprom P e :
applet-dataflash-sama5d3x.bin X r J. sdmmc : | Makefile :
- | serialflash) TTTTT7 Koo

| Makefile

In this scheme we consider that the customization is realized by creating the “customized_board_example”
directory. For more convenience, this directory is duplicated from any existing Atmel board implementation.
More details on the different step to proceed will be provided in the next coming sections.

According to the color code introduced by the figure above, using different colors allows distinguishing the
different level of this customization.

2.2 First Level of Customization: The Applet Configuration TCL Files

First Level of customization: The Applet Configuration TCL files. These files are located in the TCL
Scripts Folder (tcl_lib). Depending on the hardware requirements, only modifying these files may be sufficient
to make the board able to connect to SAM-BA. In terms of customizations, the files to be modified are:

e Boards.tcl, directly located in the \sam-ba_2.14\tcl_lib directory, this file is a kind of board database
which lists all the targeted boards supported by SAM-BA software. # Board folder MUST have the same
name as the board, in this case customized board_example. Modifying this list will change the “Select
your board” drop down menu list from the SAM-BA connection window. Refer to Section 1.3 Graphical
User Interface (SAM-BA GUI).

e Inside the \sam-ba_2.14\tcl_lib\customized_board_example folder, two files are significant in the SAM-
BA customization process:

— customized board_example.tcl, which is the main configuration file used to call the required
applet, regarding the Low-level initialization and the memories initialization. This file must be

12 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

2.3

2.4

Atmel

modified when the user wants to customized SAM-BA according to the application hardware
requirements.

— lowlevelinit.tcl, this file is used to call the low-level initialization applet. From this file the user is
able to select what kind of clock configuration he has to use regarding the application.

Second Level of Customization: The Applets Source Code Customization

Second Level of Customization: The Applets Source Code Customization. In this level, the user
understood that modifying the Applet Configuration TCL files, is not sufficient regarding the hardware
requirements of his application. In this case, the user has to dig into the applet architecture to figure out how it
is possible to reuse the main low-level functions implemented into the provided libraries. Once the
modifications are done the applets needs to be recompiled. In terms of customization the applet source
code are located inside the \sam-ba_2.14\applets\customized_board_example directory, duplicated from any
other existing applet directory which contains two sub-directories:

e Libraries: This directory provides all the low-level drivers developed by Atmel Engineers for the targeted
device and for the board requirements. The next level of customization will provide more details on this
section.

e sam-ba_applets: Contains several sub-folders and the makefile used to recompile the applets.
Depending on the hardware memory set, one directory per memory is provided. If the user has
duplicated the existing sama5d3x applet directory to generate his own customized_board _example the
directory set should look-like this:

— Common\

— Dataflash\
— Eeprom\

— Extram\

— Lowlevelinit\
— Nandflash\
— Norflash\

— Otp\

— Oweeprom\
— Sdmmc\

— Serialflash\
— Makefile

Most of these folders are related to a hardware memory, except the lowlevelinit which is related to the
main clock configurations. Depending on the hardware configuration of the custom board, the user will
have to modify the main.c file provided inside each directory.

Third Level of Customization: The Applets Source Code Library Customization

Third Level of Customization: The Applets Source Code Library Customization. This level of the
customization is the highest one mostly required when the user wants to modify the low level driver of a
memory, a peripheral, or of the clock configuration while the provided low level driver does not fit with the
application requirements. For instance, the user application DDR or the LPDDR memory does not match with
the one initially related to the Atmel evaluation kit, the memory architecture and/or the timings need to be
modified. This directory is a legacy of the Atmel Software package and contains the following architecture:

e libboard_sama5d3x-ek\
e libchip_sama5d3x\
e libnandflash\

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 13

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

2.5

2.6

14

e libnorflash\

o liboweeprom\
e libpmecc\

e libsdmmc\

o libspiflash\

In this application note we are going to address different user cases but we consider a custom board initially
based on the SAMA5D3x-EK, which is already supported in SAM-BA. So we will reuse most part of the existing
applets for this evaluation kit.

Last Level of Customization: Applet Compilation

Once an applet is modified either from the Second Level
or the Third level of the customization, it needs to be recompiled. Using the makefile provided from the sam-
ba_2.14\applets\customized_board_example\ sam-ba_applets\ directory.

The next section will introduce the tools required to compile an Applet under a windows computer.

Once compiled each binary is then automatically copied into the directory: \sam-
ba_2.14\tcl_lib\customized_board_example.

The last chapter of this application note explain how to recompile an applet.

Understand Interactions Between tcl/tk Scripts and Applets
In this section the aim is to understand the .tcl files used to communicate with an applet:

After having a look at the \sam-ba_2.14\tcl_lib\customized board_example the following architecture can be
observable:

» sam-ba_2.13 » tcllib » customized_board_example v ‘ s l
are with v Burn New folder

Name Date modified Type i Size

"/‘_ applet-dataflash-sama5d3x.bin 29/09/2014 02:45 BIN File 36 KB

|| applet-eeprom-sama5d3x.bin 29/09/2014 02:44 BIN File 31 KB

__| applet-extram-sama5d3x.bin 29/09/2014 02:44 BIN File 5KB

|| applet-lowlevelinit-sama5d3x.bin 29/09/2014 02:44 BIN File 3KB

|| applet-nandflash-sama5d3x.bin 29/09/2014 02:45 BIN File 68 KB

|| applet-norflash-sama5d3x.bin 29/09/2014 02:45 BIN File 39 KB .

|_| applet-otp-sama5d3x.bin 29/09/2014 02:45 BIN File 25KB bl n

|| applet-oweeprom-sama5d3x.bin 29/09/2014 02:44 BIN File 31KB

|| applet-sdmmc-sama5d3x.bin 29/09/2014 02:45 BIN File 60 KB

|| applet-serialflash-sama5d3x.bin 29/09/2014 02:45 BIN File 40 KB

__ sdmmc-massstorage.bin 20/08/2014 07:05 BIN File 59 KB y

2] customized_board_éxample.tcl 20/08/2014 07:05 TCL File 17 KB : tcl

lowlevelinit.tcl 27/06/2012 04:54 TCL File 4 KB

Two different types of files are in this folder:

e Binaries: By default SAM-BA provides all the binaries initially required to connect to an Atmel board. This
folder contains all the initial binaries. But once compiled each binary is then automatically copied into the
directory, erasing the previous ones. The proposed method of duplicating makes sense if the user does
not want to break the initial component of SAM-BA.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

TCL files:

— customized_board_example.tcl, which is the main configuration file used to call the required
applet, regarding the Low-level initialization and the memories initialization. This file must be

modified when the user wants to customize SAM-BA GUI according to the application hardware

requirements, by adding additional window tab for example.
— lowlevelinit.tcl, this file is used to call the low-level initialization applet. From this file the user is
able to select what kind of clock configuration he has to use regarding the application.

Customized_board_example.tcl Description

This file is composed of several parts used

e to configure the hardware the applets has to address.
e to add the memory options to the Graphical User Interface.

CHIP Name: Specifies the chip ID and configure some global parameters to make the applet able to
check if the ongoing function is compliant with the chip.

BOARD Specific Parameters: This part is used to provide some hardware arguments to the applet such

as:

extRamVdd: Specifies the Power supply Voltage value for the external memory, to the applet.
— extRamType: Specifies the external memory type to the applet.
— extRamDataBusWidth: Specifies the external memory data bus width to the applet.

— extbDDRamModel: Specifies the model of DDR used (this option is mainly used for common
memories used across the Atmel Evaluation Kits).

FHEH AR H AR H AR AR A A A R R
BOARD SPECIFIC PARAMETERS
FHEHHHH AR AR A A R R
namespace eval BOARD {

variable sramSize 0x20000

variable maxBootSize 65328
Default setting for DDRAM

vdd Memory 1.8V = 0 / vdd Memory 3.3V = 1

variable extRamvdd 0

External SDRAM = 0 / External DDR2 = 1 / LPDDR = 2

variable extRamType 1
#For LPDDR change me here
#variable extRamType 2

Set bus width (16 or 32)

variable extRamDataBusWidth 16

DDRAM Model (0: MT47H64M16HR, 1: MT47H128MI16RT
variable extDDRamModel 1

Note: DEVICE/ADDRESSES (A2, Al, A0): The A2, Al or AO pins are device address inputs

that are hardwired or left not connected for hardware compatibility with other AT24CXX
devices.

Modify 'eepromDeviceAddress' to meet the hardware connection.

variable eepromDeviceAddress 0x51

}
set target (board) at9lsama5d3x-ek

Source procedures for compatibility with older SAM-BA versions
if { [catch { source "$libPath (extLib)/common/functions.tcl"} errMsg] } {
if {ScommandLineMode == 0} {
tk messageBox -title "File not found" -message "Function file not found:\n$errMsg" -
type ok -icon error
} else {
puts "-E- Function file not found:\n$errMsg"

puts "-E- Connection abort"

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

15

exit
}
array set memoryAlgo {
"SRAM" "::sama5d3x_sram"
"DDRAM" "::sama5d3x_ddram" Used for the GUI
""SDMMC" "::sama5d3x_sdmmc"
"DataFlash AT45DB/DCB" "::sama5d3x_dataflash"
"SerialFlash AT25/AT26" "::sama5d3x_serialflash"
"EEPROM AT24" "::sama5d3x eeprom"
"NandFlash" "::sama5d3x nandflash"
"NorFlash" "::sama5d3x norflash"
"OTP" "::sama5d3x_otp"
"One-wire EEPROM" "::sama5d3x ow"
"DDR2 / SDRAM Map" "::sama5d3x_ddr2 sdram map"
"Peripheral" "::sama5d3x_peripheral"
"ROM" "::sama5d3x_rom"
"REMAP" "::sama5d3x remap"
}
File ScriptFile Help
— at91samabd3x Memory Display
Start Address : (1x300000 Refresh Crpat ppplchimeeon DEGU
D foto =] apy |
Sizein byte(s]:|0x100 B-bit " 16-bit * 32-bit ntos PPY
0x00300000 0x00000004 0x01 OxESARMBIC 0x37DCD50D =
0x00300010 OxBE1CE311 0x34 0xF249117D OxFACBCESS 4
0x00300020 O0x1R890338 0x02 0x159D49EE OxERF3E0CS
0x00300030 Ox30R2488E 0x60 0x09ES0D04 OxO0B5551CY
. ln-nngnnn,n Awmarmsasn Al nucssiomes neessccom | X
DDRAM] DataFlash AT45DB/DCE | EEPROM AT24 | NandFlash | MorFlash] oTP] One-wire EEPROM | SRAM SerialFlash AT25/AT26
— Download / Upload File
Send File Name :| = Send File
Receive File Name : | EI Receive File
Address : |0x0 Size (For Receive File) ; |0:1000 byte(s) Compare sent file with memaory
— Scripts
Enable Serialflash (SPI0 C50) j Execute |
loading history file ... 0 events added -

SAM-BA console display active (Tcl8.5.9 / Tk8.5.9)
(sam-ba_2.12) 1 %
(sam-ba_2.12) 1 %|

\USBseriahCOML8| Board : at9lsamasd3x-ek|

In terms of customization it is important to check these parameters and make them fit with the final hardware.
This will allow the applet to select the correct functions.

This will directly modify the SAM-BA GUI by adding or removing the dedicated window tab for each memories.
Refer to Section 6.2 Add a New Memory Tab in the SAM-BA GUI Main Window.

e Low Level Initialization: This is the first applet called and it refers to the file “LowLevel.tcl”, see Section
2.6.2 LowLevel.tcl Description.

123 e s g g s g s LTty I

123 #% Low Level Initialization

124 B R A A A T S AT A A TS A R4S F 4RSS 244

125 g]if { [catch { source "§libPath(extLib)/$target (board)/lowlevelinit.tol"} errMsg] } |
16 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

SRAM: Specifies the address of the internal SRAM of the chip, the size and the script used to write or
read the internal SRAM.

SEEEEE LR EE LT R R
#HHHH
SRAM
SEEEEEE R EE R TR R R R R
#HHHE
array set samab5d3x sram {

dftDisplay 1

dftDefault O

dftAddress 0x00300000

dftSize 0x10000

dftSend "RAM: :sendFile"
dftReceive "RAM: :receiveFile"
dftScripts ""

}

The functions “RAM::sendFile & RAM::receiveFile” are implemented in the directory sam-
ba 2.14\tcl_lib\common\ in the file generic.tcll.

If this file is opened, it can be understood how the function

e ‘“send file” is managed using the TCL_Write_Data function which directly comes from the
AT91Boot_TCL.dIl file.

e ‘“receive file” is managed using the TCL_Read_Data function which directly comes from the
AT91Boot_TCL.dll file.

DDRAM: This part is important to be considered in terms of the customization of SAM-BA. All the board
parameters previously configured from the “BOARD Specific Parameters” will determine the final
arguments sent to the applet mailbox in the low_level_init.tcl file.
FHEF A A R R R
DDRAM
FHE A A A A R S R S
array set samabd3x ddram {

dftDisplay O

dftDefault 0

dftAddress 0x20000000

dftSize "$GENERIC: :memorySize"
dftSend "RAM: :sendFile"
dftReceive "RAM: :receiveFile"
dftScripts "::sama5d3x_ddram_ scripts"
}
if {SBOARD::extRamType == 1 || S$BOARD::extRamType == 2} {

set sama5d3x ddram(dftDisplay) 1
}

set RAM: :appletAddr 0x308000

set RAM: :appletMailboxAddr 0x308004

set RAM: :appletFileName "$1libPath (extLib) /$target (board) /applet-extram-
sama5d3x.bin"

puts "-I- External RAM Settings : extRamVdd=$BOARD: :extRamvdd, ex-

tRamType=$BOARD: : extRamType, extRamDataBusWidth=$BOARD: :extRamDataBusWidth, ex-
tDDRamModel=$BOARD: : extDDRamModel"

array set samabd3x ddram scripts {

"Enable DDR2" "GENERIC: :Init $RAM: :appletAddr $RAM::appletMailboxAddr
SRAM: :appletFileName [list $::target(comType) $::target(tracelLevel) $BOARD: :ex-
tRamVdd 1 $BOARD: :extRamDataBusWidth $BOARD: :extDDRamModel]"

"Enable LPDDR2" "GENERIC: :Init $RAM::appletAddr $RAM: :appletMailboxAddr
SRAM: :appletFileName [list $::target(comType) $::target(traceLevel) $BOARD: :ex-
tRamVdd 2 $BOARD: :extRamDataBusWidth $BOARD: :extDDRamModel]"

}

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 17

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

{

tinue anyway
} else {
puts
puts
puts

}

Initialize SDRAM/DDRAM

if {[catch {GENERIC::Init SRAM::appletAddr S$SRAM: :appletMailboxAddr S$RAM: :ap-—
pletFileName [list $::target(comType) $::target(traceLevel) SBOARD: :extRamvdd
SBOARD: :extRamType SBOARD: :extRamDataBusWidth $BOARD::extDDRamModel]} dummy err] }

set continue no
if {ScommandLineMode == 0} {
set continue [tk messageBox -title "External RAM init" -message "External
RAM initialization failed.\nExternal RAM access is required to run applets.\nCon-

?" -icon warning -type yesno]

"_E-
"_E-
"_E-

Close link
if {Scontinue

TCL Close
exit
}
} else {
puts "-I-

Error during external RAM initialization."
External RAM access is required to run applets."
Connection abort"

== no} {
Starget (handle)

External RAM initialized"

e SERIALFLASH; DATAFLASH; EEPROM; One-Wire EEPROM; NANDFLASH; SDMMC; NORFLASH;
OTP; these parts are all composed of the same fields used to determine the graphical menu in the SAM-
BA GUI for each memory. Example given for the NANDFLASH:

i i ts
#%# NANDFLASH
BRI R R R I R IAIIRIFINIIIIFAIILIIIRRIRIRRIRIRRR AR

) ©O O O

O O

W oW wwww

>
O W W

}

dftSize
dftSend
dftReceive
dftScripts

[Flarray set sama5d3x_nandflash {
dftDisplay
4 dftDefault
5 dftAddress
6

0x0

"$GENERIC: :memorySize" Generic Scripts
"GENERIC: : SendFile"

"GENERIC: :ReceiveFile"

"::sama5d3x _nandflash scripts"

312 [Harray set sama5d3x nandflash_scripts {

313 "Enable NandFlash" "NANDFLASH: :Init"
q "Pmecc configuration" "NANDFLASH: : NandHeaderValue"

315 "Enable OS PMECC parameters" "NANDFLASH: :NandHeaderValue HEADER 0xc0902405"

316 "Send Boot File" "NANDFLASH: : SendBootFilePmecc"

317 "Erase All" "NANDFLASH: :EraseAll"

318 "Scrub NandFlash" "NANDFLASH: :EraseAll $NANDFLASH: :scrubErase"

319 "List Bad Blocks" "NANDFLASH: :BadBlockList"

320 Ly Dedicated Memory Scripts

oLl

322 set NANDFLASH: :appletAddr x20000000 Memory address and Applet location

323 set NANDFLASH: :appletMailboxAddr x20000004

324 set NANDFLASH::appletFileName "$1ibPath(extLib)/Starget(board)/applet—ggggé%ggg—sama5d3x.bin"
18 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

2.6.2 LowLevel.tcl Description

This file is used to call the low-level initialization applet.
In SAM-BA, there is a new feature, Customize lowlevel, which allows users to configure the Master Clock
(MCK) of the target device in an easier way.
In each board specific folder, there is a tcl/tk script named lowlevel.tcl. The <board>.tcl will call a function,
LOWLEVEL::Init, which is defined in lowlevel.tcl.
In lowlevel.tcl, the list mainOsc(crystalList) contains all available crystal frequencies of the device. Users can
add a user-defined frequency to the list.
A dedicated applet, lowlevelinit applet, implements the low level initialization. Like other applets, the address,
the mailbox address, and the applet name of this lowlevel applet are defined.
There are three key parameters transferred to the applet by SAM-BA.

set mainOsc(crystallList) [list \

"12000000"]

set mainOsc(initOsc) O

set mainOsc(initXal) 12000000

namespace eval LOWLEVEL {
variable appletAddr 0x308000
variable appletMailboxAddr 0x308004
variable appletFileName "$1libPath (extLib) /$target (board) /applet-lowlev-

elinit-sama5d3x.bin"

}

Mode specifies the mode of low level initialization.

e If modeis EK_MODE, the applet will call EK_LowLevellnit() to configure the target device just the same
as EK does.

e Ifmodeis USER_DEFINED_CRYSTAL, the applet will call user_defined_Lowlevellnit() to configure the
target device, which should be implemented by users. A selected frequency will be passed to this
function as a parameter, named crystalFreq.

e If mode is BYPASS MODE, the target device should be configured to be clocked by an external clock.
Function bypass_LowLevellnit() should be implemented by users to complete the configuration. A
specified frequency will be passed to this function as a parameter, named extCIk.

CrystalFreq is the selected frequency of the crystal oscillator. The value of the frequency is one of those in the
list mainOsc(crystalList), which is defined in lowlevel.tcl. CrystalFreq is used by user_defined Lowlevellnit()
when mode is USER_DEFINED_CRYSTAL.
Extclk is the specified frequency of the external clock of the target device. The value of the frequency is
specified by users in SAM-BA GUI. Extclk is used by bypass_Lowlevellnit() when mode is BYPASS_MODE.
proc LOWLEVEL::Init {} {
global mainOsc
global commandLineMode
global target
switch SmainOsc (mode) {
bypassMode {
set mode 2
}
Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 19

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

20

boardCrystalMode {
set mode 1

}
default {

set mode 0
}

}

If the user’s board is mounted with a crystal of a frequency different from that on the EK board or the target
device is clocked by an external clock, the function user_defined_Lowlevellnit() or bypass_LowLevellnit()
should be implemented in advance and the low-level applet needs to be re-compiled and replace the one in the
board specific folder. For information on how to implement the low level initialization, refer to
EK_LowLevellnit(), or refer to Section 7.2 Low Level Customization to Implement the Oscillator Bypass Mode.

Once the parameters set, the mailbox is ready to be sent to the applet containing all the parameters:

if {[catch {GENERIC::Init SLOWLEVEL: :appletAddr S$LOWLEVEL: :appletMailboxAddr
SLOWLEVEL: :appletFileName [list $::target (comType) $::target(tracelLevel) S$Smode
SmainOsc(osc) SmainOsc(xal)]} dummy err] } {
set continue no
if {ScommandLineMode == 0} {
set continue [tk messageBox -title "Low level init" -message "Low
level initialization failed.\nLow level initialization is required to run ap-
plets.\nContinue anyway ?" -icon warning -type yesno]
} else {
puts "-E- Error during Low level initialization."
puts "-E- Low level initialization is required to run applets."
puts "-E- Connection abort!"

}
Close link
if {Scontinue == no} {
TCL Close Starget (handle)
exit
}
} else {
puts "-I- Low level initialized"
}
}
AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

3 Software Prerequisites

This chapter describes how to install all the required software tools to compile the new applets, which must be
done before starting a customization case.

3.1 Sourcery CodeBench Lite 2013.05-23 for ARM EABI

3.1.1 Introduction

@ (ODESOURCERY

Download link:

Sourcery G++ Lite for ARM EABI is intended for developers working on
embedded applications or firmware for boards without an operating system, or
that run an RTOS or boot loader. This Sourcery CodeBench™ configuration is
not intended for Linux or pClinux™ kernel, or application development.

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

3.1.2 Installation

e Execute the arm-2013.05-23-arm-none-eabi.exe file and follow the instructions:
— Choose “Typical” option in step 3

"4m Sourcery CodeBench Lite for ARM

@ welcome!

’ portant Information
@ Choose Install Set
() Choose Install Folder

© Addto PATH?

O Choose Shortcut Folder
O Summary

© Installing...

© Install Complete

@ CODESOURCERY

Choose Install Set

2 Typical
Install all Sourcery CodeBench components, including the

documentation.

Minimal
Install only the essential Sourcery CodeBench components

Custom
Choose this option to customize the Sourcery CodeBench Lite for

ARM EABI components to be installed.

InstallAnywhere

I Previous } | Nex |

— Choose “Modify PATH for all users” option in step 5

o SoumeryCodeBend\LiteforARM_

@ Welcome!
@ Important Information
@ Choose Install Set

& Choose Install Folder
& Add to PATH?
(& Choose Shortcut Folder

© summary
© Installing
O Install Complete

@ CODESOURCERY

Add product to the PATH?

The Wizard can add Sourcery CodeBench Lite for ARM EABI to the
PATH environment variable. This will make it easier to use Sourcery
CodeBench Lite for ARM EABI and will mean less configuration for
other tools.

WARNING: Without this change some tools may not function
correctly.

) Do not modify PATH.

() Modify PATH for current user.

ywhere

Fresos

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 21

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

— Follow next instructions till the install process starts

Installing Sourcery CodeBench Lite for ARM EABI

@ welcome!

@ Important Information ([

@ Choose Install Set 2 (ODSOUH(H“
@ Choose Install Folder

@ Add to PATH? MEAior
@ Choose Shortcut Folder

@ summa CCELY
- zslallln: sc
© Install Complete
—
& ConeSouncenr
Installing... limits.h
0 Cance'l ‘ —_

— Press “Done” at the end of the install process

e Once the installation process is finished, verify whether ARM EABI’'s PATH environment variable has
been correctly added in system:

— Open a “Command Prompt” in Windows (Start -> Accessories -> Command Prompt)
— Type “arm-none-eabi-gcc -v” in command line to check the version number

— The following results should be displayed:
B CiWindows\system32\emd.cxe .

urcery CodeBench Lite 2013.085-23)

If you cannot see this information, the install process did not correctly set the PATH variable during Code
CodeBench Lite 2012.05-23 for ARM EABI installation.

e In this case, add the PATH variable manually as described:
— Right click on (My)"Computer -> Properties -> Advanced Systems Settings->Advanced ->
Environment Variables -> User variables -> PATH”
— Select the “PATH” user variables and click “Edit”
e For Windows 32-bit OS users: add “C:\Program
Files\CodeSourcery\Sourcery_CodeBench_Lite for ARM_EABI\bin” at the beginning of
Variable value box.
e For Windows 64-bit OS users: add “C:\Program Files
(x86)\CodeSourcery\Sourcery CodeBench_Lite for ARM_EABI\bin” at the beginning of
Variable value box.

22 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Environment Variables ‘ ,33 -
User variables for jeremy.plantier Edit User Variable ‘, g
Yar e Variable name: Path
PATH C:\Program Files (x86)\Atmel\sam-ba_2... | >
TEMP %USERPROFILE %\AppData\Local\Temp | variable value: ¥:\Program Files (x86)\CodeSourcery\Sourd|
1 ™F %USERPROFILE % \AppDataLocal\Temp
I

New... | [Edit.. JH—peet———

System variables
Variable Value &
Path C:\Program Files (x86)\CodeSourcery\S... \j
PATHEXT .COM; .EXE;.BAT;.CMD;.VBS;.VBE;.JS;....
PROCESSOR_A... AMD64
PROCESSOR_ID... Intel64 Family 6 Model 42 Stepping 7, G... ™

[New..][Edt..][Deete |

Lo [conce |

Click “OK” to complete the setting
Then click “OK” to close the Environment Variable Window and System properties window
— Open a new command prompt and enter “arm-none-eabi-gcc -v” to test again

Now Sourcery CodeBench Lite 2012.09-63 for ARM EABI should be correctly installed.

3.2 GNU Make 3.81

3.2.1 Introduction

Make is a tool which controls the generation of executables and other non-source files of a
program from the program's source files.

Make gets its knowledge of how to build your program from a file called the makefile, which
lists each of the non-source files and how to compute it from other files. When you write a
program, you should write a makefile for it, so that it is possible to use Make to build and install
the program.

Download link:
http://gnuwin32.sourceforge.net/packages/make.htm

3.2.2 Installation
e Execute the make-3.81.exe file and follow the instructions:
— Be sure that the “Full installation” options have been chosen during the installation process:

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 23

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

http://gnuwin32.sourceforge.net/packages/make.htm

,

-y
Select Components cw
Which components should be installed?

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue. |

Cument selection requires at least 6.6 MB of disk space.

| Full installation -] |
[V Binaries 22 MB| ‘
v| Documentation 39MB I
I

|

|

[<Back][Ne)d>][Cancel}

Click on the “next” button till “Finish” to complete the installation

e Add cross compile environment path to windows:

Right click on (My) "Computer -> Properties -> Advanced Systems Settings->Advanced ->
Environment Variables -> User variables -> PATH”

Select the “PATH” user variables and click “Edit”:

e For Windows 32-bit OS users: add “C:\Program Files\GnuWin32\bin” at the beginning of
Variable value box.

e For Windows 64-bit OS users: add “C:\Program Files (x86)\GnuWin32\bin” at the
beginning of Variable value box.

Click “OK” to complete setting

Check if “GNU make” PATH environment variable has been added:
e Open a new “Command Prompt” in Windows (Start -> Accessories -> Command Prompt)
e Input “make -v” in command line to check the version nhumber
e The following results should be displayed:

Copyright <C» 2806 Free Software Foundation, Inc.

Thiz iz free software; see the source for copying conditions.

There iz NO warranty; not even for MERCHANTABILITY ox FITHESS FOR A
PARTICULAR PURPOSE.

This program built for i3B6—pc—mingwd2
Can

24 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

3.3 GNU Core Utils 5.3

3.3.1 Introduction

The GNU Core Utilities are the basic file, shell and text manipulation utilities of the GNU operating system.
These are the core utilities which are expected to exist on every operating system. This tool package contains
Linux tools like mkdir, rm, sh, touch, and more. It will be used by Makefile, which is used to compile the SAM-
BA applets.

Download link:
http://gnuwin32.sourceforge.net/packages/coreutils.htm

3.3.2 Installation
e Execute the coreutils-5.3.0.exe and follow the instructions:
— Make sure you have selected “Full installation” options during installation

Select Components g . 3
Which components should be installed? 2, |

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

| Full installation
[¥] Binaries
[¥] Documentation

Current selection requires at least 21.3 MB of disk space.

[<Back J[_Ned> | [Cancel |

— Click on the “next” button till “Finish” to complete the installation

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 25

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

http://gnuwin32.sourceforge.net/packages/coreutils.htm

4.1

26

Customization Step 1: Duplicate an Existing Solution as a Base for the
Customization

Duplicate the TCL Folder Organization from an Existing One

The best way to successfully implement a custom board is to keep the same folder organization, by copying
one of the AT91SAMxx-ek and renaming it according to a new board name.

For instance, create a copy of the at91sama5d3x folder from sam-ba_X.xx/tcl_lib directory in the same folder
and rename it into “customized_board_example” as described below:

3

ALILSANTI DILL-EK
. at91sam7se32-ek
, at91sam7se256-ek
, at91sam7se512-ek
. at91sam7x128-ek
. at91sam7x256-ek
. at91sam7x512-ek
, at91sam9g10-ek
. at91sam9g15-ek
. at91sam9g20-ek
. at91sam9Im10-ek
at91sam9nl2-ek
. at91samIrl64-ek
. at91sam9xel28-ek
. at91sam9xe256-ek
. at91sam9xe512-ek
. at915am9260-ek
) at91sam9261-ek
, at91sam9263-ek
. at91samaSd3x-ek

| | at91samaSd3x-ek - Copy

Then go into the new “customized_board_example” directory to rename the “at91samabd3x.tcl” file into

3
3
3
3
)
)
3
3
3
3
b
)
3
3
3
3
)
)
)
3
)
3

. at91samaSddx-ek

. common

17312014 3V ¥V
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:48 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM

“customized_board_example.tcl”:

Mame

e

|| applet-dataflash-samaSd3xbin

|| applet-eeprom-samabd3xbin

|| applet-extram-sarma5d3x.bin

|| applet-lowlevelinit-sama5d3x.bin

|| applet-nandflash-sama5d3x.bin

|| applet-norflash-samasd3x.bin

|| applet-otp-sama5d3x.bin

|| applet-oweeprom-samaSd3x.bin

|| applet-sdmmc-sama5d3x.bin

|| applet-serialflash-sama5d3x.bin

| l||customized_board_examplelid |

|| lowlevelinit.tcl

Caue srusier

XD

Open

Open in new window

7-Zip >
Share with 2
SVN Checkout...

TortoiseSVN >

Restore previous versions

Scan for Viruses...

Include in library »

Send to »

Cut

Copy

Create shortcut
Delete

Rename

Properties

. at91s5am9260-ek
1. at91sam9261-ek
1. at91s5am9263-ek
. at91sama5d3x-ek
.. at91samaSddx-ek

/. common

. customized_board_examplel

. devices

7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:30 PM
7/29/2014 3:35 PM
7/29/2014 3:30 PM

Date modified Type Size

7/14/2014 8:45 AM BIM File 36 KB
7/14/2014 8:45 AM BIM File 31 KB
7/14/2014 8:45 AM BIN File SEB
7/14/2014 &:45 AM EIM File 3 KB
7/14/2014 8:45 AM BIN File 68 KB
7/14/2014 8:45 AM BIM File 39 KB
7/14/2014 8:45 AM BIM File 25 KB
7/14/2014 8:45 AM BIN File 31 KB
7/14/2014 &:45 AM EIM File 60 KB
7/14/2014 8:45 AM BIN File 40 KB
5/26/2014 5:13 AM TCL File 16 KB
6/27/2012 4:54 AM TCL File 4 KB

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

As a result the “customized _board _example” board should appear from the SAM-BA GUI connection window
as shown by the following picture:

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

4.2 Duplicate the Applet Folder Organization from an Existing One

Go in to the following directory: \sam-ba_2.14\applets and create a copy of the sama5d3x folder and rename it
into “customized_board_example” as described:

sam-ba_2.13 » applets »

y v Share with v
Name Date modified Type Size
1. legacy 14/11/2014 09:34 File folder
1. sam3n 14/11/2014 09:34 File folder
1. sam3s 14/11/2014 09:34 File folder
1. sam3s8 14/11/2014 09:34 File folder
1. sam3x 14/11/2014 09:34 File folder
1. samdc 14/11/2014 09:34 File folder
L. samdcm 14/11/2014 09:34 File folder
1. samdcp 14/11/2014 09:34 File folder
1. samde 14/11/2014 09:34 File folder
1. samdl 14/11/2014 09:34 File folder
.. samdn 14/11/2014 09:34 File folder
1. samds 14/11/2014 09:34 File folder
1. sam9nl2 14/11/2014 09:34 File folder
L. sam9S 14/11/2014 09:34 File folder
. samaSd3x 14/11/2014 09:34 File folder
| . sama5d3x - Copy 7/11/2014 15:54 File folder |
» sam-ba_213 » applets » - I 4 I
brary v Share with v Burn New fold
Name : v DaN@Pdified Type Size
| I customized_board_example 17/11/201415:54 _ File folder |
| legacy 14/11/2014 09:34 File folder
.. sam3n 14/11/2014 09:34 File folder
. sam3s 14/11/2014 09:34 File folder
/. sam3s8 14/11/2014 09:34 File folder

Now the “customized_board_example” can reuse the whole applet source code of the one used for the
SAMASD3x-ek.

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 27

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

5.1

5.11

28

Customization Step 2: Add a New Custom Board to the Existing TCL
Database

Add a New Board Entry

To add support for a new board, a new device entry must be added in the devices array at first. Adding a new
board entry allows to add a new board instance in the drop-down menu of the SAM-BA startup screen.

For example, if users have their own boards with SAMA5D3x device; add alias customized board_example in
the original line for SAMASD3x device.

Modify the “boards.tcl” File

The “boards.tcl” file is used to make SAM-BA able to load the corresponding applets of the specified board. As
a consequence, a new entry must be added in the board array with an associated description file path. Then a
dedicated directory must be created (see below).

The figure below shows that for each Atmel evaluation kit, a dedicated path is provided to SAM-BA allowing the
dedicated applet to load correctly. The aim in this step is to reproduce this architecture for a custom example.

Board array

\[[Flarray set boards {]

"at91sam3x2-ek" "at91sam3x2-ek/at91sam3x2-ek.tcl"
"at91sam3x4-ek" "at91sam3x4-ek/at91sam3x4-ek.tcl" Board directory
"at91sam3x8-ek" "at91sam3x8-ek/at91sam3x8-ek.tcl"
Board name ~— "at91sam3n00-ek" "at91sam3n00-ek/at91sam3n00-ek.tcl"

\l"atSlsanﬁnO-ek"] |"at91lsam3n0-ek/at9lsam3n0-ek.tcl’
"at91sam3nli-ek" "at91sam3nl-ek/at91sam3nl-ek.tcl"”
"at91sam3n2-ek" "at91sam3n2-ek/at91sam3n2-ek.tcl"
"at91sam3n4-ek" "at91sam3n4-ek/at91sam3nd-ek.tcl"

The file is located in the directory C:\Program Files (x86)\Atmel\sam-ba_ X.xx\tcl_lib:

Open the boards.tcl file in a text editor with a syntax recognition (e.g.: Notepad++) and add a new board by
adding a new entry in the “set boards” array ‘from code line #107) and the corresponding directory, as
explained below:

=}

[

115 "at91lcap7-dk-mem33" "at9lcap7-dk/at9lcap7-dk-mem33.tcl"
116 "at9lcap7-stk" "at91cap7-stk/at91cap7-stk.tcl”
117 "at91sama5d3x-ek" "at91sama5d3x-ek/at91sama5d3x-ek.tcl"
l 118 "customized board example" "customized board example/customized board example.tcl"]
112 | "at9isamasd3x-xplained" 'atdisamabdix-ek/atdlsamabdix-ex.tcl"
120 "at91sama5d4x-ek" "at91sama5d4x-ek/at91sama5d4x-ek.tcl"”
121 "no_board" "no_board/no_board.tcl"
22
23

[

The directory must have the same name as the board. Take care that the text editor used is executed as
administrator, otherwise saving files will fail.

To apply the previous modifications, SAM-BA GUI must be restarted if required.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

Select the connection : 4jlink\ARMO

Select your board : customized_board_exaF

ILink ;peed s [at91 samSuesl - ek S
atdlzamabdIx-ek
at9lsamabd3Ix-xplained
atdlzamabddx-ek
customized board exa

JLink TimeoutMultiplier :

Connectl

carmnds-xpld
carmnd20_xplained_pro :|
carnd2l_xplained_pro =
< | 1} |

A Once the board is registered in the database, its functionality remains to be implemented through the applet

customization. The previous implementation simply allows SAM-BA to be able to load the applets binaries file

when a dedicated command is sent to SAM-BA GUI.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

29

6.1

30

Customization Step 3: Customize the SAM-BA Graphical User Interface

In this chapter, how to add / or to modify the SAM-GA GUI features is explained. The following two examples
are targeted to be the most common part the users/customers are supposed to meet.

The first example is about how to customize TCL/TK script to add a new crystal value from the “customize low
level” option of the SAM-BA GUI’'s connection window.

The second example is about how to modify or to add a new memory tab to the SAM-BA GUI’s main window.

Add a New Crystal Value in SAM-BA GUI's

From SAM-BA 2.11 and 2.12, a new option is available: “Customize low level” which allows users to configure
the Master Clock (MCK) of the target device in an easier way, as for example for the SAMA5D3x-ek below:

™ SAM-BA 2.13 = | B %
Select the connection : [Yjlink\ARMO ﬂ
Select your beoard : |customized_board_exar =
JLink speed : |default i
JLink TimeoutMultiplier: |0 |
¥ Customize lowlevel
Connect | Exit
”
F Customize customimd_buarcimmp...&lilg
Select on board crystal: |12000000) R
Bypass mode

[™ Bypass Main Oscillator
Bxternal Clock (inHz) [0

Set | Use Default |

In each board specific folder, there is a tcl/tk script named lowlevel.tcl. The <board>.tcl will call a command
through SAM-BA, LOWLEVEL::Init, which is used in lowlevel.tcl.

In this step we will make the assumption that a different onboard crystal is used. As a consequence the main
oscillator low_level init function has to be modified to fit with the new hardware modifications. Therefore, the
corresponding applet will be modified accordingly and recompiled.

Now, go to the directory C:\Program Files (x86)\Atmel\sam-ba_2.12\tcl_lib\ customized board_example and
open the lowlevelinit.tcl file in a text editor. In this file the list mainOsc(crystalList) contains all available crystal
frequencies of the device. Users can add a user-defined frequency to the list.

O w

et mainOsc(cxrystallist) [list \
"12000000"]

set mainOsc(initOsc)
set mainOsc(initXal)

W oW W w N

W N

For instance, from the SAMA5D3x product family datasheet available in the Resources\Datasheet folder, in the
Electrical chapter, we can read that the main oscillator operating frequency is in the range 8MHz to 16MHz.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

The list mainOsc(crystalList) must be modified in the lowlevel.tcl file located in the C:\Program Files
(x86)\Atmel\sam-ba_2.12\tcl_lib\customized board_example directory as in this example:

set mainfsc(crystallist) [list %
"S000000™ "12000000" "le000000"]

J L R3O R
[BT+ =

31

A dedicated applet, lowlevelinit applet, implements the low level initialization. Like other applets, the address,
the mailbox address, and the applet name of this lowlevel applet are defined as described in the lowlevel.tcl:

4]

3 namespace eval LOWLEVEL {

36

27 variable appletAddr O=x308000

38 variable appletMailboxfddr Ox308004

39 variable appletFileMName "51ibPath (extLib) /5target (board) /applet-lowlevelinit-samaSd3x . bin"
40

41 }

Now, restart SAM-BA and click on the “customize low level” check box to see the modifications.

™ SAM-BA 2.13 =3 ® |

Select the connection @ |\jlink\ARMO =

Select your board : customized_board_exal ™

ILink speed :Idefault <

JLink TimeoutMultiplier : |0 ~]

Cunnectl
—’-_

F Customize customized_board_exa

¥ Customize lowlevel

Select on board crystal:||8000000
Bypass mode

™ Bypa
External Clock (in Hz)

2000000
6000000

Set Lse Default

6.2 Add a New Memory Tab in the SAM-BA GUI Main Window

To add a new memory window tab in the SAM-BA GUI main window, the file “customized_board_example” has
to be modified.

The customized_board_example.tcl file is located in the directory \sam-
ba 2.14\tcl_lib\customized board_example, and can be opened the in a text editor.

In customized_board_example.tcl, the “set memoryAlgo” array contains all available window tabs
corresponding to each memory on board. Users can add a new one by adding an instance to the “set
memoryAlgo” array as described below.

To add a new tab, modify the “set memoryAlgo” array in the customized_board_example.tcl file located in
\sam-ba_2.14\tcl_lib\ customized_board example directory as explained below:

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 31

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

32

72 Ehrtay set memoryAlgo {

73 "SRAM" "::sama5d3x_sram"

74 "DDRAM" "::sama5d3x_ddram"

74 "DataFlash AT45DB/DCB" "::sama5d3x_dataflash"
76

77 "my new memory tab" " :sa.ma5d3x_dataf1ash"]
78

79 "SerialFlash AT25/AT26" "::sama5d3x_serialflash"
80 "EEPROM AT24" "::sama5d3x_eeprom"

81 "NandFlash" "::sama5d3x nandflash"
82 "NorFlash" "::sama5d3x norflash"

83 "OTP" "::sama5d3x_otp"

84 "One-wire EEPROM" "::sama5d3x_ow"

85 "DDR2 / SDRAM Map" "::sama5d3x_ddr2_sdram map"
86 "Peripheral" "::sama5d3x_peripheral"
87 "ROM" "::sama5d3x_rom"

g8 "REMAP" "::sama5d3x_remap"

89 = }

To see your modification, restart SAM-BA GUI and select the “customized_board_example.tcl” from the "Select

your board” dropdown menu:

? ™ sam-BA 213

)

=N EcE =

Select the connection : |COM1

=

Select your board : Icustomized_board_examplej v

JLink TimeoutMultiplier : [at91sam9ri64-ek

t91sam9x25-ek

t91sam9x35-ek

t91sam9xel 28-ek
Connect I t91sam9xe256-ek

t91sam9xe512-ek
at91samaSd3x-ek
at91sama5d3x-xplained
at91samaSddx-ek

customized board example|

-~

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

The SAM-BA GUI main window should appear as follow:

File ScriptFile Help

— at91sama5d3x Memory Display
Start Address: 0x300000 Refresh Display format
Size in byte(s): 0x100 : C ascii C 8-bit 16-bit & 32-bit

0x00300000 0x00000004 0x01002124 OxESEABB2C 0Ox37DC9S0D
0x00300010 0xB81EB311 0xB494BCO1 0xF849117D O0OxBACBDBBS
0x00300020 0xX1AE90338 0x02043110 0x151D49F6 OXEARF3EOQCS
0x00300030 Ox30A3488E 0Ox604C5269 Ox09E80D04 Ox0B7551CS

AuwARIAAAAN A ASDE DR Awd HECADSR ACD TEL D e ODD EADTE

~Applet traces on DBGU—

Iinfos v | Apply |
. -~

(3

4 LI

| 3

— Download / Upload File-

4CEPROM AT | NandFlash | NorFlash | OTP | One-wire EEPROM | SRAM | SerialFlash AT25/AT26 [my new memory tab]

[Enable Dataflash (SPI0 CS0) =] Execute | ‘

Send File Name : | & Send File
Receive File Name:: | EI Receive File
Address : 0x0 Size (For Receive File) : |0x1000 byte(s) Compare sent file with memory
— Scripts

loading history file ... 1 events added

SAM-BA console display active (Tcl8.5.9 / Tk8.5.9)
(sam-ba_2.12) 2 %

(sam-ba_2.12) 2 %l

\USBseriahCOM18| Board : my_training_board| -

As a result, the new memory tab appears.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

33

7.1

7.1.1

34

Customization Step 5: Modify SAM-BA Applets to fit with a Custom
Hardware

Customize Low-Level Initialization Applet

Simple Example

In this example, the lowlevelinit.tcl file is opened in a text editor; Go to the directory \sam-ba_2.14\tc|_lib\
customized_board_example and reopen the lowlevelinit.tcl file in a text editor.

In the LOWLEVEL::Init procedure, from the code line #43, Mode specifies the mode of low level initialization.
e Ifmodeis EK_MODE, the applet will call EK_LowLevellnit() to configure the target device just the same
as EK does

e Ifmodeis USER DEFINED CRYSTAL, the applet will call user_defined Lowlevellnit() to configure the
target device, which should be implemented by the users. A selected frequency will be passed on to this
function as a parameter, named crystalFreq.

o Ifmodeis BYPASS MODE, the target device should be configured to be clocked by an external clock.
Function bypass_LowLevellnit() should be implemented by the users to complete the configuration. A
specified frequency will be passed on to this function as a parameter, named extCIk.

43 [Jproc LOWLEVEL::Init {} {

44

i) global mainlsc

16 global commandLineMode
4T global target

48

) = switch fmainCsc{mode) {
50 E bypassMode {

51 set mode =2

52 }

53 r

54 [H boardCrystalMode {
S set mode L

56 }

57 r

S8 [defanlt {

= set mode O

60 B }

61 1

We can see there that the tcl/tk script call a different function which directly depends on the selected mode
from the SAM-BA GUI first window.

The parameters are sent to the applet by using this command line from the lowlevelinit.tcl tcl/tk script:

63 if {[catch {
64
65
66

The lowlevelinit.tcl tcl/tk script calls another tcl/tk script, GENERIC::Init which is used to extract the parameters
to be sent to the applet.

fi:itarget (comTvpe) $::target(tracelevel) fmode fmainCsc(osc) fmainCsc(xal)]l} dummy_err] } {

This script can be found from the .\sam-ba_2.14\tcl_lib\common directory by opening the generic.tcl file.
As a result go to the directory path:

.\sam-ba_2.14\applets\my_training_board\sam-ba_applets\lowlevelinit and open the main.c file in code line
#170 to see the applet implementation, which depends on the selected mode from the lowlevel.tcl script:

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

170 int main(int argc, char *%*argv)

171 H{

172 struct _Mailbox #*pMailbox = (struct _Mailbox *) argv;

173 uint32_t mode, crystalFreq, extClk:

174 uint32_t comIype = pMailbox->argument.inputlnit.comIype:’
175 uint32_t baud_value:

176

177 Yt */
178 /* INIT: */
179 [* e e e e e e e —————————————— %/
180 [if (pMailbox->command == APPLET CMD_ INIT) ({

182 mode = pMailbox->argument.inputInit.mode;

183 crystalFreq = pMailbox->argument.inputlInit.crystalFreq:;
184 extClk = pMailbox->argument.inputInit.extClk;
ST switch (mode) {

187 case EXK MODE:

188 EK LowLevelInit():

189 pMailbox->status = APPLET SUCCESS:

190

191 break:

192 (case USER_DEFINED_CRYSTAL:

193 user_defined LowlevellInit (crystalFreq):

194 pMailbox->status = APPLET_SUCCESS:

195 break:

196 case BYASS MODE:

197 bypass_LowLevellInit (extClk)

198 pMailbox->status = APPLET_SUCCESS:

199 break;

200 default:

201 pMailbox->status = APPLET_ DEV_UNKNOWN:

202 break;

203 F }

204 } else {

205 pMailbox->status = APPLET_DEV_UNKNOWN:

206 T }

207

The cases “EK_MODE”, “USER_DEFINED CRYSTAL” & “BYPASS” are well defined at the code line #43-45
and correspond to the different mode from the tcl/tk script.

CrystalFreq is the selected frequency of the crystal oscillator. The value of the frequency is one of those in the
list mainOsc(crystallList), which is defined in lowlevel.tcl. CrystalFreq used by user_defined_Lowlevellnit() when
the mode is USER_DEFINED_CRYSTAL.

Extclk is the specified frequency of the external clock of the target device. The value of the frequency is
specified by users in SAM-BA GUI. Extclk is used by bypass_Lowlevellnit() when mode is BYPASS MODE.

If user's board mounts a crystal of a frequency different from the one available on the EK board, or the target
device is clocked by an external clock, the function user_defined Lowlevellnit() or bypass_LowLevellnit()
should be implemented in advance and the lowlevel applet needs to be recompiled and should replace the one
in the C:\Program Files (x86)\Atmel\sam-ba_2.12\tcl_lib\my _training_board folder.

In our case only the user_defined Lowlevellnit() will be implemented in this hands-on.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 35

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7.1.2

36

Before starting to implement the user_defined_Lowlevelinit(), go to the EK_LowLevellnit() function (code line
#149) declaration which is called in the case of the “EK_MODE”, and find some information about how to
configure low level init such as main oscillator crystal frequency:

146 Pk

147 T * \brief Configure the PMC as EK setting
*/

static void EK LowLevellnit (void)

n Wb
» O w| o

Y

b
wn
k

{
[T LowLevelInit () :
}

¥
w
L]

EK_LowLevellnit() function calls the LowLevellnit() function which is included in the board_lowlevel.c file
located in the sam-ba_2.14\applets\my_training_board\libraries\libboard_sama5d3x-ek\sources thanks to the
command “#include include/board_lowlevel.h”.

Now that you understood interactions between tcl/tck scripts and applets, let’'s customize SAM-BA applets to
the newly created board.

Adapt Existing Applets to the New Hardware

Now let’s try to customize the SAM-BA applets to adapt them to new hardware. In this assignment, only the
main oscillator configuration will be customized, but the process stays the same for other parameters such as
for example PINOUT customization.

To do that, go to the sam-ba_2.14\applets\my_training_board\libraries\libboard sama5d3x-ek\source directory
and open the board_lowlevel.c file to see how the oscillator is initialized at low level initialization:

As the SAM-BA implementation is typically the same as the at91lib library used in the Atmel software package
implementation, the entire libraries required to configure the chip and the board are available under the
following path: C:\Program Files (x86)\Atmel\sam-ba_2.12\applets\my_training_board\libraries.

70 H/**
71 * \brief Performs the low-level initialization of the chip.
72 * This includes EFC and master clock configuration.
73 * It also enable a low level on the pin NRST triggers a user reset.
74 e "/
75 extern WEAK wvoid LowLevellInit(wvoid)
76 E{
77 uint32_t i;
79 /* DDR reset */
80 MPDDRC->MPDDRC_LPR = MPDDRC_LPR_LPCB_DEEP_PWD |MPDDRC_LPR_CLK FR_ENABLED;
82 /* Disable DDR clock. */
83 PMC->PMC_PCDR1 |= (1 << (ID_MPDDRC-32)):
84 PMC->PMC_SCDR |= PMC_SCER_DDRCK:
86 PMC SelectExtl2M Osc():
87 PMC_SwitchMck2Main() :
88 PMC SetPllA(CKGR_PLLAR STUCKTO1 |
89 CKGR_PLLAR PLLACCUNT (Ox3F) |
90 CKGR_PLLAR OUTA(0x0) |
91 CKGR_PLLAR MULA(&5) |
92 CKGR_PLLAR DIVA(1),
93 D)
94 PMC SetMckPllaDiv (PMC MCKR_PLLADIV2 DIV2);
95 PMC_SetMckPrescaler (PMC_MCKR _PRES_CLCCK) ;
96 PMC_SetMckDivider (PMC MCKR MDIV PCK DIV3):
97 PMC SwitchMck2Pll() ;
98 |
AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Go to the ..sam-ba_2.14\applets\my _training_board\libraries\libchip_sama5d3x\source directory, and open the
pmec.c file to see the function implementations used to initialize the main oscillator.

Go back into the applet main.c file in sam-ba_2.14\applets\my_training_board\sam-ba_applets\lowlevelinit
folder, go to the code line #133 and modify the “user_defined_LowLevellnit()” function to implement correctly
the crystal frequency values:

129 /%
130 T * \brief Configure the PMC if the frequency of the external oscillator is different from the one mounted on EK

* \param crystalFreq -ZE‘.‘;:EG“.‘.—;T_C;' of the external oscillator

133 static void user_defined Lowlevellnit (uint32_t crystalFreq)

T

As we use the SAMA5D3x-EK board as example, the onboard XTAL remains the same 12MHz. But the

lowlevelinit() function must be re implemented from the user_defined_Lowlevellnit() to recompile the applet and
to use the customize lowlevel menu from the SAM-BA GUI.

e Add the following code lines (in red) in user_defined_Lowlevellnit() and the definition (in red too) just
above that function:

#define LED_TEST (1 << 24)

static void user defined LowlevelInit (uint32 t crystalFreq)
{

LowLevelInit () ;

PMC EnablePeripheral (ID PIOE) ;

PIOE->PIO PER = LED TEST;

PIOE->PIO OER = LED TEST;

PIOE->PIO SODR = LED TEST;
}

The above codes lines have been added to confirm through a LED blinking, that the customization has worked.
e Save your modifications

The applet customization is now finished. The applet is ready to be compiled.

Refer to the last step of customization to have more details on how to compile an applet.

As a result, once compiled and if you are using the SAMA5D3x EK board, you should get the LED lit as
described:

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 37

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7.2

7.2.1

38

Low Level Customization to Implement the Oscillator Bypass Mode

Bypass Mode Overview

As described in the product datasheet and detailed in Figure 7-1, it is possible for the user to directly connect
an external clock source on the XIN pin. The only constraint of that is to have clock signal which must comply
with the following characteristics:

Figure 7-1.

XIN
? :

Bypass Mode Representation

1/(tcpxin) XIN clock frequency

tepxin XIN clock period - 20 -

teHxin XIN clock half half-period - 0.4 X tcpxin 0.6 X tcpxin ns

teLxin XIN clock low half-period - 0.4 X tcpxin 0.6 X tcpxin

Cin XIN input capacitance @ - 25 pF

Rin XIN pulldown resistor @ - 500 kQ

ViN XIN voltage @ VDDOSC VDDOSC \%
Note: 1. These characteristics apply only when the main oscillator is in bypass mode (i.e., when MOSCEN = 0 and

OSCBYPASS = 1) in the CKGR_MOR. See “PMC Clock Generator Main Oscillator Register” in the PMC
section of the product datasheet.
This mode is called “Bypass mode”, because the main crystal oscillator is bypassed letting the external clock
source acting as the main clock of the chip.

Once implemented in hardware, users who want to establish a connection with their hardware using SAM-BA,
have to customize the low level init applet. This will make it possible for the user to enter the frequency of their
system, directly through the bypass menu from SAM-BA GUI as described below:

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

Figure 7-2.

SAM GUI Bypass Menu

P

™ sam-BA 213

Select the connection :
Select your board : |customized_board_example ¥
JLink TimeoutMultiplier : |0 b

EE= |

\jlink\ARMO -

[¥ Customize lowlevel]

| Connect }:

|

customized_board_examp... | = | E |[ps)

Select dn board crystal: |12000000 VI

External Clock (in Hz)

[V Bypass Main Oscillator }7]

(Set

] Use Default |

Still from the .\sam-ba_2.14\applets\my_training_board\sam-ba_applets\lowlevelinit, open the main.c file at the
code line #170 to see the applet implementation which depends on the selected mode from the lowlevel.tcl
script:

170 int main(int argc, char **argv) J

172 struct _Mailbox *pMailbox = (struct _Mailbox *) argv:
173 uint32_t mode, crystalFreq, extClk:

174 uinc32_t comlype = pMailbox->argument.inputlnit.comIype:
175 uint32_t baud_value;

176

177 % oo o o e e e
178 /* INIT

179 /% mmmm e e e e —————————————
180 H if (pMailbox->command == APPLET_CMD_ INIT) {

s

i82 mode = pMailbox->argument.inputInit.mode;

183 crystalFreq = pMailbox->argument.inputlnit.crystalfreq:
184 extClk = pMailbox->argument.inputlnit.extClk:

1885

e switch (mode) { f—

187 case EK_MODE:

188 EK_LowLevellnit():

189 pMailbox->status = APPLET_SUCCESS:

191 break:;

192 case USER_DEFINED CRYSTAL:

193 user defined Lowlevellnit(crystalFreq):

194 pMailbox->status = APPLET_SUCCESS:

185 breal .

196 case BYASS MODE:

197 bypass_LowLevellInit (extClk): <

1 pMailbox->status = APPLET_SUCCESS:

i breaks

2 default:

2 pMailbox->status = APPLET_ DEV_UNKNOWN;

202 break:

203 | }

204 } else {

20s pMailbox->status = APPLET_DEV_UNKNOWN:

206 3 }

207

If mode is BYPASS MODE, the target device should be configured to be clocked by an external clock. The
function bypass_LowLevellnit() should be implemented by the user to complete the configuration. A specified
frequency will be passed to this function as a parameter, named extCIk.

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

39

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7.2.2

7.2.3

40

The bypass_LowLevellnit() function is defined in the main.c file located in the sam-

ba_2.14\applets\customized_board_example\sam-ba_applets\lowlevelinit\ as described:

...... onfigure the PMC in bypass mode. An external clock should be input to XIN as the source cC

Summary of the Different Steps to Perform

Before starting the code implementation, the user must:
e know exactly what are the initial clock settings applied to the chip during the first level boot loader
e know exactly how to configure another clock source to be switched on the Master clock

define the Bypass function flow diagram required

implement the code and recompile the applet

Step 1: Understanding the Initial Clock Setting During the Boot ROM

Before starting to implement the customization, the user has to refer to the product datasheet to understand
exactly what are the initial conditions applied to the chip during the first boot level.

Refer to the product datasheet (SAMA5D3 Series), chapter “Standard Boot Strategies”, section “Chip Setup”,
steps 2 and 3.

At boot startup, the processor clock (PCK) and the master clock (MCK) source is the 12MHz fast RC oscillator.
Initialization follows the steps described below:

1. Stack Setup for ARM supervisor mode.

2. Main Oscillator Detection: The Main Clock is switched to the 32kHz RC oscillator to allow external
clock frequency to be measured. Then the Main Oscillator is enabled and set in the bypass mode. If
the MOSCSELS bit rises, an external clock is connected and the next step is Main Clock Selection (3).
If not, the bypass mode is cleared to attempt external quartz detection. This detection is successful
when the MOSCXTS and MOSCSELS bits rise, else the internal 12MHz fast RC oscillator is used as
the Main Clock.

3. Main Clock Selection: The Master Clock source is switched from the Slow Clock to the Main Oscillator
without prescaler. The PMC Status Register is polled to wait for MCK Ready. PCK and MCK are now
the Main Clock.

4. C Variable Initialization: Non zero-initialized data is initialized in the RAM (copy from ROM to RAM).
Zero-initialized data is set to 0 in the RAM.

5. PLLA Initialization: PLLA is configured to get a PCK at 96MHz and an MCK at 48MHz. If an external
clock or crystal frequency running at 12MHz is found, then the PLLA is configured to allow
communication on the USB link for the SAM-BA Monitor; else the Main Clock is switched to the internal
12MHz fast RC oscillator, but the USB will not be activated.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

http://www.atmel.com/images/atmel-11121-32-bit-cortex-a5-microcontroller_sama5d3_datasheet.pdf

7.2.4

Step 2: Understanding the Clock Switching Mechanism

The other information to understand are the different block diagrams of the Clock Generator and the Power
Management Controller:

Figure 7-3. Clock Generator Block Diagram

MOSCRCEN MOSCRCF

I |

——* MOSCRCS

On Chip
12MHz MOSCSEL —* MOSCSELS
RC Oscillator —— _

MAINCK

e —

Main Clock
MOSCXTEN

I

XIN ._ /
8 to 48 MHz

Crystal

XOUT . Oscillator

Figure 7-4. Master Clock Controller

PMC_MCKR_CSS PMC_MCKR_PRES PMC_MCKR_MDIV

SLCK

MAINCK

Master Clock Master Clock ‘ » MCK
PLLACK | Prescaler Prescaler ‘

UPLLCK

L, ToThe Processor
Clock Controller (PCK)

From these block diagrams and taking into account that when the chip boots up from the ROM code and the
chip initializes as explained in the product datasheet, the program flow has to be determined before starting the
code implementation.

Summary of what the product datasheet says in terms of clock initialization:

“The main Clock is switched to the 32kHz RC oscillator to allow external clock frequency to be measured. Then
the Main Oscillator is enabled and set in the bypass mode. If the MOSCSELS bit rises, an external clock is
connected, and the next step is Main Clock Selection (3). The Master Clock source is switched from the Slow
Clock to the Main Oscillator without prescaler. The PMC Status Register is polled to wait for MCK Ready. PCK
and MCK are now the Main Clock.

PLLA is configured to get a PCK at 96MHz and an MCK at 48MHz. If an external clock or crystal frequency
running at 12MHz is found, then the PLLA is configured to allow communication on the USB link for the SAM-
BA Monitor; else the Main Clock is switched to the internal 12MHz fast RC oscillator, but USB will not be
activated.”

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 41

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7.2.5

42

Step 3: Defining the Bypass Mode Program Flow

Figure 7-5.

Bypass Mode Program Flow

bypass_LowLevelInit (extClk)

PMC_SwitchMCK2MAIN()

[Er

nable Bypass external osc 12MHz |

| Switch MAIN Clock to external OSC |

|

I Wait Status switch ready |

| Wait Status MCK ready |

JH'T_SI&PLLAL

CKGR_PLLAR_STUCKTO1 |
CKGR_PLLAR_PLLACOUNT (value)|
CKGR_PLLAR_OUTA(value)|
CKGR_PLLAR_MULA(value}|
CKGR_PLLAR_DIVA(value)|

Set IPLL_PLLA To 3

PMC_SetPLLaDiv
(PMC_MCKR_PLLADIV2_DIV2

PMC_SetMckPrescaler
(PMC_MCKR_PRES_CLOCK)

PMC_SetMckDivider
(PMC_MCKR_MDIV_PCK_DIV
X)

PMC_SwitchMCK2PII
0

Disable Internal RC 12 MHz

Configure PCK1 to check
MCK on scope

Reinitialize and check all
the AIC interrupt flags

This part can be duplicated

into a switch case loop, allowing the
implementation for futher different

values of external clocks (extClk)

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

7.2.6 Step 4: Bypass Mode Code Implementation

e The bypass_LowLevellnit() function prototype is defined in the main.c file located in the sam-
ba_2.14\applets\customized_board_example\sam-ba_applets\lowlevelinit\.The user has to complete this
function to easily implement the bypass mode.

/**
* \brief Configure the PMC in bypass mode. An external clock should be input to XIN as the source clock.
*
* \param extClk The frequency of the external clock
*/
static void bypass_LowLevelInit (uint32_t extClk)
{
i

e PMC_SwitchMCK2MAIN(): This function is already defined in the chip library located to the folder \sam-
ba_2.14\applets\customized_board_example\libraries\libchip_sama5d3x\source\pmc.c.

static void bypass_LowLevelInit (uint32_t extClk)

{

/* First Switch the MCK to the main clock oscillator */

PMC_SwitchMck2Main();

e Enable Bypass external oscillator 122MHz

/* enable external O0SC 12 MHz bypass */

PMC->CKGR_MOR = (PMC->CKGR_MOR | CKGR_MOR_MOSCXTBY)) | CKGR_MOR_KEY (0x37);

e Switch MAIN Clock to external OSC

/* switch MAIN clock to external 0SC */

PMC->CKGR_MOR |= CKGR_MOR_MOSCSEL | CKGR_MOR_KEY(@x37);

e Wait Status switch ready

/* wait MAIN clock status change for external OSC 12 MHz selection*/

while(!(PMC->PMC_SR & PMC_SR_MOSCSELS));

e Wait Status MCK ready

/* in case where MCK is running on MAIN CLK */

while(!(PMC->PMC_SR & PMC_SR_MCKRDY));

e PMC_SetPLLA(): This function is already defined in the chip library located to the folder \sam-

ba_2.14\applets\customized_board_example\libraries\libchip_sama5d3x\source\pmc.c

/**

o The PLLA configuration will depend on the extClk value which represents the frequency of the exter-
nal clock signal.

o In this case we have to configure for any value to have the PLLA well configured.

o As a reminder of the PLL electrical characteristics:
g - Fout (the output frequency) must be in a range between 400 MHz and 800MHz (in worst case)
& - Fin (the input Frequency) must be in a range between 8MHz and 50 MHz
& - t (start-up time) must be in a range between 25 us and 100 us.
**/

switch (extClk) {

/* When external clock frequency is 12MHz */

case 12000000:
/*
* The next lines are used to configure the PLLA:

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 43

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

* CKGR_PLLAR_STUCKTO1 must be set to 1 (Bit 29 must always be set to 1 when programming the CKGR_PLLAR.)

* CKGR_PLLAR_PLLACOUNT (value)is the number of slow clock cycles before the LOCKA bit is set in PMC_SR after
CKGR_PLLAR is written.

* CKGR_PLLAR_OUTA(value) has To be programmed to ©.

* CKGR_PLLAR_MULA(value)//@ the PLLA is disabled, 1 up to 127: The PLLA Clock frequency is the PLLA input
frequency multiplied by MULA + 1.In this case: 12*(65+1)= 792 MHz.
* CKGR_PLLAR_DIVA(value) :PLLA divider: DIVA=1 divider is bypassed
*refer to the function PMC_SetPllA(uint32_t pll, uint32_t cpcr) from the pmc.c file, but this resets the
PMC_PLLICPR register
*/
PMC_SetP11A(
CKGR_PLLAR_STUCKTO1 |
CKGR_PLLAR_PLLACOUNT (0x3F) |
CKGR_PLLAR_OUTA(©x0) |
CKGR_PLLAR_MULA(65) |
CKGR_PLLAR_DIVA(1),
9);

e SetlIPLL_PLLATo3

/*refer to the 27.14.20 PLL Charge Pump Current Register paragraph of the product datasheet, IPLL_PLLA: Engi-
neering Configuration PLL ==> Should be written to 3.*/
PMC->PMC_PLLICPR = (Ox3u << 8);

e PMC_SetPLLaDiv (): This function is already defined in the chip library located to the folder \sam-
ba_2.14\applets\customized_board_example\libraries\libchip_sama5d3x\source\pmc.c

/* Bit PLLADIV2 must always be set to 1 when MDIV is set to 3. In this case 792/2 = 396MHz*/
PMC_SetMckP1laDiv(PMC_MCKR_PLLADIV2_DIV2);

e PMC_SetMckPrescaler (): This function is already defined in the chip library located to the folder \sam-
ba_2.14\applets\customized_board_example\libraries\libchip_sama5d3x\source\pmc.c

/* Selected clock without prescaler on the master clock */
PMC_SetMckPrescaler (PMC_MCKR_PRES_CLOCK);

e PMC_SetMckDivider (): This function is already defined in the chip library located to the folder \sam-
ba_ 2.14\applets\customized_board_example\libraries\libchip_sama5d3x\source\pmc.c

/*refer to the 27.14.20 PLL Charge Pump Current Register paragraph of the product datasheet, IPLL_PLLA: Engi-
neering Configuration PLL ==> Should be written to 3.*/
PMC->PMC_PLLICPR = (©x3u << 8);

e PMC_SwitchMCK2PII (): This function is already defined in the chip library located to the folder \sam-
ba 2.14\applets\customized_board_example\libraries\libchip_sama5d3x\source\pmc.c

/*refer to the 27.14.20 PLL Charge Pump Current Register paragraph of the product datasheet, IPLL_PLLA: Engi-
neering Configuration PLL ==> Should be written to 3.*/

PMC->PMC_PLLICPR = (@x3u << 8);

break;

default:

break;

} // switch case closed

e Disable Internal RC 12MHz

/**
*The next step is optional but useful if user wants to reduce the overall power consumption

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

** /
/* disable internal RC 12 MHz*/
PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_MOSCRCEN) | CKGR_MOR_KEY(0x37);

e Configure PCK1 to check MCK on scope

/**

*The next step is optional but useful to check on scope if the MCK is correctly configured through
PCK1 (PD31)
*% /

/* Configure PCK1 to measure MCK */
PIOD->PIO_IDR = (1<<31); //Disable Interrupt on PD31
//abcdsr = PIOD->PIO_ABCDSR[O];
PIOD->PIO_ABCDSR[@] |= (1<<31); //enable the Peripheral B function which is PCK1
//abcdsr = PIOD->PIO_ABCDSR[1];
PIOD->PIO_ABCDSR[1] &= ~(1<<31); //enable the Peripheral B function which is PCK1
PIOD->PIO_PDR = (1<<31);

/* Disable programmable clock 1 output */
REG_PMC_SCDR = PMC_SCDR_PCK1; //Disable the PCK1 output before using it
/* Enable the DAC master clock */

PMC->PMC_PCK[1] = PMC_PCK_CSS_MCK_CLK | PMC_PCK_PRES_CLOCK; // Select the master clock (MCK) to connect it to the

PCK1 without prescaler.

/* Enable programmable clock 1 output */

REG_PMC_SCER = PMC_SCER_PCK1; //Enable the PCK1 output before using it
/* Wait for the PCKRDY1 bit to be set in the PMC_SR register*/

while ((REG_PMC_SR & PMC_SR_PCKRDY1) == 0);

e Reinitialize and check all the AIC interrupt flags

/**
*The next step is mandatory to be sure that no interrupt will hit during the communication with
SAM-BA
**/

/* select FIQ */
AIC->AIC_SSR
AIC->AIC_SVR

n .
Uy

(unsigned int) defaultFigHandler;

for (i = 1; 1 < 31; i++)

{

AIC->AIC SSR = i;

AIC->AIC SVR = (unsigned int) defaultIrgHandler;
}
AIC->AIC SPU = (unsigned int) defaultSpuriousHandler;

/* Disable all interrupts */
for (1 = 1; 1 < 31; i++)
{
AIC->AIC_SSR
AIC->AIC_IDCR

ig
1

}

/* Clear All pending interrupts flags */
for (i = 1; i < 31; i++)

{
AIC->AIC SSR = i;
AIC->AIC ICCR = 1 ;
}
/* Perform 8 IT acknowledge (write any value in EOICR) */
for (1 = 0; 1 < 8 ; i++)
{
AIC->AIC EOICR = 0;
}

A finished and fully full implemented code is provided in Appendix A. This code provides the ability to select
several different frequencies as external input clock.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 45

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

7.3

7.3.1

7.3.2

7321

46

Customize an External Memory Applet

The most frequent customization required is when users decide to change the external RAM or the NAND
Flash device of their system. This section/subsections explains the main steps to perform to be able to
customize the different kinds of memories. As the customization is to modify existing applets only, this method
is an introduction for how to identify the main files to be modified and their related locations.

External Memory Customization Process Overview

Because the existing applet already provides the main initialization sequence used to send these parameters
to the external memory, the main goal is to modify this existing applet, making it compliant with the new

external RAM characteristics. Whatever the external RAM memory is, the main functions/parameters to take
care are summarized in Table 7-1.

Table 7-1.

Customization Table

TCL scripts

variable extRamVvdd

customized_board_example.tcl

sam-ba_2.14\tcl_lib\customized_board_example\

External Ram Memory Power Supply
Voltage (1.8V or 3.3V)

variable extRamType

customized_board_example.tcl

sam-ba_2.14\tcl_lib\customized_board_example\

External Ram Memory Type (SDRAM,
DDR, DDR2, LPDDR, LPDDR2)

variable extRamDataBusWidth

customized_board_example.tcl

sam-ba_2.14\tcl_lib\customized_board_example\

External Ram Memory Data Bus Width
(16-bit or 32-bit)

variable extDDRamModel

customized_board_example.tcl

sam-ba_2.14\tcl_lib\customized_board_example\

External Ram Memory Model (usually
refers to devices used with Atmel eval-
uation Kkits)

#define SDRAM 0
#define DDRAM 1
#define LPDDR 2

SDR/DDR initialization Applet file
Definition main.c sam-ba_2.14\applets\customized_board_exam- | Board DDRAM size
#define BOARD_SDRAM_SIZE ple\sam-ba_applets\extram\
Definition main.c sam-ba_2.14\applets\customized_board_exam- | DDRAM type

ple\sam-ba_applets\extram\

Function Implementation Library file SDR/DDR initialization

Function
void BOARD_ConfigureDdram
(uint8_t device)

board_memories.c

sam-ba_2.14\applets\customized_board_exam-
plellibraries\libboard_sama5d3x-ek\source\

Configures DDR

Function
void BOARD_Config-
ureLpDdram (void)

board_memories.c

sam-ba_2.14\applets\customized_board_exam-
ple\libraries\libboard_sama5d3x-ek\source\

Configures LPDDR

void BOARD_ConfigureSdram
(void)

board_memories.c

sam-ba_2.14\applets\customized_board_exam-
ple\libraries\libboard_sama5d3x-ek\source\

Configures SDR

Function Implementation Library file NAND FLASH initialization

void BOARD_Config-
ureNandFlash (uint8_t bus-
Width)

board_memories.c

sam-ba_2.14\applets\customized_board_exam-
ple\libraries\libboard_sama5d3x-ek\source\

Configures the EBI for NandFlash ac-
cess

In the following sections the process for the customization of the different memory types is introduced in a step-
by-step guide. Table 7-1 is used as a reference to initialize the external memory.

Customization Files Overview

TCL Scripts

These files have already been introduced in Section 2.6.1 Customized_board_example.tcl Description.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

7.3.2.2

7.3.2.3

7.3.3

7331

SDR/DDR Initialization Applet File
This file is the main.c file located in the following directory:
sam-ba_2.14\applets\customized_board_example\sam-ba_applets\extram\.
This file is composed of several parts which will be briefly described in this section:
e Headers: This part implement the libraries headers of the functions used in the main.c file
o Definitions: These are the main constants used in the main.c file

e Local structures: This part is where the applet mailbox is implemented. Structure for storing parameters
for each command that can be performed by the applet. All the parameters of this structure are used to
store the same parameters sent by the tcl scripts.

e Global variables: This part is where the global variables are declared.
e Local Functions
— static unsigned char ExtRAM_TestOk(void)
e Go/No-Go test of the first 10KB of external RAM access
— int main(int argc, char **argv)
e Applet main entry. This function decodes the received command and executes it.

During the customization process, several parts can be modified such as the definitions and the main function.

SDR/DDR Initialization Library File

This is the board_memories.c located into the sam-
ba_2.14\applets\customized_board_example\libraries\libboard _sama5d3x-ek\source\ directory.

This file is where all the functions related to the memories initializations are implemented.
This file is composed of the same kind of parts as the previous file but contains the following functions:
e void BOARD_ConfigureDdram (uint8_t device)
e void BOARD_ConfigureLpDdram (void)
e void BOARD_ConfigureSdram (void)
e void BOARD_ConfigureNandFlash (uint8_t busWidth)
e void BOARD_ConfigureNorFlash (uint8_t busWidth)

In case of a customization, the main parameters to change to fit with the new memory AC characteristics are in
these functions.

SDR/DDR Customization Example
The following example is a SAM-BA customization for a DDR2 external memory.

Find the related datasheet of the device (external_DDR2_device.pdf) in the folder named “Datasheet”. The
device part number is XXXXXXKB25I and the speed grade (5-5-5 or 6-6-6).

The process introduced in this example can be reproduced for all the memory applets already available in
SAM-BA.

Step 1: Customize the customized_board_example.tcl
e Open the customized board _example.tcl file located in the sam-
ba_2.14\tcl_lib\customized_board_example\ directory.
e Modify the BOARD Specific Parameters according to the datasheet of the device: extRamVdd,
extRamType, extRamDataBusWidth, extDDRamModel (introduced in Section 2.6.1
Customized_board_example.tcl Description).

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 47

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

From the device datasheet we learn that the external memory is a 1Gb DDR2 memory organized in 8.388.608
words x 8 Banks x 16 bits. Its power supply is 1.8V.

The Board specific parameters have to be modified as follow:

FHEH AR R
BOARD SPECIFIC PARAMETERS
FH A R S S R R S S
namespace eval BOARD {

variable sramSize SAT91C IRAM SIZE

variable maxBootSize 65328
Default setting for DDRAM

vdd Memory 1.8V = 0 / vdd Memory 3.3V = 1

variable extRamvdd 0

External SDRAM = 0 / External DDR2 = 1 / LPDDR = 2

variable extRamType 1

Set bus width (16 or 32)

variable extRamDataBusWidth 16

DDRAM Model (0: MT47H64M16HR, 1: MT47H128M16RT, 3:W971GGKB

variable extDDRamModel 2

7.3.3.2 Step 2: Customize the SDR/DDR Initialization Applet File: main.c

e Open the main.c file located in the sam-ba_2.14\applets\customized board example\sam-
ba_applets\extram\ directory

e Inthe definition part, the new memory and the new BOARD DDRAM_CUSTO_SIZE have to be defined

as shown (line 46 up to 61):

/* DDRAM type */
#define MT47H64M16HR
#define MT47H128M16RT
#define LPDDR

#define W971GGKB

w NP o

/* Board DDRAM size*/

#define BOARD DDRAM SIZE 0 (64*1024*1024) // 64 MB
#define BOARD DDRAM SIZE 1 (128*1024*1024) // 128 MB
#define BOARD SDRAM SIZE (32%1024*1024) // 32 MB
#define BOARD DDRAM CUSTO SIZE (64*1024*1024) // 64 MB

No other customization is required in this file as all the functions required are called as described:

/*k*k

* \brief Applet main entry. This function decodes received command and executes it.
*

* \param argc always 1

* \param argv Address of the argument area..

=

int main(int argc, char **argv)
{
struct Mailbox *pMailbox = (struct Mailbox *) argv;
uint32 t comType = pMailbox->argument.inputInit.comType;
/* INIT: *~/
if (pMailbox->command == APPLET CMD_INIT)
{
/* Save communication link type */
WDT->WDT MR = WDT MR WDDIS;
#if (DYN_TRACES == 1)
//dwTraceLevel = 0;
#endif

#if (TRACE LEVEL==0) && (DYN_TRACES==1)
if (comType == DBGU COM TYPE)

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

{
/* Function TRACE CONFIGURE ISP will be bypass due to the 0 TRACE LEVEL. We

shall reconfigure the baud rate. */

#endif

putInit.

Sel)?"3.

DBGU->DBGU MR = DBGU MR CHMODE NORM | DBGU MR PAR NONE;
/* Reset and disable receiver & transmitter */
DBGU->DBGU_CR = DBGU_CR RSTRX | DBGU_CR_RSTTX;
DBGU->DBGU IDR = OxXFFFFFFFF;

DBGU->DBGU_CR = DBGU CR RSTRX | DBGU CR RSTTX | DBGU CR RXDIS | DBGU CR TXDIS;

/* Configure baudrate */

DBGU->DBGU_BRGR = (BOARD MCK / 115200) / 16;
/* Enable receiver and transmitter */
DBGU->DBGU CR = DBGU CR RXEN | DBGU CR TXEN;

//TRACE_INFO("—— EXTRAM Applet %$s --\n\r", SAM BA APPLETS VERSION) ;
//TRACE INFO("-- %$s\n\r", BOARD NAME);
//TRACE INFO ("-- Compiled: %s %s --\n\r", DATE , TIME);

//TRACE INFO ("INIT command:\n\r");

//TRACE_INFO ("\tCommunication link type : %$lu\n\r", pMailbox->argument.in-
comType) ;

//TRACE INFO ("\tInit EBI Vdd : %$s\n\r", (pMailbox->argument.inputInit.VddMem-
3v":"1.8V");
//BOARD ConfigurevVddMemSel (pMailbox->argument.inputInit.VddMemSel) ;

/* Configure DDRAM controller */

if (pMailbox->argument.inputlInit.ramType == 0)
{
//TRACE INFO ("\tExternal RAM type : $%$s\n\r", "SDRAM");
BOARD ConfigureSdram() ;
pMailbox->argument.outputInit.memorySize = BOARD SDRAM SIZE;
}
else if (pMailbox->argument.inputInit.ramType == 2)
{
/* Disable DDR clock. */
PMC->PMC_PCDR1 |= (1 << (ID MPDDRC-32));
PMC->PMC_SCDR |= PMC_SCER_DDRCK;
BOARD ConfigureLpDdram() ;
pMailbox->argument.outputInit.memorySize = BOARD DDRAM SIZE 0;
}
else {
/* DDR reset */
MPDDRC->MPDDRC_LPR = MPDDRC_LPR_LPCB DEEP_PWD |MPDDRC LPR CLK FR_ENABLED;
/* Disable DDR clock. */

PMC->PMC_PCDR1 |= (I << (ID_MPDDRC-32));
PMC->PMC_SCDR |= PMC_SCER_DDRCK;
//TRACE INFO ("\tExternal RAM type : %$s\n\r", "DDRAM");

BOARD ConfigureDdram(pMailbox->argument.inputInit.ddrModel) ;

if (pMailbox->argument.inputInit.ddrModel == MT47H64M16HR)

{ pMailbox->argument.outputInit.memorySize = BOARD DDRAM SIZE O;
if (pMailbox->argument.inputInit.ddrModel == MT47H128M16RT)

{ pMailbox->argument.outputInit.memorySize = BOARD DDRAM SIZE 1;
}

/* Test external RAM access */
if (ExtRAM TestOk())
{

pMailbox->status = APPLET SUCCESS;
}
else {
pMailbox->status = APPLET FAIL;
}
pMailbox->argument.outputInit.bufferAddress = ((uint32 t) & end);

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

49

pMailbox->argument.outputInit.bufferSize = 0;
//TRACE INFO ("\tInit successful.\n\zr");
}

/* Acknowledge the end of command */
//TRACE INFO ("\tEnd of applet (command : $1lx --- status : $1x)\n\r", pMailbox->command,
pMailbox->status) ;

/* Notify the host application of the end of the command processing */
pMailbox->command = ~(pMailbox->command) ;
/* Send ACK character */

if (comType == DBGU_COM TYPE) {
/* Wait for the transmitter to be ready */
while ((DBGU->DBGU SR & DBGU SR TXEMPTY) == 0) ;

/* Send character */
DBGU—>DBGU7THR= 0x06
}

return 0;

The next step is to customize the function itself.

7.3.3.3 Step 3: Customize the Library File SDR/DDR Initialization: board_memories.c

In this file the whole process allowing to initialize the memories is described in the commented notes at the
beginning of the file:

/** \addtogroup ddrd module

*

* The DDR/SDR SDRAM Controller (DDRSDRC) is a multiport memory controller. It comprises

* four slave AHB interfaces. All simultaneous accesses (four independent AHB ports) are in-
terleaved

* to maximize memory bandwidth and minimize transaction latency due to SDRAM protocol.
*

* \section ddr2 Configures DDR2

*

* The DDR2-SDRAM devices are initialized by the following sequence:

*

* <1i> EBI Chip Select 1 is assigned to the DDR2SDR Controller, Enable DDR2 clock x2 in
PMC.</1i>

* <1i> Step 1l: Program the memory device type</1li>

* <1i> Step 2:

* —# Program the features of DDR2-SDRAM device into the Configuration Register.

* -# Program the features of DDR2-SDRAM device into the Timing Register HDDRSDRC2 TOPR.

* —# Program the features of DDR2-SDRAM device into the Timing Register HDDRSDRC2 TI1PR.

* —# Program the features of DDR2-SDRAM device into the Timing Register HDDRSDRC2 T2PR.
</1li>

* <1i> Step 3: An NOP command is issued to the DDR2-SDRAM to enable clock. </1i>

* <1i> Step 4: An NOP command is issued to the DDR2-SDRAM </1i>

* <1i> Step 5: An all banks precharge command is issued to the DDR2-SDRAM. </1i>

* <1i> Step 6: An Extended Mode Register set (EMRS2) cycle is 1issued to choose between com-
mercial or high temperature operations.</1li>

* <1i> Step 7: An Extended Mode Register set (EMRS3) cycle is issued to set all registers to
0. </1i>
<1li> Step 8: An Extended Mode Register set (EMRS1) cycle is issued to enable DLL.</1li>
<1i> Step 9: Program DLL field into the Configuration Register.</1li>
<1i> Step 10: A Mode Register set (MRS) cycle is issued to reset DLL.</1li>
<1li> Step 11: An all banks precharge command is issued to the DDR2-SDRAM.</1i>
<1li> Step 12: Two auto-refresh (CBR) cycles are provided. Program the auto refresh command
(CBR) into the Mode Register.

* <1i> Step 13: Program DLL field into the Configuration Register to low(Disable DLL re-
set) .</11i>

* <1i> Step 14: A Mode Register set (MRS) cycle is issued to program the parameters of the
DDR2-SDRAM devices.</1i>

* <1i> Step 15: Program OCD field into the Configuration Register to high (OCD calibration
default). </1i>

* <1i> Step 16: An Extended Mode Register set (EMRS1) cycle is issued to OCD default
value.</1i>

* <1i> Step 17: Program OCD field into the Configuration Register to low (OCD calibration
mode exit).</1i>

* X X X X

50 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

* <1i> Step 18: An Extended Mode Register set (EMRS1) cycle is issued to enable OCD
exit.</1i>

* <1i> Step 19,20: A mode Normal command is provided. Program the Normal mode into Mode Reg-
ister.

* <1i> Step 21: Write the refresh rate into the count field in the Refresh Timer register.
The DDR2-SDRAM device requires a refresh every 15.625 or 7.81. </1li>

*

“f

/*Q@{*/

/*@y*/

/** \addtogroup sdram module
*

\section sdram Configures SDRAM

The SDR-SDRAM devices are initialized by the following sequence:

* <1i> EBI Chip Select 1 is assigned to the DDR2SDR Controller, Enable DDR2 clock x2 in
PMC.</1li>

* <1i> Step 1. Program the memory device type into the Memory Device Register

* <1i> Step 2. Program the features of the SDR-SDRAM device into the Timing Register and into
the Configuration Register.</1li>

* <1i> Step 3. For low-power SDRAM, temperature-compensated self refresh (TCSR), drive
strength (DS) and partial array self refresh (PASR) must be set in the Low-power Regis-
ter.</1i>

* <1i> Step 4. A NOP command is issued to the SDR-SDRAM. Program NOP command into Mode Regis-
ter, the application must

* set Mode to 1 in the Mode Register. Perform a write access to any SDR-SDRAM address to
acknowledge this command.

* Now the clock which drives SDR-SDRAM device is enabled.

* <1i> Step 5. An all banks precharge command is issued to the SDR-SDRAM. Program all banks
precharge command into Mode Register, the application must set Mode to 2 in the

* Mode Register . Perform a write access to any SDRSDRAM address to acknowledge this com-
mand.</1i>

* <1i> Step 6. Eight auto-refresh (CBR) cycles are provided. Program the auto refresh command
(CBR) into Mode Register, the application must set Mode to 4 in the Mode Register.

* Once in the idle state, two AUTO REFRESH cycles must be performed.</1li>

* <1i> Step 7. A Mode Register set (MRS) cycle is issued to program the parameters of the
SDRSDRAM

* devices, in particular CAS latency and burst length. </1i>

* <1i> Step 8. For low-power SDR-SDRAM initialization, an Extended Mode Register set (EMRS)
cycle is issued to program the SDR-SDRAM parameters (TCSR, PASR, DS). The write

* address must be chosen so that BA[1l] is set to 1 and BA[0] is set to 0 </1i>

* <1i> Step 9. The application must go into Normal Mode, setting Mode to 0 in the Mode Regis-
ter and perform a write access at any location in the SDRAM to acknowledge this command.</1li>
* <1i> Step 10. Write the refresh rate into the count field in the DDRSDRC Refresh Timer reg-
ister </1i>

*
*/
/*e{*/
/*ey*/

*
*
*
*

This is exactly what is implemented into the functions themselves, as described in the following example (only
the first 10 steps introduced...):

Atmel

void BOARD ConfigureDdram(uint8 t device)
{
volatile uint8 t *pDdr = (uint8 t *) DDR CS ADDR;
volatile uint32 t i;
volatile uint32 t cr = 0;
volatile uint32 t dummy value;
#if 1
dummy value = 0x00000000;

/* Enable DDR2 clock x2 in PMC */
PMC->PMC_PCER1 = (1 << (ID MPDDRC-32));

PMC->PMC_SCER |= PMC_ SCER DDRCK;
MPDDRC->MPDDRC_LPR = 0;
*(uint32 t *)OxFFFFEA24 |= (1 << 5); // DDRSDRC High Speed Register (MPDDRC HS) : hidden

option -> calibration during autorefresh

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 51

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

*(uint32 t *)0xF0038004 |= (0x3 << 16); // SFR_DDRCFG DDR Configuration Force DDR_DQ
and DDR DQS input buffer always on

MPDDRC->MPDDRC DLL SOR = MPDDRC DLL SOR SO OFF(0x1) | MPDDRC DLL SOR S1 OFF (0x0) |
MPDDRC_DLL_SOR_S2_OFF (0x1) | MPDDRC_DLL SOR S3_OFF (0x1) ;

MPDDRC->MPDDRC_DLL_MOR (0xC5000000) | MPDDRC_DLL_MOR MOFF(7) |
MPDDRC DLL MOR CLK90OFF (0x1F) | MPDDRC DLL MOR SELOFF; // Key = 0xc5000000

dummy value = MPDDRC->MPDDRC IO CALIBR;

dummy value &= ~MPDDRC IO CALIBR RDIV Msk;

dummy value &= ~MPDDRC_ IO CALIBR TZQIO Msk;

dummy value |= MPDDRC IO CALIBR RDIV RZQ 48;

dummy value |= MPDDRC IO CALIBR TZQIO(3);

MPDDRC->MPDDRC IO CALIBR = dummy value;

*(uint32 t *)0xF0038004 = (0x3 << 16); // SFR_DDRCFG DDR Configuration Force DDR DQ and
DDR_DQS input buffer always on
#endif
/* Step 1l: Program the memory device type */
/* DBW = 0 (32 bits bus wide); Memory Device = 6 = DDR2-SDRAM = 0x00000006*/
MPDDRC->MPDDRC_MD = MPDDRC_MD MD DDR2 SDRAM;

/* Step 2: Program the features of DDR2-SDRAM device into the Timing Register.*/
if (device == MT47H128M16RT)
{
MPDDRC—>MPDDRC_CR = MPDDRC_CR_NR(’S) |

MPDDRC_CR_NC(1) |
MPDDRC_CR_CAS (4) |
MPDDRC_CR_NB 8 |
MPDDRC_CR_DLL_RESET DISABLED |
MPDDRC_CR_DQMS NOT_ SHARED |
MPDDRC_CR_ENRDM OFF |
MPDDRC_CR_UNAL_SUPPORTED |
MPDDRC_CR_NDQS DISABLED |
MPDDRC_CR_OCD (0x0) ;

}

if (device == MT47H64M16HR)

{

MPDDRC->MPDDRC _CR = MPDDRC_CR_NR(?) |

MPDDRC_CR_NC(W) |
MPDDRC_CR_CAS (3) |
MPDDRC_CR_NB 8 |
MPDDRC_CR_DLL RESET DISABLED |
MPDDRC_CR_DQMS NOT SHARED |
MPDDRC_CR_ENRDM OFF |
MPDDRC_CR UNAL_SUPPORTED |
MPDDRC_CR NDQS DISABLED |
MPDDRC_CR_OCD (0:x0) ;

}

MPDDRC->MPDDRC_TPRO = MPDDRC_TPRO_TRAS (6) // 6 * 7.5 = 45 ns
| MPDDRC_TPRO_ TRCD(2) // 2 * 7.5 =15 ns
| MPDDRC TPRO_ TWR(2) // 3 * 7.5 = 22.5 ns
| MPDDRC_TPRO_ TRC (8) // 8 * 7.5 = 60 ns
| MPDDRC_TPRO_ TRP (2) // 2 * 7.5 =15 ns
| MPDDRC_TPRO TRRD (1) // 2 * 7.5 =15 ns
| MPDDRC TPRO_ TWTR(2) // 2 clock cycle
| MPDDRC_TPRO_TMRD(Z2) ; // 2 clock cycles

MPDDRC->MPDDRC_TPR1 = MPDDRC_TPR1 TRFC (14) // 18 * 7.5 = 135 ns (min 127.5 ns for 1Gb
DDR)
| MPDDRC_TPR1 TXSNR(16) // 20 * 7.5 > 142.5ns TXSNR: Exit self re-
fresh delay to non read command
| MPDDRC_TPR1_TXSRD(208) // min 200 clock cycles, TXSRD: Exit self re-
fresh delay to Read command
| MPDDRC TPR1 TXP(2); // 2 * 7.5 =15 ns

MPDDRC->MPDDRC_TPR2 = MPDDRC_TPR2 TXARD (7/) // min 2 clock cycles
| MPDDRC_TPR2_TXARDS(7)// min 7 clock cycles
| MPDDRC_TPR2_TRPA(2) // min 18ns
| MPDDRC_TPR2_TRTP(2) // 2 * 7.5 = 15 ns (min 7.5ns)
| MPDDRC TPR2 TFAW(10) ;

/* DDRSDRC Low-power Register */

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

for (1 = 0; 1 < 13300; i++) {
asm("nop");
}
MPDDRC->MPDDRC LPR = MPDDRC LPR LPCB DISABLED | MPDDRC LPR CLK FR DISABLED |
MPDDRC_LPR_TIMEOUT 0 | MPDDRC_LPR APDE FAST;

/* Step 3: An NOP command is issued to the DDR2-SDRAM. Program the NOP command into
the Mode Register, the application must set MODE to 1 in the Mode Register. */
MPDDRC->MPDDRC_MR = MPDDRC_MR_MODE_NOP_CMD;

/* Perform a write access to any DDR2-SDRAM address to acknowledge this command */
pDdr = 0; / Now clocks which drive DDR2-SDRAM device are enabled.*/

/* A minimum pause of 200 _ is provided to precede any signal toggle. (6 core cycles per
iteration, core is at 396MHz: min 13200 loops) */
for (i = 0; 1 < 13300; i++) {
asm("nop");

}

/* Step 4: An NOP command is issued to the DDR2-SDRAM */
MPDDRC->MPDDRC_MR = MPDDRC_MR MODE NOP_ CMD;
/* Perform a write access to any DDR2-SDRAM address to acknowledge this command.*/
pDdr = 0; / Now CKE is driven high.*/
/* wait 400 ns min */
for (1 = 0; 1 < 100; i++) {
asm("nop");

}

/* Step 5: An all banks precharge command is issued to the DDR2-SDRAM. */
MPDDRC->MPDDRC_MR = MPDDRC_MR_MODE_PRCGALL_CMD;
/* Perform a write access to any DDR2-SDRAM address to acknowledge this command.*/

*pDdr = 0;
/* wait 400 ns min */
for (1 = 0; 1 < 100; i++) {

asm("nop");

}

/* Step 6: An Extended Mode Register set (EMRS2) cycle is issued to choose between commercia
or high temperature operations. */

MPDDRC->MPDDRC_MR = MPDDRC MR MODE_EXT LMR CMD;

*((uint8_ t *) (pDdr + DDR2_BAl (device))) = 0; /* The write address must be chosen so that
BA[1l] is set to 1 and BA[O] is set to 0. */

/* wait 2 cycles min */

for (1 = 0; 1 < 100; i++) {

asm("nop") ;

}

/* Step 7: An Extended Mode Register set (EMRS3) cycle is issued to set all registers to 0.
MPDDRC->MPDDRC_MR = MPDDRC MR MODE_EXT LMR CMD;
*((uint8 t *) (pDdr + DDR2 BAl (device) + DDR2 BAO (device))) = 0; /* The write address mu
be chosen so that BA[l] is set to 1 and BA[0] is set to 1.*/
/* wait 2 cycles min */
for (1 = 0; 1 < 100; i++) {
asm("nop");

}

/* Step 8: An Extended Mode Register set (EMRS1) cycle is issued to enable DLL. */
MPDDRC->MPDDRC_MR = MPDDRC_ MR MODE_EXT LMR CMD;

1

*/

st

*((uint8_t *) (pDdr + DDR2 BAQ (device))) = 6; /* The write address must be chosen so that

BA[1l] is set to 0 and BA[O] is set to 1. */
/* An additional 200 cycles of clock are required for locking DLL */
for (i = 0; 1 < 10000; i++) {
asm("nop");

}

/* Step 9: Program DLL field into the Configuration Register.*/
cr = MPDDRC->MPDDRC_CR;
MPDDRC->MPDDRC CR = cr | MPDDRC CR DLL RESET ENABLED;

/* Step 10: A Mode Register set (MRS) cycle is issued to reset DLL. */
MPDDRC->MPDDRC_MR = MPDDRC_MR MODE LMR CMD;
(pDdr) = 0; / The write address must be chosen so that BA[1:0] bits are set to 0. */
/* wait 2 cycles min */
for (1 = 0; 1 < 100; i++) {

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

53

asm("nop");

Regarding the customization purpose, the main modifications, which have to be considered, are the external
memory timing and architecture parameters, introduced in step 2. In the board_memories.c file, the existing
implementation is related to the Atmel Evaluation Kits. These code lines can be copied or/and modified to just

fit to the external memory.

/* features of DDR2-SDRAM
MPDDRC_CR NR(2) |
MPDDRC_CR_NC(l) |
MPDDRC CR CAS(3) |

MPDDRC_CR_NB_8 |

Step 2: Program the
MPDDRC->MPDDRC_CR =

MPDDRC CR_ENRDM OFF |
MPDDRC CR_UNAL SUPPORTED |
MPDDRC_CR_NDQS_DISABLED |
MPDDRC_CR_OCD (0x0) ;

MPDDRC->MPDDRC_TPRO = MPDDRC_TPRO_TRAS (©) //
| MPDDRC_TPRO_TRCD () //
| MPDDRC_TPRO_TWR(2) //
| MPDDRC_TPRO_TRC (8) //
| MPDDRC_TPRO TRP(2) //
| MPDDRC_TPRO TRRD (1) //
| MPDDRC_TPRO_TWTR (2) //
| MPDDRC_TPRO TMRD(2); //

MPDDRC->MPDDRC_TPR1 = MPDDRC_TPR1 TREC (14) //

DDR)
| MPDDRC_TPR1 TXSNR(16) //

fresh delay to non read command

| MPDDRC TPR1 TXSRD(208)
refresh delay to Read command

| MPDDRC_TPR1 TXP(Z2) ;

//
//
MPDDRC->MPDDRC_TPR2 = MPDDRC_TPR2_ TXARD(7/) //
| MPDDRC_TPR2 TXARDS(7)//
| MPDDRC_TPR2 TRPA(2) //
| MPDDRC_TPR2_ TRTP(2) //
| MPDDRC TPR2 TFAW(10) ;

device

MPDDRC CR DLL RESET DISABLED |
MPDDRC_CR_DQMS NOT SHARED |

into the Timing Register.*/

6 * 7.5 = 45 ns

2 * 7.5 =15 ns

3 * 7.5 =22.5 ns

8 * 7.5 = 60 ns

2 * 7.5 =15 ns

2 * 7.5 =15 ns

2 clock cycle

2 clock cycles

18 * 7.5 = 135 ns (min 127.5 ns for 1Gb
20 * 7.5 > 142.5ns TXSNR: Exit self re-

min 200 clock cycles, TXSRD: Exit self

2 * 7.5 = 15 ns

min 2 clock cycles

min 7 clock cycles
min 18ns
2 * 7.5 =15 ns (min 7.5ns)

The main difficulty here is to identify and make this implementation matching with the parameters introduced

from the external memory datasheet.

Let's have a look at this process with the previous example (external_DDR2_device.pdf).

The customization principle will be to fill the matching values (between the parentheses) according to the value

required by the external memory identified into its own datasheet.

/* Step 2:

MPDDRC->MPDDRC_CR = MPDDRC_CR_NR()

| MPDDRC CR NC()

| MPDDRC CR CAS()

| MPDDRC CR NB_8

| MPDDRC CR DLL RESET DISABLED
| MPDDRC_CR_DQMS_NOT_SHARED

| MPDDRC CR ENRDM OFF

| MPDDRC CR_UNAL SUPPORTED

| MPDDRC CR NDQS DISABLED

| MPDDRC_CR OCD() ;

MPDDRC->MPDDRC_TPRO = MPDDRC_TPRO_ TRAS ()
| MPDDRC_TPRO_TRCD ()
| MPDDRC TPRO TWR()

Program the features of DDR2-SDRAM device into the Timing Register.*/

54

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel

| MPDDRC_TPRO_TRC ()

| MPDDRC_TPRO_TRP ()

| MPDDRC_TPRO_TRRD()
| MPDDRC_TPRO_TWTR ()
| MPDDRC_TPRO_TMRD() ;

MPDDRC->MPDDRC_TPR1 = MPDDRC_TPR1_TRFC ()
| MPDDRC_TPR1_TXSNR ()
| MPDDRC_TPR1_TXSRD ()
| MPDDRC_TPR1_TXP() ;

MPDDRC->MPDDRC_TPR2 = MPDDRC_TPR2_TXARD ()
| MPDDRC TPR2_ TXARDS ()
| MPDDRC TPR2_ TRPA ()
| MPDDRC_TPR2_ TRTP ()
| MPDDRC TPR2 TFAW() ;

Mainly two different parameter families are to be customized:

e The “Memory Configuration” parameters:
— CAS Latency
— Number of Rows
— Number of Columns
e the timings parameters
All these parameters are related to only a few registers of the SAMAS (or other Atmel MPU):
e The “memory architecture” parameters have to be set into the MPDDRC CR register (MPDDRC
Configuration Register) -
e The timings parameters have to be set into the MPDDRC Timing Parameter 0O, 1, 2 Registers
(MPDDRC TPRO, MPDDRC TPR1, MPDDRC TPR2)

From the memory datasheet, all the parameters are described and introduced across the datasheet. Normally
the timings are summarized into the table “AC Characteristics” and the CAS latency the number of row and
column, directly from the “General Description”.

n Find the related datasheet of the device (external_DDR2_device.pdf) in the folder named “Datasheet”. The
device part number is XXXXXXKB25I and the speed grade (5-5-5 or 6-6-6).

Regarding the “memory architecture” parameters, let’'s have a look at the different field of the register
MPDDRC_CR:

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 55

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

MPDDRC_CR (RW), Reset Value: 0x00207024

Bit 31 30 29 28 27 26 25 24
Reset 0 0 0 0 0 0 0 0
Bit# 23 22 21 20 19 18 17 16
UNAL DECOD NDQS NB - - ENRDM DQMS

Reset 0 0 1 0 0 0 0 0
Bit# 15 14 13 12 11 10 9 8

- oCD ZQ DIS DLL DIC DS
Reset 0 1 1 1 0 0 0 0
Bit# 7 6 5 4 3 2 1 0

DLL CAS NR NC

Reset 0 0 1 0 o} 1 0 0

MPDDRC_CR Register view

Using the datasheet for the Atmel device and the datasheet for the external memory, the configuration
parameters have to be identified. The table below summarizes what are the functions of the different bit fields
of the MPDDRC_CR register and where the appropriate values can be found in the external memory

datasheet.

MPDDRC_CR bit- .
. Function
field

Number of Column Bits in the ad-

Where is it in the external
memory datasheet

Ball Description: column address:

Value to be set

CAS Latency 3,4,5,6, 7

MO E AT dress bus A0 — A9 10

NR 9 Bits 2-3 Number of Column Bits in the ad- Ball Description: row address: AQ — 13
dress bus Al12

CAS 9 Bits 456 | CAS latency s UL 3 (min)

This bit defines the value of Reset

Digital Locked Loop, This is found

1 (Enable DLL

SDRAM devices.

DLL = Bit 7 DLL. This bit is found only in the .)
DDR2-SDRAM devices only in the DDR2-SDRAM devices | reset)
E)DlJrES:tS[::;\;ertLTpedance Control This bit name is described as 0 (DDR2_NOR-
DIC_DS = Bit 8 This bit is fognd.onl in the DDR2- “DS” in some memory datasheets. | MAL-
Y No DS found STRENGTH)

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

MPDDRC_CR bit- .
. Function
field

DIS_DLL = Bit9

DISABLE DLL

This value is used during the
power-up sequence. It is only
found in the DDR2-SDRAM de-
vices.

Where is it in the external
memory datasheet

Digital Locked Loop, This is found
only in the DDR2-SDRAM de-
vices.

Value to be set
0

Enable the DLL
(let the reset
value)

ZQ > Bit 10 — 11

ZQ Calibration: This parameter is
used to calibrate DRAM On re-

This field is found only in the low-

N.A. (let at the

DECOD = Bit 22

Type of Decoding

Sequential is mandatory

. - ices. reset value
sistance (Ron) values over PVT ol PIDiRZ-SlDiRats eloviees value)
SDRAM Controller supports only
two values for OCD (default cali-
bration and exit from calibration). | 7
These values MUST always be DDR2_DE-
. Off Chip Driver programmed during the initializa- FAULT_CALIB
f)1C4D 2t This field is found only in the tion sequence. The default cali- and 0
DDR2-SDRAM devices. bration must be programmed first. | DDR2_EXIT-
After which the exit calibration CALIB after the
and maintain settings must be initialization.
programmed. See step 12 Of the
Functional Description
. . DQM is not shared with another 0
DQMS = Bit 16 Mask Data is Shared controller NOT_SHARED
ENRDM = Bit 17 Enable Read Measure Not necessary OOFF
NB = Bit 20 Number of Banks General description 1
8-banks
. This bit is found only in the DDR2- | Extend Mode Register Set Com- 0
NDQS > Bit 21 SDRAM devices. mands (EMRS) Disabled
0
SEQUENTIAL

(let the reset
value)

UNAL => Bit 23

Support Unaligned Access

General Description / Feature
Edge-aligned with Read data and
center-aligned with the Write data

0
Not supported

Therefore the step 2 can be completed as below:

/* Step 2:

the features of
MPDDRC->MPDDRC CR = MPDDRC7CR7NR(13)
| MPDDRC7CR7NC(10)
| MPDDRC_CR CAS(3)
| MPDDRC _CR NB 8
| MPDDRC CR DLL RESET ENABLED
| MPDDRC CR DQMS NOT SHARED
I
I
|
|

Program

MPDDRC CR_ENRDM OFF

MPDDRC CR_UNAL UNSUPPORTED
MPDDRC CR_NDQS DISABLED
MPDDRC CR_OCD (0x7) ;

DDR2-SDRAM device into the Timing Register.*/

Regarding the Timings, this time three different registers are used to store all the timings required to access

the external memory:

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Bit#

Bit#

Bit#

Bit#

Bit#

Bit#

Bit#

Bit#

MPDDRC_TPRO (RW)

31 30 29 28 27 26 25 24
TMRD RDC_WRRD TWTR
23 22 21 20 19 18 17 16
TRRD TRP
15 14 13 12 11 10 9 8
TRC TWR
7 6 5 4 3 2 1 0
TRCD TRAS
MPDDRC_TPR1 (RW)
31 30 29 28 27 26 25 24
- - - - TXP
23 22 21 20 19 18 17 16
TXSRD
15 14 13 12 11 10 9 8
TXSNR
7 6 5 4 3 2 1 0
8 . B TRFC

58 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

MPDDRC_TPR2 (RW)

Bite 31 30 29 28 27 26 25 24
Bit# 23 22 21 20 19 18 17 16
= S = S TFAW
Bit# 15 14 13 12 11 10 9 8
- TRTP TRPA
Bt 7 6 5 4 3 2 1 0
TXARDS TXARD

provided by MCK is considered to be 133MHz, which gives a 7.52ns time period.

n The timings configuration is obviously related to the bus clock frequency. In this case the DDR bus frequency

Where is it in the external memory | Value to

datasheet

be set

Active To pre-charge Delay: delay
between an Activate command and

AC Characteristics and Operating
Condition:

SDCK clock cycles

period

HIFDIDIRC_TTHRE_TR S a pre-charge command in number TRAS: Active to Pre-charge Com- 45ns min.

of SDCK clock cycles mand Period

Row to Column Delay: delay be- AC Characteristics and Operating

tween an Activate command and a Condition: 12.5ns
HIFDIDIRC_TFRE R Read/Write command in number of | TRCD: Active to Read/Write Com- min.

SDCK clock cycles. mand Delay time

Write Recovery Delay: Write Recov- | AC Characteristics and Operating
MPDDRC_TPRO_TWR ery Time in number of SDCK clock Condition: 15ns

cycles. TWR: Write recovery Time

Row Cycle Delay: delay between an | AC Characteristics and Operating

Activate command and Refresh Condition: 57.5ns
MPDDRC_TPRO_TRC command in number of SDCK clock | TRC: Active to Refresh/Active com- min.

cycles mand Period

Row Pre-charge Delay: delay be- AC Characteristics and Operating

tween a pre-charge command and Condition: 12.5ns
MPDDRC_TPRO_TRP another command in number of TRP: Pre-charge to active command min

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

59

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Active Bank A to Active Bank B: de-
lay between an Activate command

Where is it in the external memory

datasheet

AC Characteristics and Operating
Condition:

Value to
be set

vate commands may be issued in
any given tFAW (MIN) period. This
field is found only in the DDR2-
SDRAM and LPDDR2-SDRAM de-
vices

Four Activate Window for 2KB page
size.

MPDDRC_TPRO_TRRD in Bank A and an Activate com- o . 10ns
. . TRRD: Active to active command pe-
mand in Bank B in number of SDCK . .
riod for 2KB page size
clock cycles
Internal Write to Read Delay: inter- égn(é::;rr?cterlstlcs IO
MPDDRC_TPRO_TWTR nal Write to Read command time in) . 7.5ns
- - TWTR: Internal write to read com-
number of SDCK clock cycles
mand delay
Reduce Write to Read Delay: delay
between write to read access for the
MPDDRC TPRO RDC Io_w-power DDR-SDRAM devices AC Ch_aracterlstlcs and Operating
WRRD - - with a latency equal to 2. To use Condition: N-A
this feature, the TWTR field must be | Not Supported
equal to 0. Note that some devices
do not support this feature.
Load Mode Register Command to
Activate or Refresh Command: de- AC Characteristics and Operating
lay between a Load mode register Condition: 2 clock
IFDIDIRC_TERE_ TR command and an Activate or Re- TMRD: Mode Register set command cycles
fresh command in number of SDCK | cycle time
clock cycles.
Exit Power-down Delay to First AC Characteristics and Operating
Command: delay between CKE set | Condition: 2 clock
HIPPIPING_INP1RY,_ 1242 high and a Valid command in num- TXP: Exit pre-charge power down to cycles
ber of SDCK clock cycles any command
Exit Self-refresh Delay to Read AC Characteristics and Operating
Command: delay between CKE set | Condition: 200 clock
MPDDRC_TPR1_TXSRD high and a Read command in num- | TXSRD: Self refresh to read com- cycles
ber of SDCK clock cycles mand
Exit Self-refresh Delay to Non Read | AC Characteristics and Operating
Command: delay between CKE set | Condition: tRFC+10
HIFDIDIRC_THRICER high and a Non Read command in TXSNR: Exit Self Refresh to a non- r:niln37.5ns
number of SDCK clock cycles Read command. ’
Row Cycle Delay: Delay between a IDD Measurement. T?St Parameter
Refresh command or a Refresh and and AC Characteristics and Operat-
MPDDRC_TPR1_TRFC . - ing Condition: 127.5ns
- - Activate command in number of .
TRFC: Auto Refresh To Active/ Auto
SDCK clock cycles. .
Refresh command period
Four Active Windows: DDR2 de-
vices with eight banks (1Gb or
eI IEWEE ap add|t|on§I r'eqwre-. IDD Measurement Test Parameter
ment concerning tFAW timing. This L.
requires that no more than four Acti- ARG CEEEETRIE e OEE:
MPDDRC_TPR2_TFAW N ing Condition: 45ns

60 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

Read to Pre-charge: This field de-
fines the delay between Read com-

Where is it in the external memory

datasheet

AC Characteristics and Operating
Condition:

Value to

be set

SDCK clock cycles. This field is
found only in the DDR2-SDRAM de-
vices.

command

MPDDRC_TPR2_TRTP mand and a Pre-charge command TRTP: Internal Read to Pre-charge 7.5ns
in number of SDCK clock cycles command Delay.
Row Pre-charge All Delay: This field
defines the delay between a Pre- . . TRPALL=
MPDDRC_TPR2_TRPA | charge All Banks command and an- ?;r;t';ﬁad GAlACLeR AR TRP+1 x
other command in number of SDCK TCK)
clock cycles.
Exit Active Power Down Delay to
Ej:,,(_j ge?:nl\)zr:\:;r;r:\/lgdlé S;?‘gl h AC Characteristics and Operating
MPDDRC_TPR2_TXARD) y - g Condition: 10 clock
and a Read command in number of e .
S S TXARDS: Exit Active power own to cycles
SDCK clock cycles. This field is read command
found only in the DDR2-SDRAM de-
vices.
Exit Active Power Down Delay to
Re.a"(.1 O 812(0 Fast. AC Characteristics and Operating
Exit”: delay between CKE set high Condition: 3 clock
MPDDRC_TPR2_TXARD | and a Read command in number of . »
- - Exit on Active power down to Read cycles

Step 2 can be completed as follow:

/* Step 2:
MPDDRC->MPDDRC_CR = MPDDRC _CR NR(13)
| MPDDRC_CR_NC (10)
MPDDRC_CR_CAS (3)
MPDDRC_CR_NB_8
MPDDRC_CR_DLL_RESET ENABLED
MPDDRC_CR_DQMS NOT SHARED
MPDDRC CR_ENRDM OFF
MPDDRC_CR UNAL UNSUPPORTED
MPDDRC CR_NDQS DISABLED

I
I
|
I
I
I
I
| MPDDRC_CR_OCD (0x7) ;

| MPDDRC TPR1 TXSNR(16)

| MPDDRC_TPR1 TXP(2); // 2 * 7.5 =15
MPDDRC->MPDDRC_TPR2 = MPDDRC_TPR2 TXARD(7) //
| MPDDRC TPR2 TXARDS(7)//
| MPDDRC TPR2 TRPA(2) //
| MPDDRC_TPR2 TRTP(2) //
| MPDDRC TPR2 TFAW(10) ;

min 18ns
2 * 7.5 =

15 ns

Program the features of DDR2-SDRAM device into the Timing Register.*/

MPDDRC->MPDDRC_TPRO = MPDDRC_TPRO_TRAS (6) // 6 * 7.5 = 45 ns

| MPDDRC TPRO_TRCD(2) // 2 * 7.5 = 15 ns

| MPDDRC TPRO_ TWR(2) // 3 * 7.5 = 22.5 ns

| MPDDRC_TPRO_TRC (&) // 8 * 7.5 = 60 ns

| MPDDRC_TPRO_TRP (2) // 2 * 7.5 =15 ns

| MPDDRC TPRO_ TRRD(1) // 2 * 7.5 = 15 ns

| MPDDRC TPRO_ TWTR(2) // 2 clock cycle

| MPDDRC_TPRO_TMRD(2) ; // 2 clock cycles
MPDDRC->MPDDRC_TPR1 = MPDDRC_TPR1 TRFC(14) // 18 * 7.5 = 135 ns

// 20 * 7.5 > 142.5ns
IMPDDRC_TPR1_TXSRD(208) // min 200 clock cycles,

ns

min 2 clock cycles
min 7 clock cycles

(min 7.5ns)

(min 127.5 ns for 1Gb DDR)

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

61

8

62

Compile the SAM-BA Applets and Test Your Modifications

At this moment, the applets are customized, and the tools required to compile them are already installed. Let’s
start with the applet compilation by using:
e Sourcery CodeBench Lite 2012.09-63 for ARM EABI
e GNU make 3.81
e GNU Core utils 5.3

n Before compiling the modified applets, the make file has to be updated accordingly to the new board

(my_training_board) entry name and directory in order to update the existing binary file in the \Atmel\sam-
ba_2.14\tcl_lib\my_training_board directory.

Go to the modified applet path: Atmel\sam-ba_2.14\applets\my_training_board\sam-ba_applets\lowlevelinit
and open the make file in a text editor:

¢ Replace the code line #34 “BOARD = at91sama5d3x-ek” by “BOARD = my_customized_board”

Replace the code line #40 “BOARD_DIR= at91sama5d3x-ek” by “BOARD_DIR = my_customized_board” as
described below: (my_training_board or my_customized_board)

31 # Chip & board used for compilation

32 # (can be overriden by adding CHIP=chip and BOARD=board to the command-line)
33 CHIP = samaSd3x

BOARD = my_training_board |

DYN = OFF

-] o U]

Makefile for compiling applet-extram

ofw

po—

Wil B 0 W W W W W

BOARD_DIR = my_training_board |

k

Save your modifications

The make file will update the applet binary file in the C:\Program Files (x86)\Atmel\sam-
ba 2.14\tcl_lib\my training_board directory.

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Compile SAM-BA applets with the modified board_lowlevel.c.

e Run aWindows command prompt as administrator by using Start->run->
— Type “cmd “in the “search programs and files” field.

— Now, instead of hitting the Enter key, use Ctrl+Shift + Enter, you will be prompted with the
User Account Control dialog. Then a command prompt in Administrator mode will open.

Programs (1)

cmd.exe

Documents (86)

€] flashcalw.c
) samdlh
n samdl_patch_asf.h

9 board_monitor.c

Microsoft Office Outlook (94)
(ATTicket:721055) sam9261 R gEE)
23] DRY RUN: SAM4 1st PART (SAM4L Modules ONLY)

23] DRY RUN: SAMASD3 2nd Part (Ul Customization + uboot dtb)
4] DRY RUN: SAMASD3 1st Part (NAND Boot + SAM-BA Customiz...

3] sdmmc_cmd.h 7
Do you want to allow the following program to make

£ index.html "
Q) pl2303.c changes to this computer?

€] pl2303.c

—> Ctri+shift+Enter

Program name: Windows Command Processor
Verified publisher: Microsoft Windows

)/ Search Everywher

lcmd J

|
>

Show details

e The command prompt window appears

r —_—
@¥ Administrator: C:\Windows\system32\cmd.exe [E=SEE =S
- .

Microsoft Windows [Uersion 6.1.76011]
Copyright (c)> 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 63

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

64

e Go to the "C:\Program Files (x86)\Atmel\sam-ba_2.12\applets\my_training_board\sam-
ba_applets\lowlevelinit” by using the command:

cd

"C:\Program Files (x86)\Atmel\sam-ba_2.12\applets\my _training_board\sam-ba_applets\lowlevelinit”

BN Administrator: CA\Windows\system32\cmd

Microsoft Windows [Uersion 6.1.76811
Copyright <c)> 2887 Microsoft Corporation. All rights reserved.

C:~Windowsszystem32>cd C:~Program Files (xB&e>~Atmel-zam—ba_2._.12%applets ~my_train
ing_hoardssam—hba_appletsslowlevelinit

C:=“Program Files (xB&>-Atmelssam—ha_2._.12%applets my_training_board sam—ba_applet
s lowlevelinit>

e Type the command make and press enter:

B

e

BE¥ Administrator: C:\Windows\system32\cmd.exe ‘@ﬂ‘é]

odebench_lite_for_arm_eabisbin/..~ lib/gcc/arm—none—eabirs4.7.2\1libgcc.a{ _udivdi3l.
0>’
c:/program files (x86)/codesourcery/sourcery_codebench_lite_for_arm_eabisbin/.
lib/gccs/arm—none—eabis4.7.2/..7..7/..7/..Zarm—none—eahishin/ld.exe: Removing unuse
d section ’.text’ in file ’‘c:/program files (xB6)/codesourcery/sourcery_codehenc
h_lite_for_arm_eabisbin/../lib/gcc/arm—-none—eahi 4.7.2\libgcc.aC_clzsi2.o)’
c:/program files \<ﬂ&)/rndesnurrPr9/snur _codebench_lite_for_arm_eabisbin/. .
llb/Jcc/arm—none eahis4.7.2/. one—eahisbinsld.exe: Removing un
d section ' .ARM.attributes’ 'c:s/progran files (x86)/codesourcery/sour
y_codebench_lite_for_arm_eabhisbins/. . lib/gcc/arm—none-eahir4.7.2\1ibgcc.a{_clzsi
2.0)°
c:/program files (xB6>-/codesourcerys/sourcery_codebench_lite_for_arm_eabisbin/. ./
lib/yg arm—-none—eabi . .7arm—none—eahisbhins1d Removing unuse
d section ' .eh_frame’ in file program files (x86>-/cod sourcery_code
bench_lite_for_arm_eabisbin/. ./lib/gcc/arm—none—eabhirs/4.7.2/crtend.o
c:/program files (x862/codesourcery/sourcery_codebhench_lite_for_arm_eabi/
lib/gccsarm—none—eabhis/4.7.2/. /../../../drn“naneweahi/hin/ld.exe: Removin
d section ' .jcp’ 1 file ’‘c: /prog»am files
lite_for_arm_eabisbi k

program files (xB86)D, d C /sourcery_ codehench lite_for_arm_eabhirbin/.
lib/gccsarm—none—eabis4.?.2/../../../../arn-none—-eabhisbin/1d.exe: total time in
link: B.68218880
arm—none—eabi-nm bin/applet—lowlevelinit—samaSd3x.elf >binsapplet-lowlevelinit-s
amaSd3x.elf .txt
arm—none—eabi-objcopy -0 binary binsapplet—lowlevelinit—-samaSd3x.elf bin-sapplet-
lowlevelinit—samaSd3x.
arm—-none—eabi-size obhj/sram_applet_cstartup.o obhj/sram_main.o ohj/sram_pmc.o ohj
ssram_board_memories.o obj/sram_hoard_lowlevel.o hinsapplet—lowlevelinit—samabSd3
x.elf

text data bs

6608
2472

dec hex filename
(5] 8 ohjssram_applet_cstartup.o
660 294 obj/sram_main.o
2472 9a8 objssram_pmc.o
2836 28036 ?f4 obj/sram_bhoard_memories.o
536 536 218 obj/sram_hoard_lowlevel.
2736 28 2764 acc bhinsapplet—lowlevelinit—-samaSd3x.elf

@O

C:“Program Files (x86>“Atmelssam—ba_2.12%applets‘my_training_boardssam—ba_applet

isnlowlevelinit>

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Atmel

The applet is now compiled. This you can check by:

e going into the C:\Program Files (x86)\Atmel\sam-ba_2.14\tcl_lib\my _training_board directory and
e using the window explorer “Details” view and
e sorting the directory contents in a descending order of the "Date modified”. You can see that your

& Bxtra Large lcons

. : . e - — [——
X | Large Icons
G_GJ-IA, >iiCommputerid OSDisk{GIAY Progrem Elles GG} At) ssm:ba 212, b bl i b oy tzewg.bowtd o=
2 Mefiium lcons
Owganize v Includeinlibrary v Sharewith v Bum Newfolder
. at915am9260-ek B Naene 'P—|E ; Je&— - il icons
)i a915am0261-ek - -
SR (& applet-towevelinit-samasd3cbin 3 K8 3
. at915am9263-
- e | my_training_board.tcl T s
at91samasd3x- - (o o}
« * & applet-extram-samaSd3x.bin 3K8
)i common les
U .] lowlevelinit.tcl 4Ke
. devices Z =
- '” — A applet-dataflash-samaSd3x.bin b 36 KB 4 Content
- "'y;:':"g‘ — & applet-eeprom-samaSd3xbin VLC media file (bi 31K8
| no_boa -
-~ nz}x n & applet-nandflash-samaSd3x.bin VLC media file (.bi 67K8
et [E] A spplet-norflash-samaSd3x.bin VLC media file (bi 9K8
o0 .
B‘ v b 4 A applet-oweeprom-samaSd3xbin VLC media file (bi 31 KB
o c"'""sy;m"m A applet-sdmmc-samaSd3x.bin VLC media file (.bi 60K8
isco Systems .
- CadeSs & applet-serialflash-samaSd3x.bin VLC media file (.bi. 40Kk8
= c° 5 ‘"‘::y A applet-otp-samaSd3x.bin VLC media file (bi 25Kk8
)i Common Files
.. Dolphin Futures b
, 12 items
J

Restart SAM-BA GUI and click on the customized low level check box:

e Choose any value in the “Select on board crystal” drop down menu
e And click on “Set”

(™ saM-BA 2.12 =@ R]
Select the connection :[\USBseria\NCOM18 b /
Select your board :{my _training_board ¥
JLink speed : ldefault v
JLink TimeoutMultiplier : [0 |
[V_Customize lowlevel
lConnect Exit I "
\ y

Select on board crystal:

Bypass mode

|External Clock (in Hz)

I Set l Use Default

The SAM-BA GUI main window should appear and the red LED should be switched on by the CPU module.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 65

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

File ScriptFile Help

— at91sama5d3x Memory Display

Start Address : W Refresh
Size in byte(s) : fOxlOO
0x00300000 0x00000004 OxEAO000005 OxEA000005 OxEAO00000S
0x00300010 OxXEA00000S5 0x000020A4 OxEA000005 OxEA000005
0x00300020 OXEAFFFFFE OXEAFFFFFE OXEAFFFFFE OXEAFFFFFE
0x00300030 OXEAFFFFFE OxEAFFFFFE OXEAFFFFFE OxE3AO0DE31

-Display format (Applet traces on DBGU—

m Apply |

 ascii " 8-bit " 16-bit & 32-bit

0eNN20NNAN __ NWTEATAAAA __ AWTAAATAAT _ AwTAATETAI4A __ AwTCATANDA
< | m |

4EEPROM AT24 | NandFlash | NorFlash | OTP | One-wire EEPROM | SRAM SerialFlash AT25/AT26 | my_new_memory_tab |

— Download / Upload File
Send File Name : [ﬂ Send File
Receive File Name : [il Receive File
Address : [0:07 Size (For Receive File) : proo&4 byte(s) Compare sent file with memory

— Scripts

|Enable Serialflash (SPI0 CS0) | Execute |

loading history file ... 1 events added

SAM-BA console display active (Tcl8.5.9 / Tk8.5.9)
(sam-ba_2.12) 2 %

(sam-ba_2.12) 2 %]|

‘l\ll"" i '\COW] Board:my_training_board] 5

66 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

9 References

Document Comments

sam-ba user guide.pdf

User guide provided in the doc directory inside the SAM-BA installation directory

SAMA5D3x Product Datasheet

Available on the Atmel website: http://www.atmel.com/products/microcontrol-
lers/arm/sama5.aspx?tab=documents

SAM-BA Customization Hands-on

This training is shared on request. It is also included inside this application note
final package.

Atmel

AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE]

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

67

http://www.atmel.com/products/microcontrollers/arm/sama5.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sama5.aspx?tab=documents

Appendix A Full Implementation of the Bypass Mode

* *
/* \brief Configure the PMC in bypass mode. An external clock should be input to XIN as the source clock.
*
* \param extClk The frequency of the external clock
*
st;tic void bypass_LowLevelInit (uint32_t extClk)
(/* First Switch the MCK to the main clock oscillator */
PMC SwitchMck2Main () ;

/* enable external OSC 12 MHz bypass */
PMC->CKGR _MOR = (PMC->CKGR MOR | CKGR MOR MOSCXTBY) | CKGR MOR KEY (0x37);

/* switch MAIN clock to external 0OSC */
PMC->CKGR_MOR |= CKGR_MOR MOSCSEL | CKGR_MOR_KEY(CX‘ST);

/* wait MAIN clock status change for external OSC 12 MHz selection*/
while (! (PMC->PMC_SR & PMC SR MOSCSELS)) ;

/* in case where MCK is running on MAIN CLK */
while (! (PMC->PMC_SR & PMC_SR MCKRDY)) ;

/**

w3 The PLLA configuration will depend on the extClk value which represents the frequency of the external
clock signal.

& In this case we have to configure for any value to have the PLLA well configured.

w3 As a reminder of the PLL electrical characteristics:

W - Fout (the output frequency) must be in a range between 400 MHz and 800MHz (in worst case)

w3 - Fin (the input Frequency) must be in a range between 8MHz and 50 MHz

& - t (start-up time) must be in a range between 25 us and 100 us.

**/

switch (extClk) {
/* When external clock frequency is 12MHz */
case 1200 0:

PMC_SetP11A(CKGR_PLLAR STUCKTO1l | //this bit must be set to 1 (Bit 29 must always be set to
1 when programming the CKGR PLLAR.)
CKGR_PLLAR_PLLACOUNT (0x3F) | //this bit-field is the number of slow clock cycles before the
LOCKA bit is set in PMC SR after CKGR PLLAR is written.
CKGR_PLLAR_OUTA (0x0) | //To be programmed to 0.
CKGR_PLLAR MULA(65) | //0 the PLLA is disabled, 1 up to 127: The PLLA Clock fre-

quency is the PLLA input frequency multiplied by MULA + 1.
//In this case: 12*(65+1)= 792 MHz
CKGR_PLLAR DIVA(1), //PLLA divider: DIVA=1 divider is bypassed
0); // refer to the function PMC SetPllA(uint32 t pll, uint32 t
cpcr) from the pmc.c file, but this resets the PMC PLLICPR register

PMC->PMC_PLLICPR = (0x3u << 8); //refer to the 27.14.20 PLL Charge Pump Current Register para-
graph of the product datasheet, IPLL PLLA: Engineering Configuration PLL ==> Should be written to 3.

PMC_SetMckPllaDiv (PMC MCKR PLLADIV2 DIV2); //Bit PLLADIV2 must always be set to 1 when MDIV is set to 3.
//In this case 792/2 = 396MHz

PMC SetMckPrescaler (PMC MCKR PRES CLOCK) ; //Selected clock without prescaler on the master clock

PMC_SetMckDivider (PMC_MCKR MDIV_PCK DIV3); //Master Clock is Prescaler Output Clock divided by 3.
//Finally we get 396/3= 132MHz as final frequency

PMC_SwitchMck2P11() ; //MCK is now switched on the PLLA. MCK =132MHz.

break;

/* When external clock frequency is 16MHz */

case 16000000:

PMC SetPl1A(CKGR PLLAR STUCKTOl | //this bit must be set to 1 (Bit 29 must always be set to 1
when programming the CKGR_PLLAR.)
CKGR_PLLAR PLLACOUNT (0x3F) | //this bitfield is the number of slow clock cycles before the
LOCKA bit is set in PMC SR after CKGR PLLAR is written.
CKGR_PLLAR OUTA (0x0) | //To be programmed to 0.
CKGR_PLLAR MULA (49) | //0 the PLLA is disabled, 1 up to 127: The PLLA Clock fre-

quency is the PLLA input frequency multiplied by MULA + 1.
//In this case: 16*(49+1)= 800 MHz

CKGR_PLLAR DIVA(1), //PLLA divider: DIVA=1 divider is bypassed
0); //refer to the function PMC_ SetPllA(uint32_t pll, uint32 t
cpcr) in the pmc.c file, but this resets the PMC PLLICPR register
PMC->PMC_PLLICPR = (0x3u << 8); N //refer to the 27.14.20 PLL Charge Pump Current Register para-

graph of the product datasheet, IPLL PLLA: Engineering Configuration PLL ==> Should be written to 3.

PMC SetMckPllaDiv (PMC MCKR PLLADIV2 DIV2); //Bit PLLADIV2 must always be set to 1 when MDIV is set to 3.

68 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

//In this case 800/2 = 400MHz
PMC_SetMckPrescaler (PMC_MCKR_PRES_CLOCK) ; //Selected clock without prescaler on the master clock
PMC_SetMckDivider (PMC_MCKR MDIV_PCK DIV3); //Master Clock is Prescaler Output Clock divided by 3.
//Finally we get 400/3= 133.33333MHz as final frequency
PMC_SwitchMck2P11() ; //MCK is now switched on the PLLA. MCK =133.33333MHz.
break;

/* When external clock frequency is 19MHz */
case 19000000:

PMC_SetP11A(CKGR_PLLAR_STUCKTOl | //this bit must be set to 1 (Bit 29 must always be set to 1
when programming the CKGR PLLAR.)
CKGR_PLLAR_PLLACOUNT (0x3F) | //this bitfield is the number of slow clock cycles before the
LOCKA bit is set in PMC SR after CKGR PLLAR is written.
CKGR_PLLAR_OUTA (0x0) | //To be programmed to O.
CKGR_PLLAR_MULA(@C‘) | //0 the PLLA is disabled, 1 up to 127: The PLLA Clock fre-

quency is the PLLA input frequency multiplied by MULA + 1.
//In this case: 19*(40+1)= 779 MHz

CKGR_PLLAR DIVA(1), //PLLA divider: DIVA=1 divider is bypassed
0); //refer to the function PMC_SetPllA (uint32_t pll, uint32 t
cpcr) in the pmc.c file, but this resets the PMC_ PLLICPR register
PMC->PMC_PLLICPR = (0x3u << 8); //refer to the 27.14.20 PLL Charge Pump Current Register para-

graph of the product datasheet, IPLL PLLA: Engineering Configuration PLL ==> Should be written to 3.

PMC_SetMckPllaDiv(PMC_MCKR_PLLADIV2_DIV2); //Bit PLLADIV2 must always be set to 1 when MDIV is set to 3.
//In this case 779/2 = 389.5MHz

PMC_SetMckPrescaler (PMC_MCKR_PRES_CLOCK) ; //Selected clock without prescaler on the master clock

PMC_SetMckDivider (PMC_MCKR MDIV_PCK_DIV3); //Master Clock is Prescaler Output Clock divided by 3.
//Finally we get 389.5/3= 133MHz as final frequency

PMC_SwitchMck2P11() ; //MCK is now switched on the PLLA. MCK =129.8333MHz.

break;

/* When external clock frequency is 19MHz */

case 1920 D0
PMC_SetP11A(CKGR_PLLAR_STUCKTOl | //this bit must be set to 1 (Bit 29 must always be set to 1
when programming the CKGR PLLAR.)
CKGR_PLLAR_PLLACOUNT (0x3F) | //this bitfield is the number of slow clock cycles before the
LOCKA bit is set in PMC SR after CKGR PLLAR is written.
CKGR_PLLAR_OUTA (0x0) | //To be programmed to 0.
CKGR_PLLAR_MULA(‘“‘) | //0 the PLLA is disabled, 1 up to 127: The PLLA Clock fre-

quency is the PLLA input frequency multiplied by MULA + 1.
//In this case: 19.2*(38+1)= 768 MHz

CKGR_PLLAR DIVA(1), //PLLA divider: DIVA=1 divider is bypassed
0); //refer to the function PMC SetPllA (uint32 t pll, uint32 t
cpcr) in the pmc.c file, but this resets the PMC PLLICPR register
PMC->PMC_PLLICPR = (0x3u << 8); N //refer to the 27.14.20 PLL Charge Pump Current Register para-

graph of the product datasheet, IPLL PLLA: Engineering Configuration PLL ==> Should be written to 3.

PMC_SetMckPllaDiv(PMC_MCKR_PLLADIV2_DIV2); //Bit PLLADIV2 must always be set to 1 when MDIV is set to 3.
//In this case 768/2 = 384MHz

PMC_SetMckPrescaler (PMC_MCKR_PRES_CLOCK) ; //Selected clock without prescaler on the master clock

PMC_SetMckDivider (PMC_MCKR MDIV_PCK_DIV3); //Master Clock is Prescaler Output Clock divided by 3.
//Finally we get 384/3= 128MHz as final frequency

PMC_SwitchMck2P11() ; //MCK is now switched on the PLLA. MCK =128MHz.

break;

clock frequency is 24MHz */

000:

PMC_ SetPllA(CKGR PLLAR STUCKTOl | //this bit must be set to 1 (Bit 29 must always be set to 1
when programming the CKGR PLLAR.)
CKGR_PLLAR_PLLACOUNT (0x3F) | //this bitfield is the number of slow clock cycles before the
LOCKA bit is set in PMC SR after CKGR PLLAR is written.
CKGR_PLLAR_OUTA (0x0) | //To be programmed to 0.
CKGR_PLLAR MULA (32) | //0 the PLLA is disabled, 1 up to 127: The PLLA Clock fre-

quency is the PLLA input frequency multiplied by MULA + 1.
//In this case: 24* (32+1)= 792 MHz

CKGR_PLLAR DIVA(1), //PLLA divider: DIVA=1 divider is bypassed
0); //refer to the function PMC_SetPllA (uint32_t pll, uint32 t
cpcr) in the pmc.c file, but this resets the PMC PLLICPR register
PMC->PMC PLLICPR = (0x3u << 8); //refer to the 27.14.20 PLL Charge Pump Current Register para-

graph of the product datasheet, IPLL PLLA: Engineering Configuration PLL ==> Should be written to 3.

PMC_SetMckPllaDiv (PMC_MCKR PLLADIV2 DIV2); //Bit PLLADIV2 must always be set to 1 when MDIV is set to 3.
//In this case 792/2 = 396MHz

PMC SetMckPrescaler (PMC MCKR PRES CLOCK) ; //Selected clock without prescaler on the master clock

PMC_SetMckDivider (PMC_MCKR MDIV_PCK DIV3); //Master Clock is Prescaler Output Clock divided by 3.
//Finally we get 399/3= 133MHz as final frequency

PMC_SwitchMck2P11(); //MCK is now switched on the PLLA. MCK =132MHz.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 69

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

break;

default:
break;

}

/**

E The next step is optional but useful if user wants to reduce the overall power consumption
**/

/* disable internal RC 12 MHz*/

PMC->CKGR MOR = (PMC->CKGR MOR & ~CKGR MOR MOSCRCEN) | CKGR MOR KEY (0x37);

/**
E The next step is optional but useful to check on scope if the MCK is correctly configured through PCK1
(PD31)

**/

/* Configure PCKl to measure MCK */

PIOD->PIO IDR = (1<<31); //Disable Interrupt on PD31
//abcdsr = PIOD—>PIO_ABCDSR[0];

PIOD->PIO ABCDSR[0] |= (1<<31); //enable the Peripheral B function

which is PCK1

//abcdsr = PIOD->PIO ABCDSR[1];

PIOD->PIO ABCDSRI[1] &= ~(1<<31); //enable the Peripheral B function which is
PCK1

PIOD->PIO PDR = (1<<31);

/* Disable programmable clock 1 output */

REG_PMC_SCDR = PMC_SCDR_PCK1; //Disable the PCK1l output before using
it

/* Enable the DAC master clock */

PMC->PMC_PCK[1] = PMC_PCK_CSS_MCK_CLK | PMC_PCK_PRES_CLOCK; // Select the master clock (MCK) to
connect it to the PCKl without prescaler.

/* Enable programmable clock 1 output */

REG_PMC_SCER = PMC_SCER_PCK1; //Enable the PCKl output before using
it
/* Wait for the PCKRDY1l bit to be set in the PMC SR register*/
while ((REG PMC SR & PMC SR PCKRDYl) == 0); //
/**
w3 The next step is mandatory to be sure that no interrupt will hit during the communication with SAM-BA
**/
/* select FIQ */
AIC->AIC _SSR = 0;
AIC->AIC SVR = (unsigned int) defaultFigHandler;
for (i = 1; 1 < 31; i++4)
{
AIC->AIC SSR = i;
AIC->AIC SVR = (unsigned int) defaultIrgHandler;
}
AIC->AIC SPU = (unsigned int) defaultSpuriousHandler;
/* Disable all interrupts */
for (i = 1; i < 31; i++)
{
AIC->AIC SSR = i;
AIC->AIC IDCR = 1 ;
}
/* Clear All pending interrupts flags */
for (1 = 1; 1 < 31; i++4)
{
AIC->AIC SSR = i;
AIC->AIC ICCR = 1 ;
}
/* Perform 8 IT acknowledge (write any value in EOICR) */
for (i = 0; i < 8 ; i++)
{
AIC->AIC_EOICR = 0;
}
}
70 AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] Atmel

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

Appendix B Revision History

| 42438A | 06/2015 Initial document release.

Atmel AT09423: SAM-BA Overview and Customization Process [APPLICATION NOTE] 71

Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_AT09423_062015

CONNECTED

AtmeL Enabling Unlimited Possibilities® I] D m w

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
© 2015 Atmel Corporation. / Rev.: Atmel-42438A-SAM-BA-Overview-and-Customization-Process_ApplicationNote_ AT09423_062015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, SAM-BA®, and others are registered trademarks or trademarks of Atmel Corporation
in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered trademark
of Microsoft Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, auto motive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in conne ction with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel
products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not
designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

