

High-Voltage Low-Noise Inductorless EL Lamp Driver

Features

- No External Components required when using an External Electroluminescent (EL) Clock Frequency
- EL Frequency can be set by an External Resistor
- Low Noise
- DC to AC Converter
- Drives up to 5.3 nF Load (approximately 1.5 in ² Lamp)
- Output Voltage Regulation
- Enable Function
- EL Lamp Dimming

Applications

- Cellular Phone Keypad
- · Watches
- Small Handheld Wireless Devices
- · MP3 Players

General Description

The HV852 is a high-voltage low-noise, inductorless EL lamp driver. It is designed to drive EL lamps of up to 1.5 in², with capacitive values of up to 5.3 nF over an input voltage range of 2.4V to 5V. The HV852 converts a low-voltage DC input to a high-voltage AC output across an EL lamp. It uses a charge pump scheme to boost the input voltage, eliminating the need for an external inductor, diode, and high-voltage capacitor commonly found in conventional topologies.

The charge pump circuit discharges its energy into an EL lamp through a high-voltage H-bridge. Once the voltage reaches its regulated limit, it is turned off to conserve power. The EL lamp is then discharged to ground, and the H-bridge changes state to allow the charge pump to charge the EL lamp in the opposite direction.

Package Types

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Supply Voltage, V _{DD}	
Operating Temperature Range, T _A	–25°C to +85°C
Storage Temperature, T _S	
Power Dissipation:	
10-lead WDFN	
8-lead MSOP	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Input Voltage	V _{DD}	2.4		5	V	
EL Lamp Frequency	f _{EL}	50		500	Hz	
EL Lamp Capacitance	C _{LOAD}	0		5.3	nF	
Operating Temperature	Τ _Α	-25		+85	°C	

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions unless otherwise specified: V_{DD} = 3.5V and T_A = 25°C.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Quiescent Current	I _{DDQ}	_	—	200	nA	EN = 0V
Peak Output Voltage	V_A or V_B	72	82	92	V	Nelood
Peak-to-Peak Output Voltage	V _A –V _B	144	164	184	V	
Operating Current	I _{DD}	_	15.2	30	mA	$V_{DD} = 3.5 V$
Peak Output Voltage	V_A or V_B	72	82	92	V	$ R_{EL} = 1.5 \text{ M}\Omega,$
Peak-to-Peak Output Voltage	V _A –V _B	144	164	184	V	Load = 3.3 nF +1 kΩ
EL Lamp Frequency	f _{EL}	210	250	300	Hz	(See Figure 3-1.)
Output Voltage Rise Time	t _{rout}	_	640	_	μs	1 in ² lamp, 10% to 90% of final value

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Temperature	Τ _Α	-25	—	+85	°C	
Storage Temperature	Τ _S	-65	—	+150	°C	
PACKAGE THERMAL RESISTANCE						
8-lead MSOP	θ_{JA}	—	216	—	°C/W	
10-lead WDFN	θ _{JA}	_	41	_	°C/W	

LOGIC INPUTS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Input Logic Low Voltage	V _{IL}	0		0.5	V	
Input Logic High Voltage	VIH	1.75	_	V _{DD}	V	$V_{DD} = 2.4V$ to 4.3V, $T_A = -25$ to 85°C
		2	—	V _{DD}	V	$4.3 < V_{DD} \le 5V$, $T_A = -25$ to 85 °C
Input Logic Low Current	۱ _{IL}	—	—	1	μA	V _{IL} = 0V, V _{DD} = 2.4V–5V
Input Logic High Current	I _{IH}	—	—	1	μA	$V_{IH} = V_{DD} = 2.4V - 5V$
Enable Input Rise Time (For Delay Turn-on)	t _{rEN}	0.01	_	10	ms	Using External R-C Circuit
Enable Input Fall Time (For Delay Turn-off)	t _{fEN}	0.01		500	ms	(See Figure 3-2.)
Logic Input Capacitance	C _{in}			10	pF	

Typical Output Waveform

TYPICAL PERFORMANCE

LOAD	R _{EL} (MΩ)	V _{DD} (V)	I _{DD} (mA)	V _A –V _B (V)	f _{EL} (Hz)
3.3 nF + 1 kΩ 1.5	2.4	17.56	154		
	4.5	3	17.53	158	045
	1.5	3.6	17.44	158	245
		4.2	17.65	158	
		5	18.35	158	

Note: This table specifies observed performance when driving a 1.0 in² green lamp.

2.0 PIN DESCRIPTION

The details on the pins of HV852 are listed in Table 2-1. See location of pins in **Package Types**.

10-lead WDFN Pin Number	8-lead MSOP Pin Number	Pin Name	Description
1,5	1	VDD	Input supply voltage pin
			An external resistor to VDD will set the EL lamp frequency. The EL frequency is inversely proportional to the R _{EL} resistor value. A 1.5 M Ω resistor would provide a nominal lamp frequency of 250 Hz.
2	2	REL	$f_{EL} = \frac{1.5ME \times 2.50112}{R_{EL}}$
			When using an external clock to set the EL lamp frequency, the REL pin should be connected to ground.
3	3	EN	Enable input pin. Logic high will turn the device on. An external R-C circuit can be added for a delayed turn off.
4	4	CLKIN	Logic input pin. An external logic clock applied to this pin can be used to set the EL lamp frequency. (See Figure 3-3.) The EL lamp frequency is the external clock frequency divided by 128. This is useful for applications requiring the EL lamp to be synchronized to a system clock. Connect to ground when not in use.
6	5	CLKEN	Logic input pin. Logic high will cause the EL lamp frequency to be set by the CLKN input. Logic low will cause the EL lamp frequency to be set by the external R_{EL} resistor.
7,8	6	GND	IC ground pin
9	7	VB	EL lamp driver output pin. The EL lamp is connected across V_{A} and V_{B} terminals.
10	8	VA	EL lamp driver output pin. The EL lamp is connected across V_{A} and V_{B} terminals.

TABLE 2-1: PIN FUNCTION TABLE

3.0 APPLICATION INFORMATION

FIGURE 3-2: Push Button Turn-on with Delay Turn-off.

3.1 EL Lamp Dimming Using PWM

EL lamp dimming can be achieved by applying a PWM signal to the Enable pin. EL Lamp brightness is proportional to the PWM signal duty cycle. This is done by pulse skipping the output pulses. The PWM frequency should be kept below the EL frequency but above 50 Hz to avoid flickering. Refer to Figure 3-4.

FIGURE 3-4: PWM Dimming Circuit.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters not include	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for product code or customer-specific information. Package may or e the corporate logo.

10-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (UR) - 3x3 mm Body [WDFN]; Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-292 Rev A Sheet 1 of 2

10-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (UR) - 3x3 mm Body [WDFN]; Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Number of Terminals	Ν		10		
Pitch	е		0.50 BSC		
Overall Height	Α	0.70	0.75	0.80	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3		0.20 REF		
Overall Length	D		3.00 BSC		
Exposed Pad Length	D2	2.20	-	2.70	
Overall Width	Е		3.00 BSC		
Exposed Pad Width	E2	1.40	-	1.75	
Terminal Width	b	0.18	0.25	0.30	
Terminal Length	L	0.30	0.40	0.50	
Pullback	L1	-	-	0.15	
Mold Angle	θ	0°	7°	14°	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-292 Rev A Sheet 2 of 2

10-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (UQ) - 3x3 mm Body [WDFN]; Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			2.70
Optional Center Pad Length	Y2			1.75
Contact Pad Spacing	C1		3.00	
Contact Pad Width (X10)	X1			0.30
Contact Pad Length (X10)	Y1			0.85
Contact Pad to Center Pad (X10)	G1	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2292 Rev A

8-Lead Plastic Micro Small Outline Package (A3X) - 3x3 mm Body [MSOP]

Microchip Technology Drawing C04-111-A3X Rev F Sheet 1 of 2

© 2022 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (A3X) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
D	imension Limits	MIN	NOM	MAX
Number of Terminals	N		8	
Pitch	е		0.65 BSC	
Overall Height	A	-	-	1.10
Standoff	A1	0.00	_	0.15
Molded Package Thickness	A2	0.75	0.85	0.95
Overall Length	D		3.00 BSC	
Overall Width	E		4.90 BSC	
Molded Package Width	E1		3.00 BSC	
Terminal Width	b	0.22	-	0.40
Terminal Thickness	С	0.08	-	0.23
Terminal Length	L	0.40	0.60	0.80
Footprint	L1		0.95 REF	
Lead Bend Radius	R	0.07	-	-
Lead Bend Radius	R1	0.07	-	-
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	_	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side. Dimensioning and tolerancing per ASME Y14.5M

3.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-A3X Rev F Sheet 2 of 2

© 2022 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (A3X) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	S	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С		4.40	
Contact Pad Width (X8)	Х			0.45
Contact Pad Length (X8)	Y			1.45
Contact Pad to Contact Pad (X4)	G1	2.95		
Contact Pad to Contact Pad (X6)	GX	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-A3X Rev F

© 2022 Microchip Technology Inc.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2023)

- Converted Supertex Doc# DSFP-HV852 to Microchip DS20005690A
- Changed the quantity of the 10-lead WDFN K7 package from 3000/Reel to 3300/Reel to alight packaging specifications with the actual BQM
- Updated package outline drawing
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>	- <u>x</u> - <u>x</u>	Examples:
Device	Package Options	Environmental Media Type	a) HV852K7-G: High-Voltage EL Lamp Driver IC, 10-lead WDFN Package, 3300/Reel
Device:	HV852 =	High-Voltage Low-Noise Inductorless EL Lamp Driver	b) HV852MG-G: High-Voltage EL Lamp Driver IC, 8-lead MSOP Package, 2500/Reel
Packages:	K7 = MG =	10-lead WDFN 8-lead MSOP	
Environmental:	G =	Lead (Pb)-free/RoHS-compliant Package	
Media Type:	(blank) =	3300/Reel for a WDFN Package 2500/Reel for an MSOP Package	

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O. simpleMAP. SimpliPHY. SmartBuffer. SmartHLS. SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. ISBN: 978-1-6683-3113-2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

Italy - Milan

Italy - Padova

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820