

150 mA Low-Dropout Voltage Regulator

Features

- High Accuracy 3.3V, 4.85V, or 5V, Guaranteed 150 mA Output
- · Extremely Low Quiescent Current
- · Low-Dropout Voltage
- · Extremely Tight Load and Line Regulation
- · Very Low Temperature Coefficient
- · Use as Regulator or Reference
- Needs Only 1.5 µF for Stability
- · Current and Thermal Limiting
- Unregulated DC Input Can Withstand –20V Reverse Battery and +60V Positive Transients
- · Error Flag Warns of Output Dropout
- · Logic-Controlled Electronic Shutdown
- Output Programmable from 1.24 to 29V

Applications

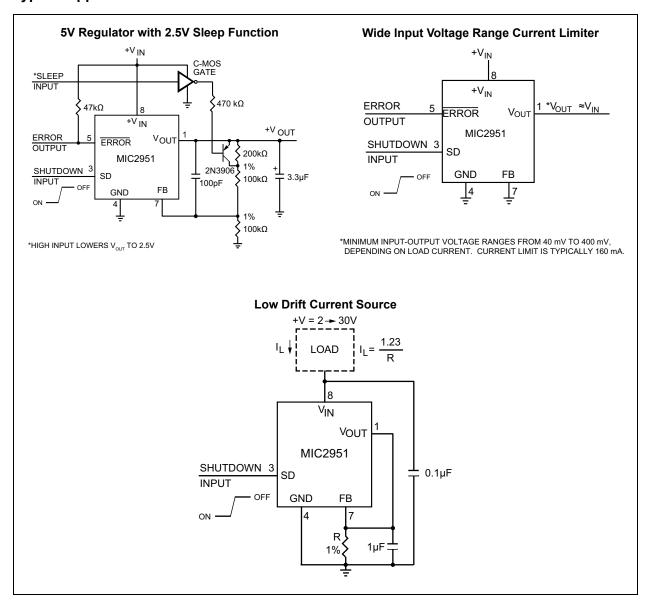
- · Automotive Electronics
- · Voltage Reference
- Avionics
- · Cellular Telephones
- Battery Powered Equipment
- · SMPS Post-Regulator
- · High Efficiency Linear Power Supplies

Package Type

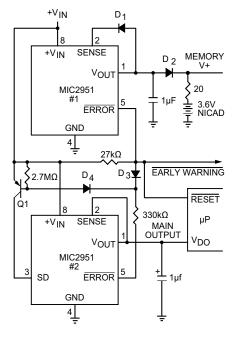
General Description

The MIC2951 is a "bulletproof" micropower voltage regulator with very low dropout voltage (typically 40 mV at light loads and 250 mV at 100 mA), and very low quiescent current. Like its predecessor, the LP2951, the quiescent current of the MIC2951 increases only slightly in dropout, which prolongs the battery life. The MIC2951 is pin-for-pin compatible with the LP2951, but offers a lower dropout, lower quiescent current, reverse battery, and automotive load dump protection.

The key additional features and protection offered include higher output current (150 mA), positive transient protection for up to 60V (load dump), and the ability to survive an unregulated input voltage transient of –20V below ground (reverse battery).

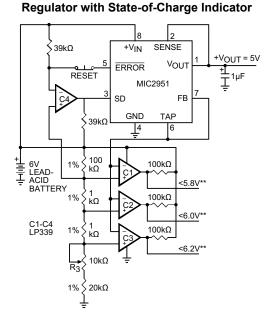

The plastic DIP, SOIC, and MSOP versions offer system functions such as programmable output voltage and logic controlled shutdown.

These system functions also include an error flag output that warns of a low output voltage, which is often due to failing batteries on the input. This may also be used as a power-on reset. A logic-compatible shutdown input is also available which enables the regulator to be switched on and off. This part may also be pin-strapped for a 5V output, or programmed from 1.24V to 29V with the use of two external resistors.


The MIC2951 is available as an -02 or -03 version.

The MIC2951 has a tight initial tolerance (0.5% typical), a very low output voltage temperature coefficient, which allows use as a low-power voltage reference, and extremely good load and line regulation (0.04% typical). This greatly reduces the error in the overall circuit and is the result of careful design techniques and process control.

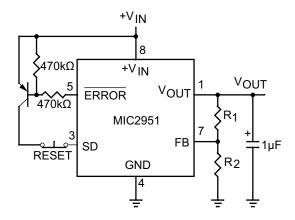
Typical Application Circuits



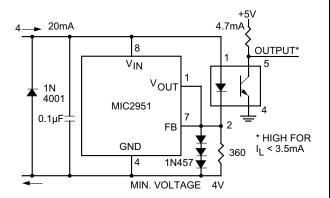
Regulator with Early Warning and Auxiliary Output

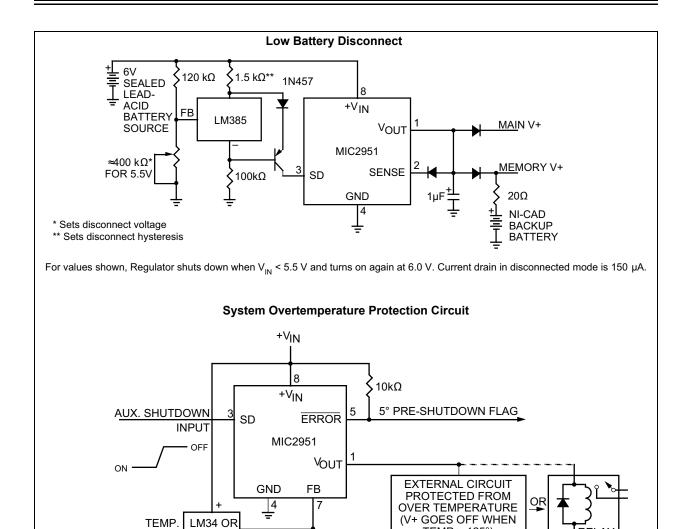
- EARLY WARNING FLAG ON LOW INPUT VOLTAGE
- MAIN OUTPUT LATCHES OFF AT LOWER INPUT VOLTAGES
- BATTERY BACKUP ON AUXILIARY OUTPUT

OPERATION: REG. #1'S V $_{\rm out}$ IS PROGRAMMED ONE DIODE DROP ABOVE 5 V. ITS ERROR FLAG BECOMES ACTIVE WHEN V $_{\rm IN}$ \le 5.7 V. WHEN V $_{\rm IN}$ DROPS BELOW 5.3 V, THE ERROR FLAG OF REG. #2 BECOMES ACTIVE AND VIA Q1 LATCHES THE MAIN OUTPUT OFF. WHEN V $_{\rm IN}$ AGAIN EXCEEDS 5.7 V REG. #1 IS BACK IN REGULATION AND THE EARLY WARNING SIGNAL RISES, UNLATCHING REG. #2 VIA D3.


C1 TO C4 ARE COMPARATORS (LP339 OR EQUIVALENT)

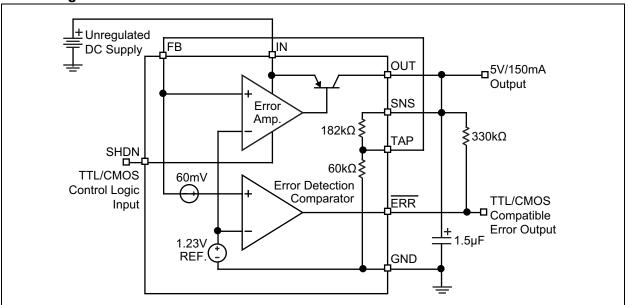
*OPTIONAL LATCH OFF WHEN DROP OUT OCCURS. ADJUST R3 FOR C2


SWITCHING WHEN V_{IN} IS 6.0V


**OUTPUTS GO LOW WHEN ${
m V}_{
m IN}$ DROPS BELOW DESIGNATED THRESHOLDS.

Latch Off When Error Flag Occurs

Open Circuit Detector for 4 mA to 20 mA Current Loop


∫8.2kΩ

LM35

SENSOR

LM34 for 125°F Shutdown LM35 for 125°C Shutdown TEMP.> 125°)

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage, V _{IN} (Note 1)	–20V to +60V
Feedback Input Voltage, V _{FB} (Note 2, Note 3)	
Shutdown Input Voltage, V _{SHDN} (Note 2)	0.3V to +30V
Power Dissipation P _D (Note 4)	Internally Limited
ESD	

Operating Ratings ††

Input Supply Voltage, V_{IN}.....+2.0V to +30V

† Notice: Exceeding the absolute maximum rating may damage the device.

†† Notice: The device is not guaranteed to function outside its operating rating.

- **Note 1:** The maximum positive supply voltage of 60V must be of limited duration (≤100 ms) and duty cycle (≤1%). The maximum continuous supply voltage is 30V.
 - 2: When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the output voltage should be diode-clamped to ground.
 - 3: $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - **4:** The thermal resistance of the 8-pin DIP (N) package is 105°C/W junction-to-ambient when soldered directly to a PC board. Junction-to-ambient thermal resistance for the SOIC (M) package is 160°C/W. Junction-to-ambient thermal resistance for the MSOP (MM) is 250°C/W.
 - 5: Device is ESD sensitive. Handling precautions are recommended.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate -40°C \leq T_J \leq +125°C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
		4.975	5.000	5.025	V	MIC2951-02 (±0.5%)
Output Voltage		4.950	5.000	5.050	V	MIC2951-03 (±1%)
$T_J = 25^{\circ}C$	V _{OUT}	3.267	3.300	3.333	V	MIC2951-3.3 (±1%)
		4.802	4.850	4.899	V	MIC2951-4.8 (±1%)
	V _{OUT}	4.950	_	5.050	V	MIC2951-02 (±0.5%)
Output Voltage		4.925	_	5.075	V	MIC2951-03 (±1%)
$-25^{\circ}\text{C} \le \text{T}_{\text{J}} \le +85^{\circ}\text{C}$		3.251	_	3.350	V	MIC2951-3.3 (±1%)
		4.777	_	4.872	V	MIC2951-4.8 (±1%)
Outrout Valtage		4.940	_	5.060	V	MIC2951-02 (±0.5%)
Output Voltage Over Full Temperature Range –40°C to +125°C	.,	4.900	_	5.100	V	MIC2951-03 (±1%)
	V _{OUT}	3.234	_	3.366	V	MIC2951-3.3 (±1%)
		4.753	_	4.947	V	MIC2951-4.8 (±1%)

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - 2: Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and $V_{SHDN} \le 0.8V$.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at $V_{IN} = 30V$ (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \text{ V})$, 2.3V $\le V_{IN} \le 30\text{ V}$, 100 $\mu\text{A} < I_{L} \le 150 \text{ mA}$, $T_{J} \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate -40° C \leq T_J \leq $+125^{\circ}$ C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
		4.930	_	5.070	V	MIC2951-02 (±0.5%), 100 μ A \leq I _L \leq 150 mA, T _J \leq T _{J(max)}
Output Voltage	V	4.880	_	5.120	V	MIC2951-03 (±1%), 100 μ A \leq I _L \leq 150 mA, T _J \leq T _{J(max)}
Over Load Variation	V _{OUT}	3.221	_	3.379	V	MIC2951-3.3 (±1%), 100 μ A \leq I _L \leq 150 mA, T _J \leq T _{J(max)}
		4.733	_	4.967	V	MIC2951-4.8 (±1%), 100 μ A \leq I _L \leq 150mA, T _J \leq T _{J(max)}
			20	100	ppm/°C	MIC2951-02 (±0.5%), (Note 3)
Output Voltage	ΔV _{OUT} /	_	50	150	ppm/°C	MIC2951-03 (±1%), (Note 3)
Temperature Coefficient	ΔΤ	_	50	150	ppm/°C	MIC2951-3.3 (±1%), (Note 3)
		_	50	150	ppm/°C	MIC2951-4.8 (±1%), (Note 3)

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \text{ V})$, 2.3V $\le V_{IN} \le 30\text{V}$, 100 $\mu\text{A} < I_{L} \le 150 \text{ mA}$, $T_{J} \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate -40° C \leq T_J \leq $+125^{\circ}$ C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
		_	0.03	0.10	%	MICO054 02 (10 59/) (Nata 4 5)	
		_	_	0.20	%	MIC2951-02 (±0.5%), (Note 4, 5)	
		_	0.04	0.20	%	MIC2054 02 (149/) (Note 4 5)	
Line Degulation	ΔV _{OUT} /	_	_	0.40	%	MIC2951-03 (±1%), (Note 4, 5)	
Line Regulation	V _{OUT}	_	0.04	0.20	%	MIC2951-3.3 (±1%),	
		_	_	0.40	%	(Note 4, 5)	
		_	0.04	0.20	%	MIC2951-4.8 (±1%), (Note 4, 5)	
		_	_	0.40	%		
		_	0.04	0.10	%	MIC2951-02 (±0.5%), 100 µA ≤ I _I	
		_	_	0.20	%	≤ 150 mA, (Note 4)	
		_	0.10	0.20	%	MIC2951-03 (±1%),	
Lood Dogulation	ΔV _{OUT} /	_	_	0.30	%	100 μA ≤ I _L ≤ 150 mA, (Note 4)	
Load Regulation	V _{OUT}	_	0.10	0.20	%	MIC2951-3.3 (±1%),	
		_	_	0.30	%	100 μA ≤ I _L ≤ 150 mA, (Note 4)	
		_	0.10	0.20	%	MIC2951-4.8 (±1%),	
		_	_	0.30	%	100 μ A ≤ I _L ≤ 150 mA, (Note 4)	

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - 2: Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μ A and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \ V)$, 2.3V $\le V_{IN} \le 30V$, 100 μ A $< I_L \le 150 \ m$ A, $T_J \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate –40°C \leq TJ \leq +125°C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
		_	40	80	mV	MIC2951-02/-03,
		_	_	140	mV	I _L = 100 μA, (Note 6)
		_	250	300	mV	MIC2951-02/-03, I _L = 100 mA, (Note 6)
		_	300	450	mV	MIC2951-02/-03,
		_	_	600	mV	I _L = 150 mA, (Note 6)
		_	40	80	mV	MIC2951-3.3 (±1%),
		_	_	150	mV	I _L = 100 μA, (Note 6)
Dropout Voltage	V _{DO}	_	250	350	mV	MIC2951-3.3 (±1%), I _L = 100 mA, (Note 6)
		_	320	450	mV	MIC2951-3.3 (±1%),
		_	_	600	mV	I _L = 150 mA, (Note 6)
		_	40	80	mV	MIC2951-4.8 (±1%),
		_	_	140	mV	I _L = 100 μA, (Note 6)
		_	250	300	mV	MIC2951-4.8 (±1%), I _L = 100 mA, (Note 6)
			320	450	mV	MIC2951-4.8 (±1%),
		_		600	mV	I _L = 150 mA, (Note 6)

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - 2: Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and $V_{SHDN} \le 0.8V$.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μ A and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \text{ V})$, 2.3V $\le V_{IN} \le 30 \text{ V}$, 100 $\mu \text{A} < I_{L} \le 150 \text{ mA}$, $T_{J} \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate -40° C \leq T_J \leq $+125^{\circ}$ C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
		1	120	180	μA	MIC2951-02/-03,
		1		300	μΑ	I _L = 100 μA
		1	1.7	2.5	mA	MIC2951-02/-03,
		1	_	3.5	mA	I _L = 100 mA
		1	4	6	mA	MIC2951-02/-03,
			_	8	mA	I _L = 150 mA
		1	100	180	μA	MIC2951-3.3 (±1%),
	I _{GND}	1		300	μΑ	I _L = 100 μA
Ground Current		_	1.7	2.5	mA	MIC2951-3.3 (±1%), I _L = 100 mA
		_	4	6	mA	MIC2951-3.3 (±1%),
		_	_	10	mA	IL = 150 mA
		1	120	180	μΑ	MIC2951-4.8 (±1%),
			_	300	μA	I _L = 100 μA
		1	1.7	2.5	mA	MIC2951-4.8 (±1%),
		_		3.5	mA	I _L = 100 mA
			4	6	mA	MIC2951-4.8 (±1%),
		_		8	mA	I _L = 150 mA

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at $V_{IN} = 30V$ (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \ V)$, 2.3V $\le V_{IN} \le 30V$, 100 μ A $< I_L \le 150 \ m$ A, $T_J \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate –40°C \leq TJ \leq +125°C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
		_	280	350	μA	MIC2951-02/-03,	
		_	_	400	μA	V_{IN} = 4.5V, I_L = 100 μA	
Drangut Cround Current		_	150	350	μA	MIC2951-3.3 (±1%),	
Dropout Ground Current	I _{GND_DO}	_	_	400	μA	$V_{IN} = 3.0V, I_L = 100 \mu A$	
		_	280	350	μA	MIC2951-4.8 (±1%), V _{IN} = 4.3V,	
		_	_	400	μA	Ι _L = 100 μΑ	
Command Lineit	I _{LIM}	_	300	400	mA	V _{OUT} = 0V	
Current Limit		_	_	450	mA		
Thermal Regulation	$\Delta V_{OUT}/$ ΔP_{D}	_	0.05	0.20	%/W	Note 7	
		_	430	_	μV _{RMS}	10 Hz to 100 kHz, $C_L = 1.5 \mu F$	
		_	160	1	μV _{RMS}	10 Hz to 10 kHz, $C_L = 200 \mu F$	
Output Noise	e _{no}	_	100	_	μV _{RMS}	10 Hz to 100 kHz, C _L = 3.3 μF, 0.01 μF bypass Feedback to Output	

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 V)$, 2.3V $\le V_{IN} \le 30V$, 100 μ A $< I_L \le 150$ mA, $T_J \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate -40° C \leq T_J \leq $+125^{\circ}$ C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
		1.210	1.235	1.250	V	MUQQQ54 QQ (+Q 50/)	
		1.200	_	1.260	V	MIC2951-02 (±0.5%)	
		1.210	1.235	1.260	V	MICOCE4 02 (140/)	
Defenses Voltage		1.200	_	1.270	V	MIC2951-03 (±1%)	
Reference Voltage	V _{REF}	1.210	1.235	1.260	V	MIO0054 0 0 (140()	
		1.200	_	1.270	V	MIC2951-3.3 (±1%)	
		1.210	1.235	1.260	V	MIC2951-4.8 (±1%)	
		1.200	_	1.270	V		
	V _{REF}	1.190	_	1.270	V	MIC2951-3.3 (±%) (Note 8)	
Defenses Voltage		1.185	_	1.285	V	MIC2951-4.8 (±1%) (Note 8)	
Reference Voltage		1.185	_	1.285	V	MIC2951-3.3 (±1%) (Note 8)	
		1.185	_	1.285	V	MIC2951-4.8 (±1%) (Note 8)	
Facility Disa Comment		_	20	40	nA	_	
Feedback Bias Current	I _{FB}	_	_	60	nA	_	
Reference Voltage Temperature Coefficient		_	20	_	ppm/°C	MIC2951-02 (±0.5%), (Note 3)	
],, [50		ppm/°C	MIC2951-03 (±1%), (Note 3)	
	V _{REF_TC}	_	50	_	ppm/°C	MIC2951-3.3 (±1%), (Note 3)	
		_	50	_	ppm/°C	MIC2951-4.8 (±1%), (Note 3)	

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - 2: Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \ V)$, 2.3V $\le V_{IN} \le 30V$, 100 μ A $< I_L \le 150 \ m$ A, $T_J \le T_{JMAX}$.
 - 9: Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate –40°C \leq TJ \leq +125°C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Feedback Bias Current Temperature Coefficient	I _{FB_TC}	_	0.1		nA/°C	_	
Error Comparator Flag		_	0.01	1.00	μΑ	\/ = 20\/	
Output Leakage Current	IERR_LEAK	_		2.00	μA	V _{OH} = 30V	
Error Comparator Flag	.,	_	150	250	mV	V 4.5V 1 200A	
Output Low Voltage Flag	V _{ERR_LOW}	_	_	400	mV	V _{IN} = 4.5V, I _{OL} = 200 μA	
Error Comparator Flag	V _{ERR} _HIGH_TH	40	60	1	mV	Note 0	
Upper Threshold Voltage		25			mV	Note 9	
Error Comparator	.,	_	75	95	mV		
Lower Threshold Voltage	V _{ERR} _LOW_TH	_	_	140	mV	Note 9	
Error Comparator Hysteresis	V _{ERR_HYST}	_	15	_	mV	Note 9	

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - 2: Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μ A and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \ V)$, 2.3V $\le V_{IN} \le 30V$, 100 μ A $< I_L \le 150 \ m$ A, $T_J \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - 10: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V_{IN} = 6V; I_L = 100 μ A; C_L = 1 μ F; T_J = 25°C, **bold** values indicate -40° C \leq T_J \leq +125°C.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
			1.3		V	MIC2951-02 (±0.5%)	
		1		0.7	V	Low	
		2.0		1	V	High	
		1	1.3	1	V	MIC2951-03 (±1%)	
		_		0.7	V	Low	
Shutdown Input	V	2.0		_	V	High	
Logic Voltage	V _{SHDN}	1	1.3	1	V	MIC2951-3.3 (±1%)	
		_		0.7	V	Low	
		2.0		_	V	High	
		_	1.3		V	MIC2951-4.8 (±1%)	
		_		0.7	V	Low	
		2.0	_		V	High	
		1	30	50	μA	- 2 4\/	
Chutday In a st Command			_	100	μA	V _{SHUTDOWN} = 2.4V	
Shutdown Input Current	I _{SHDN}	1	450	600	μA	V _{SHUTDOWN} = 30V	
				750	μA		
Regulator Output Current		_	3	10	μA	Note 4	
in Shutdown	I _{OUT_SHDN}	_	_	20	μA	Note 1	

- **Note 1:** $V_{SHDN} \ge 2V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, with the FB pin connected to TAP.
 - 2: Additional conditions for 8-pin devices are V_{FB} = 5V, TAP and OUT connected to SNS (V_{OUT} = 5V) and V_{SHDN} ≤ 0.8V.
 - **3:** Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
 - **4:** Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
 - 5: Line regulation for the MIC2951 is tested at 150°C for I_L = 1 mA. For I_L = 100 μA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. See Typical Performance Curves for line regulation versus temperature and load current.
 - **6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.
 - 7: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at V_{IN} = 30V (1.25W pulse) for t = 10 ms.
 - 8: $V_{REF} \le V_{OUT} \le (V_{IN} 1 \text{ V})$, $2.3V \le V_{IN} \le 30V$, $100 \text{ } \mu\text{A} < I_{L} \le 150 \text{ mA}$, $T_{J} \le T_{JMAX}$.
 - **9:** Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT} /V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V/1.235V = 384 mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
 - **10:** Specification for packaged product only.

TEMPERATURE SPECIFICATIONS (Note 1)

	•		•			
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Lead Temperature	_	_	_	+260	°C	Soldering, 5s
Junction Operating Temperature	T _J	-40	_	+125	°C	_
Storage Temperature Range	T _A	-65	_	+150	°C	_
Package Thermal Resistances						
Thermal Resistance, SOIC-8Ld	θ_{JA}	_	TBD	_	°C/W	
Thermal Resistance, PDIP-8Ld	θ_{JA}	_	TBD	_	°C/W	

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

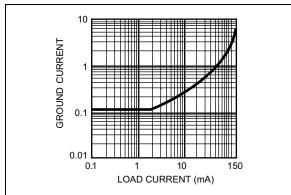


FIGURE 2-1: Ground Pin Current vs. Load Current.

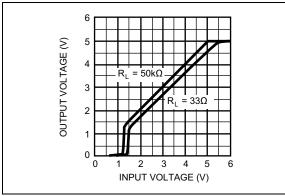
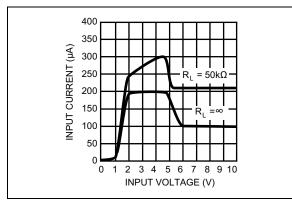



FIGURE 2-2: Dropout Characteristics.

FIGURE 2-3: Input Current vs. Input Votlage.

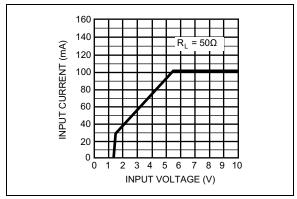


FIGURE 2-4: Input Current vs. Input Voltage.

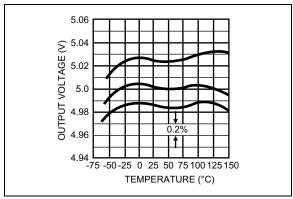
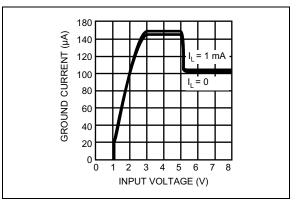



FIGURE 2-5: Output Voltage vs. Temperature of 3 Representative Units.

FIGURE 2-6: Ground Pin Current vs. Input Voltage.

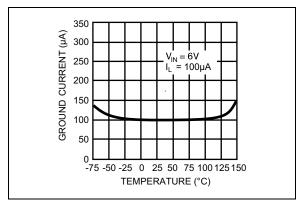


FIGURE 2-7: Temperature.

Ground Pin Current vs.

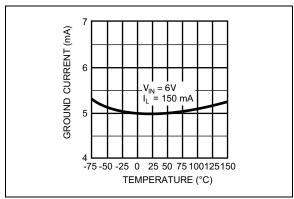


FIGURE 2-8: Temperature.

Ground Pin Current vs.

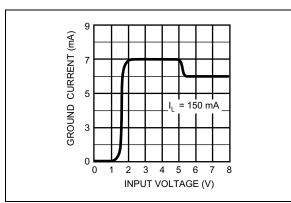


FIGURE 2-9: Input Voltage.

Ground Pin Current vs.

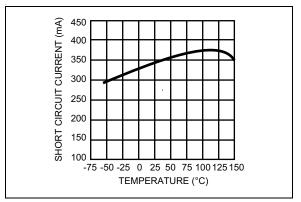


FIGURE 2-10: Temperature.

2-10: Short Circuit Current vs

FIGURE 2-11: Temperature.

Dropout Voltage vs.

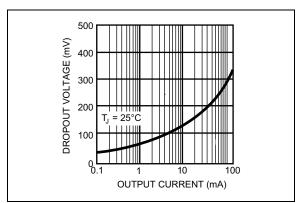
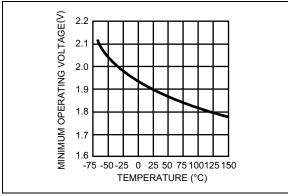



FIGURE 2-12: Current.

Dropout Voltage vs. Load

FIGURE 2-13: Minimum Operating Voltage vs. Temperature.

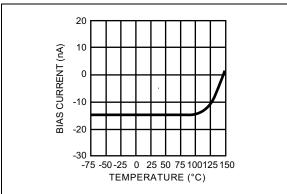


FIGURE 2-14: Feedback Bias Current vs. Temperature.

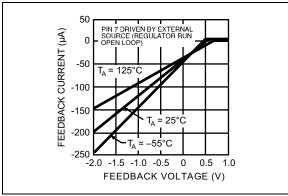


FIGURE 2-15: Feedback Pin Current vs. Feedback Voltage.

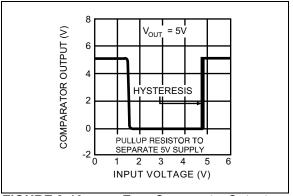


FIGURE 2-16: Error Comparator Output vs. Input Voltage.

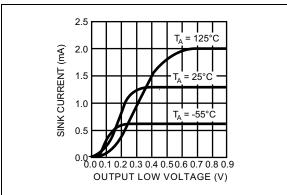


FIGURE 2-17: Comparator Sink Current vs. Output Low Voltage.

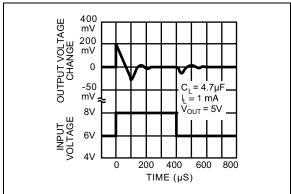


FIGURE 2-18: Line Transient Response.

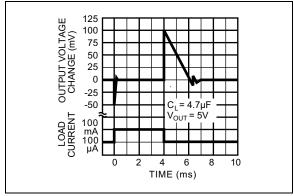


FIGURE 2-19: Load Transient Response.

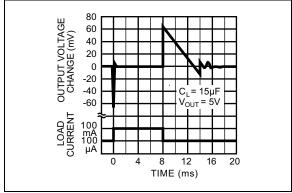


FIGURE 2-20: Load Transient Response.

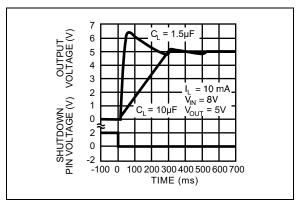


FIGURE 2-21: Start-Up from SHDN.

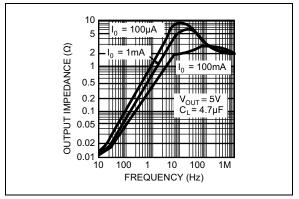
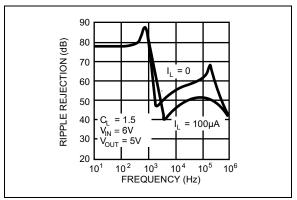



FIGURE 2-22: Output Impedance.

FIGURE 2-23: Power Supply Ripple Rejection.

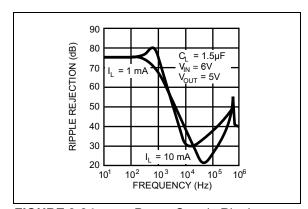


FIGURE 2-24: Rejection.

Power Supply Ripple

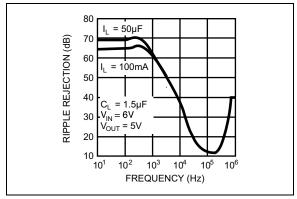
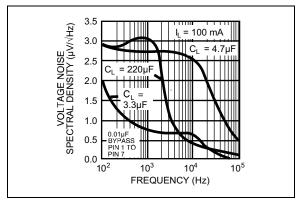



FIGURE 2-25: Rejection.

Power Supply Ripple

FIGURE 2-26:

Output Noise.

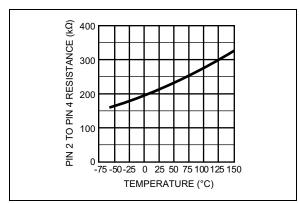
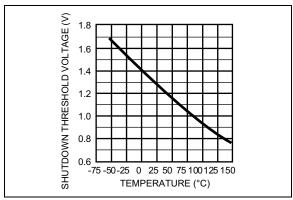



FIGURE 2-27: Temperature.

Divider Resistance vs.

. Divider Resistance vs

FIGURE 2-28: Shutdown Threshold Voltage vs. Temperature.

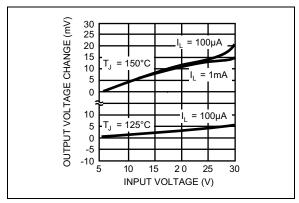
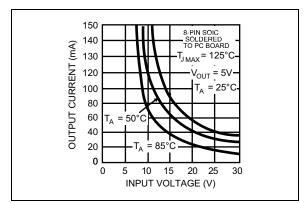



FIGURE 2-29:

Line Regulation.

FIGURE 2-30: Maximum Rated Output Current vs. Input Voltage.

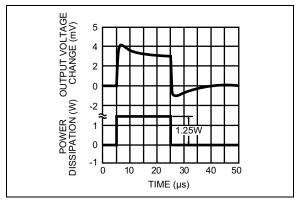


FIGURE 2-31: Thermal Response.

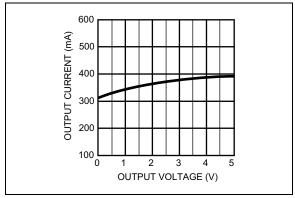


FIGURE 2-32: Foldback Current Limiting.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	OUT	Regulated Output.
2	SNS	Sense (Input): Output-voltage sensing end of internal voltage divider for fixed 5V operation. Not used in adjustable configuration.
3	SHDN	Shutdown/Enable (Input): TTL compatible input. High = shutdown, low or open = enable.
4	GND	Ground.
5	ERR	Error Flag (Output): Active low, open-collector output (low = error, floating = normal).
6	TAP	3.3V/4.85V/5V Tap: Output of internal voltage divider when the regulator is configured for fixed operation. Not used in adjustable configuration.
7	FB	Feedback (Input): 1.235V feedback from internal voltage divider's TAP (for fixed operation) or external resistor network (adjustable configuration).
8	IN	Unregulated Supply Input.

4.0 APPLICATION CIRCUITS AND ISSUES

4.1 Automotive Applications

The MIC2951 is ideally suited for automotive applications for a variety of reasons. It will operate over a wide range of input voltages, have very low dropout voltages (40 mV at light loads), and very low quiescent currents. These features are necessary for use in battery powered systems, such as automobiles. It is also a "bulletproof" device; with the ability to survive both reverse battery (negative transients up to 20V below ground), and load dump (positive transients up to 60V) conditions. A wide operating temperature range with low temperature coefficients is yet another reason to use this versatile regulator in automotive designs.

4.2 External Capacitors

A 1.5 μ F (or greater) capacitor is required between the MIC2951 output and ground to prevent oscillations due to instability. Most types of tantalum or aluminum electrolytics will be adequate; film types will work, but are costly and therefore not recommended. Many aluminum electrolytics have electrolytes that freeze at about –30°C, so solid tantalums are recommended for operation below –25°C. The important parameters of the capacitor are an effective series resistance of about 5 Ω or less and a resonant frequency above 500 kHz. The value of this capacitor may be increased without limit.

At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to 0.5 μF for current below 10 mA or 0.15 μF for currents below 1 mA. Using the regulator at voltages below 5V runs the error amplifier at lower gains so that more output capacitance is needed. For the worst-case situation of a 150 mA load at 1.23V output (Output shorted to Feedback) a 5 μF (or greater) capacitor should be used.

The MIC2950 will remain stable and in regulation with no load in addition to the internal voltage divider, unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications. When setting the output voltage of the MIC2951 with external resistors, a minimum load of $1\,\mu\text{A}$ is recommended.

A 0.1 μ F capacitor should be placed from the MIC2951 input to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery is used as the input.

Stray capacitance to the MIC2951 Feedback terminal (pin 7) can cause instability. This may especially be a problem when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between Output and Feedback and increasing the output capacitor to at least 3.3 μF will remedy this.

4.3 Error Detection Comparator Output

A logic low output will be produced by the comparator whenever the MIC2951 output falls out of regulation by more than approximately 5%. This figure is the comparator's built-in offset of about 60mV divided by the 1.235V reference voltage. (Refer to the Block Diagram). This trip level remains "5% below normal" regardless of the programmed output voltage of the MIC2951. For example, the error flag trip level is typically 4.75V for a 5V output or 11.4V for a 12V output. The out of regulation condition may be due either to low input voltage, current limiting, thermal limiting, or overvoltage on input (over 40V).

Figure 4-1 is a timing diagram depicting the /ERROR signal and the regulated output voltage as the MIC2951 input is ramped up and down. The /ERROR signal becomes valid (low) at about 1.3V input. It goes high at about 5V input (the input voltage at which $V_{OUT} = 4.75$ for 5.0V applications). Since the MIC2951's dropout voltage is load-dependent (see curve in Typical Performance Curves), the input voltage trip point (about 5V) will vary with the load current. The output voltage trip point does not vary with load.

The error comparator has an open-collector output which requires an external pull-up resistor. Depending on system requirements, this resistor may be returned to the output or some other supply voltage. In determining a value for this resistor, note that while the output is rated to sink 200 μA , this sink current adds to battery drain in a low battery condition. Suggested values range from 100 k Ω to 1 M Ω . The resistor is not required if this output is unused.

4.4 Programming the Output Voltage

The MIC2951 may be pin-strapped for 5V (or 3.3V or 4.85V) using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5V Tap). Alternatively, it may be programmed for any output voltage between its 1.235V reference and its 30V maximum rating. Taking into account the dropout voltage, the maximum output voltage recommended is 29V. An external pair of resistors is required, as shown in Figure 4-2.

The complete equation for the output voltage is shown in Equation 4-1.

EQUATION 4-1:

$$V_{OUT} = V_{REF} \times \left\{1 + \frac{R_1}{R_2}\right\} + I_{FB}R_1$$

Where:

V_{REF} = The nominal 1.235 reference voltage I_{FB} = The feedback pin bias current, nominally

–20 nA

The minimum recommended load current of 1 μ A forces an upper limit of 1.2 M Ω on the value of R2, if the regulator must work with no load (a condition often found in CMOS in standby), I_{FB} will produce a 2% typical error in V_{OUT} which may be eliminated at room temperature by trimming R1. For better accuracy, choosing R2 = 100 k Ω reduces this error to 0.17% while increasing the resistor program current to 12 μ A.

4.5 Reducing Output Noise

In some applications it may be advantageous to reduce the AC noise present at the output. One method is to reduce the regulator bandwidth by increasing the size of the output capacitor. This method is relatively inefficient, as increasing the capacitor from 1 μF to 220 μF only decreases the noise from 430 μV to 160 μV RMS for a 100 kHz bandwidth at 5V output.

Noise can be reduced fourfold by a bypass capacitor across R1, since it reduces the high frequency gain from 4 to unity. Choose from either Equation 4-2 or about $0.01~\mu F$.

EQUATION 4-2:

$$C_{BYPASS} = \frac{1}{2\pi R_1 \bullet 200 Hz}$$

When doing this, the output capacitor must be increased to 3.3 μF to maintain stability. These changes reduce the output noise from 430 μV to 100 μV_{rms} for a 100 kHz bandwidth at 5V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

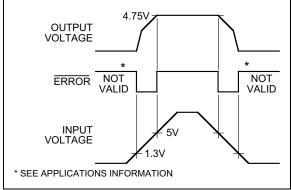


FIGURE 4-1: ERROR Output Timing.

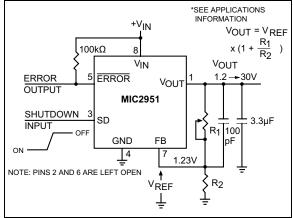


FIGURE 4-2: Adjustable Regulator.

5.0 SCHEMATIC DIAGRAM

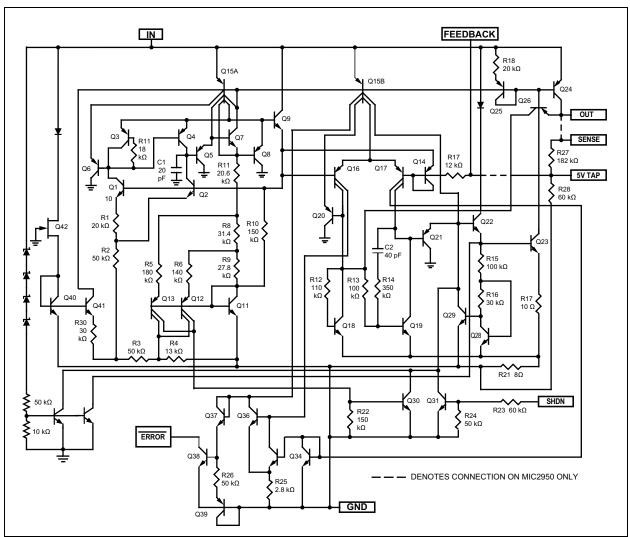


FIGURE 5-1: Schematic Diagram.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

8-Lead SOIC*

XXXXXXX XXYM

8-Lead MSOP*

XXXX XXYMM

8-Lead PDIP*

Example

11 1826 MIC2951 02YM

Example

2951 03YMM

Example

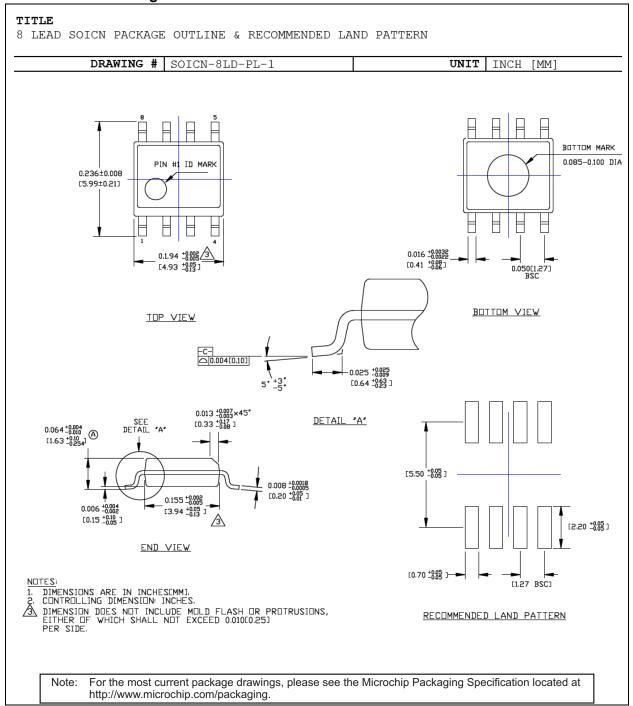
MIC2951 03YN 1215

Legend: XX...X Product code or customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

Pb-free JEDEC® designator for Matte Tin (Sn)

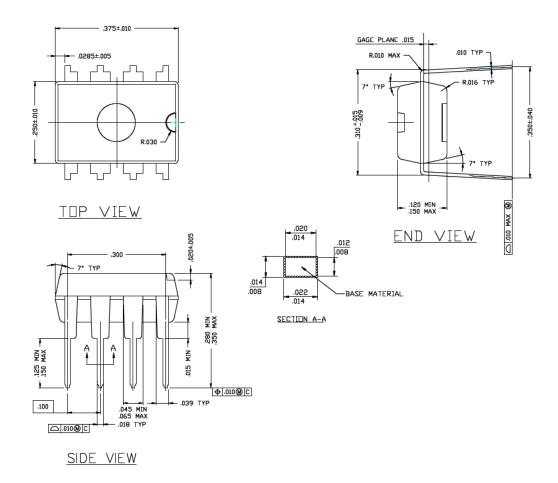

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

ullet, lacktriangle, lacktriangle Pin one index is identified by a dot, delta up, or delta down (triangle mark).

lote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

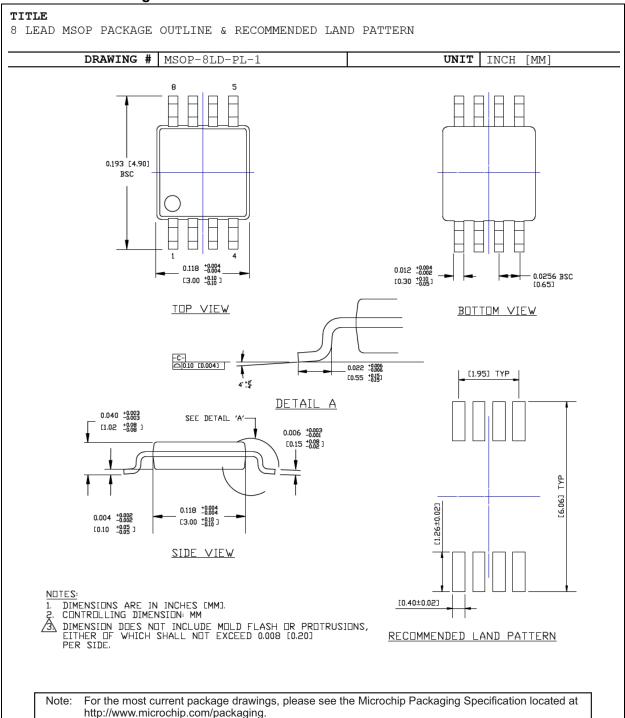
Underbar (_) and/or Overbar (_) symbol may not be to scale.

8-Lead SOICN Package Outline & Recommended Land Pattern


DS20006447A-page 28

8-Lead Plastic DIP Package Outline & Recommended Land Pattern

TITLE


8 LEAD PDIP PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING #	PDIP-8LD-PL-1	UNIT	INCH
Lead Frame	Copper	Lead Finish	Matte Tin

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

8-Lead MSOP Package Outline & Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (November 2020)

- Converted Micrel document MIC2951 to Microchip data sheet template DS20006447A.
- Minor grammatical text changes throughout.
- Removed all reference to MIC2950 which has been EOL.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	-XX	x	XX	-XX		Example	es:	
Device	Voltage pecification Range	Temperature Range	Package	\Box	е	a) MIC29	51-02YM:	MIC2951, 5.0V ±0.5% Voltage Specification Range, -40°C to +125°C Temp. Range, 8-Lead SOIC, 95/Tube
Device:	MIC2951:	5.0V ±0.5%	Propout Voltage	Regulator		b) MIC29	51-03YN:	MIC2951, 5.0V ±1.0% Voltage Specification Range, -40°C to +125°C Temp. Range, 8-Lead PDIP, 50/Tube
Reference Voltag Specification Range:	ge 03 = Y =	5.0V ±1.0% -40°C to +125°	C (RoHS Comp	liant)		c) MIC29	51-03YMM:	MIC2951, 5.0V ±1.0% Voltage Specification Range, –40°C to +125°C Temp. Range, 8-Lead MSOP, 100/Tube
Range: Packages:	M = MM = N =	8-Lead SOIC 8-Lead MSOP 8-Lead Plastic D	ΝΡ			d) MIC29	51-02YM-TR:	MIC2951, 5.0V ±0.5% Voltage Specification Range, -40°C to +125°C Temp. Range, 8-Lead SOIC, 2,500/Reel
Media Type:	 <blank>= <blank>= TR = 25</blank></blank>	95/Tube (SOIC of 100/Tube (MSO 50/Tube (PDIP of 00/Reel (All packa	P option) option)			e) MIC29	51-03YMM-TR:	MIC2951, 5.0V ±1.0% Voltage Specification Range, -40°C to +125°C Temp. Range, 8-Lead MSOP, 2,500/Reel
						Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.		

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7157-8

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-598 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820