

SY58022U

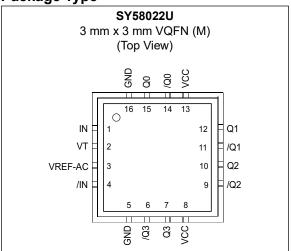
5.5 GHz, 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination

Features

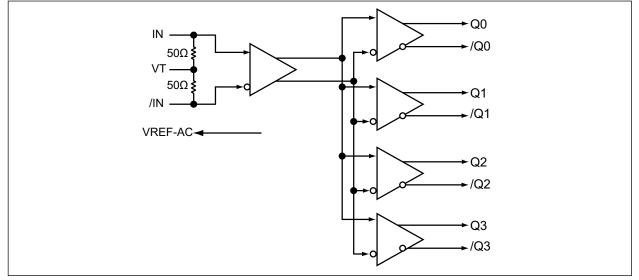
- Precision 1:4, 400 mV LVPECL Fanout Buffer
- Ensured AC Performance over Temperature and Voltage:
 - >5.5 GHz f_{MAX} Clock
 - <80 ps t_r/t_f Times
 - <250 ps (V_{IN} ≥300 mV) t_{PD}
 - <15 ps Maximum Skew
- Low Jitter Performance: 60 fs_{RMS} Phase Jitter
- Accepts an Input Signal as Low as 100 mV
- Unique Input Termination and VT Pin Accepts DCand AC-Coupled Differential Inputs: LVPECL, LVDS, and CML
- 400 mV LVPECL Compatible Outputs
- Power Supply: 2.5V ±5% and 3.3V ±10%
- –40°C to +85°C Temperature Range
- Available in a 16-Lead 3 mm x 3 mm VQFN Package

Applications

- All SONET and All GigE Clock Distribution
- Fibre Channel Clock and Data Distribution
- Backplane Distribution
- Data Distribution: OC-48, OC-48+FEC, XAUI
- High-End, Low-Skew, Multiprocessor Synchronous Clock Distribution


General Description

The SY58022U is a 2.5V/3.3V precision, high-speed, fully differential 1:4 LVPECL fanout buffer. Optimized to provide four identical output copies with less than 15 ps of skew and less than 10 p_{SPP} total jitter, the SY58022U can process clock signals as fast as 5.5 GHz.


The differential input includes Microchip's unique, 3-pin input termination architecture interfaces to differential LVPECL, CML, and LVDS signals (AC- or DC-coupled) as small as 100 mV without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an on-board output reference voltage (V_{REF-AC}) is provided to bias the VT pin. The outputs are 400 mV LVPECL compatible with extremely fast rise/fall times ensured to be less than 80 ps.

The SY58022U operates from a 2.5V \pm 5% supply or 3.3V \pm 10% supply and is ensured over the full industrial temperature range (-40°C to +85°C). For applications that require greater output swing or CML compatible outputs, consider the SY58021U 1:4 fanout buffer with LVPECL outputs, or the SY58020U 1:4 fanout buffer with 400 mV CML outputs.

Package Type

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Power Supply Voltage (V _{CC})	
Input Voltage (V _{IN})	–0.5V to V _{CC}
Continuous Output Current (I _{OUT})	
Surge Output Current (I _{OUT})	100 mA
Source or Sink Current on VT Pin	±100 mA
Source or Sink Current on (IN, /IN) Pins	±50 mA
Source or Sink Current on VREF-AC Pin (Note 1)	±1.5 mA

Operating Ratings ††

† Notice: Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

†† Notice: The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

Note 1: Due to the limited drive capability, use for input of the same package only.

DC ELECTRICAL CHARACTERISTICS

T _A = -40°C to +85°C. Note 1							
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions	
	N	2.375	2.5	2.625	V	V _{CC} = 2.5V	
Power Supply Voltage	V _{CC}	3.0	3.3	3.6	V	V _{CC} = 3.3V	
Power Supply Current	I _{CC}	—	125	160	mA	No load, V _{CC} = Max.	
Input High Voltage	V _{IH}	1.2	_	V _{CC}	V	—	
Input Low Voltage	V _{IL}	0	_	V _{IH} – 0.1	V	IN, /IN	
Input Voltage Swing	V _{IN}	0.1	_	3.6	V	IN, /IN; See Figure 4-1	
Differential Input Voltage	V _{DIFF_IN}	0.2	_	3.4	V	IN, /IN; See Figure 4-2	
IN-to-VT Resistance	R _{IN}	40	50	60	Ω	—	
Output Reference Voltage	V _{REF-AC}	V _{CC} – 1.3	V _{CC} – 1.2	V _{CC} – 1.1	V	—	
IN-to-VT Voltage	V _{T_IN}	_	_	1.28	V	_	

Note 1: The circuit is designed to meet the DC specifications shown in the table above after thermal equilibrium has been established.

LVPECL DC ELECTRICAL CHARACTERISTICS

V_{CC} = 3.3V ±10% or V_{CC} = 2.5 ±5%; R_L = 50 Ω to V_{CC} – 2V; T_A = –40°C to +85°C, unless otherwise stated. Note 1								
Parameter	Symbol	Min.	Тур.	Max.	Units	Condition		
Output High Voltage	V _{OH}	V _{CC} – 1.145	V _{CC} – 1.020	V _{CC} – 0.895	V	—		
Output Low Voltage	V _{OL}	V _{CC} – 1.545	V _{CC} – 1.420	V _{CC} – 1.295	V	—		
Output Voltage Swing	V _{OUT}	150	400	650	mV	See Figure 4-1		
Differential Output Swing	V _{DIFF_OUT}	300	800	1300	mV	See Figure 4-2		

Note 1: The circuit is designed to meet the DC specifications shown in the table above after thermal equilibrium has been established.

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.5V ±5% or 3.3V ±10%; R_L = 50 Ω to V_{CC} – 2V; T_A = –40°C to +85°C, unless otherwise stated.

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition
Maximum Operating Frequency	f	5.5	—	—	GHz	Clock, V _{OUT} ≥ 200 mV
Maximum Operating Frequency	f _{MAX}	—	10	—	Gbps	NRZ Data
Propagation Delay	t _{PD}	130	200	280	ps	—
Channel-to-Channel Skew	t _{CHAN}	_	4	15	ps	Note 1
Part-to-Part Skew	t _{SKEW}	—	—	50	ps	Note 2
RMS Phase Jitter	t _{JITTER}	_	60	_	fs	Output = 622 MHz, Integration range: 12 kHz to 20 MHz
Output Rise/Fall Time	t _r /t _f	20	50	80	ps	20% to 80%, At full swing

Note 1: Skew is measured between outputs of the same bank under identical transitions.

2: Skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.

TEMPERATURE SPECIFICATIONS

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Operating Temperature Range	T _A	-40		+85	°C	—	
Lead Temperature	—	—	_	+260	°C	Soldering, 20 sec.	
Storage Temperature Range	T _S	-65	_	+150	°C	—	
Package Thermal Resistances							
	0		60	_	°C/W	Still-air	
Thermal Resistance, 3x3 VQFN 16-Ld	θ_{JA}	_	54			500 lpfm	
	θ_{JB}		33	_	°C/W	Junction-to-board, Note 1	

Note 1: Thermal performance assumed exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

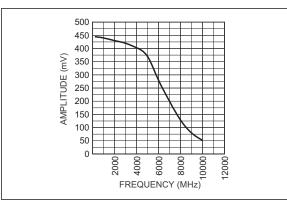


FIGURE 2-1:

Amplitude vs. Frequency.

 V_{CC} = 3.3V, V_{EE} = 0V, V_{IN} = 100 mV, T_A = +25°C, unless otherwise stated.

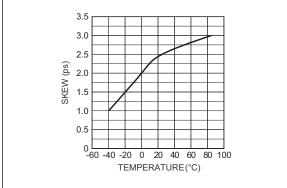


FIGURE 2-2:

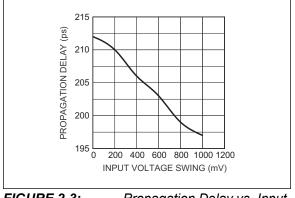


FIGURE 2-3: Voltage Swing.

Propagation Delay vs. Input

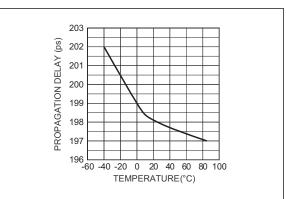


FIGURE 2-4: Temperature.

Propagation Delay vs.

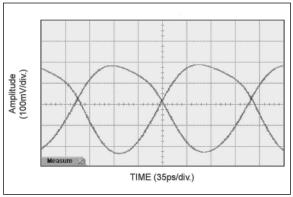


FIGURE 2-5: 4 GHz

4 GHz Output.

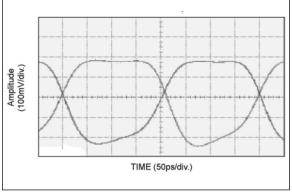


FIGURE 2-6:

2.5 GHz Output.

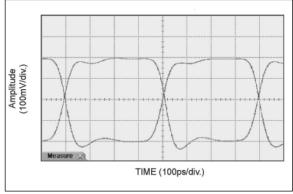


FIGURE 2-7: 1.25 GHz Output.

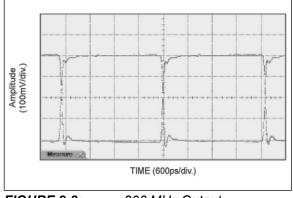
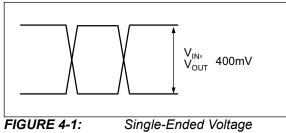


FIGURE 2-8: 200 MHz Output.


3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

Pin Number	Pin Name	Description
1, 4	IN, /IN	Differential Input: This input pair receives the signal to be buffered. Each pin is internally terminated with 50Ω to the VT pin. Note that this input will default to an indeterminate state if left open. See the Input Interface Applications section.
2	VT	Input Termination Center-Tap: Each input terminates to this pin. The VT pin provides a center-tap for each input (IN, /IN) to the termination network for maximum interface flexibility. See the Input Interface Applications section.
3	VREF-AC	Reference Output Voltage: This output biases to V _{CC} – 1.2V. It is used when AC-coupling to differential inputs. Connect VREF-AC directly to the VT pin. Bypass with 0.01 μ F low ESR capacitor to VCC. See the Input Interface Applications section.
8, 13	VCC	Positive Power Supply: Bypass with 0.1 μ F//0.01 μ F low-ESR capacitors as close to the pins as possible. A 0.01 μ F capacitor should be as close to the VCC pin as possible.
5, 16	GND, Exposed Pad	Ground. Exposed pad must be connected to a ground plane that is the same potential as the ground pin.
14, 15 11, 12 9, 10 6, 7	/Q0, Q0 /Q1, Q1 /Q2, Q2 /Q3, Q3	LVPECL Differential Output Pairs: Differential buffered output copy of the input signal. The output swing is typically 400 mV. Proper termination is 50Ω to V _{CC} – 2V at the receiving end. Unused output pairs may be left floating with no impact on jitter or skew. See the Output Termination Recommendations section.

TABLE 3-1: PIN FUNCTION TABLE

4.0 SINGLE-ENDED AND DIFFERENTIAL SWINGS

Swing.

Single-Ended Voltage

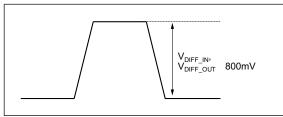
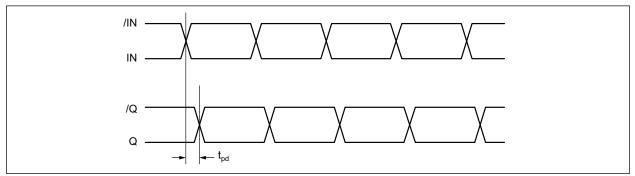
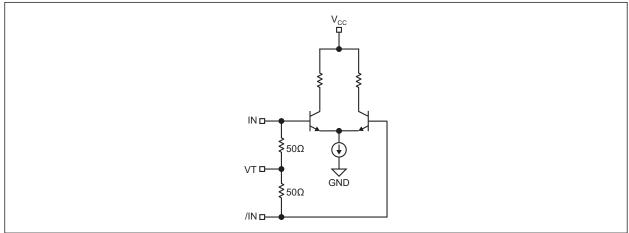
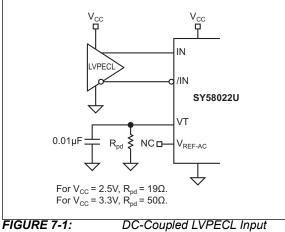


FIGURE 4-2:

Differential Voltage Swing.

5.0 TIMING DIAGRAM


FIGURE 5-1: Timing Diagram.

6.0 INPUT STAGE

7.0 INPUT INTERFACE APPLICATIONS

Interface.

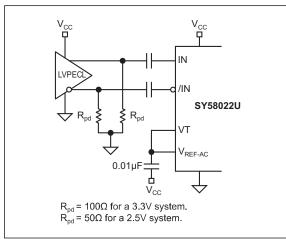


FIGURE 7-2: AC-Coupled LVPECL Input Interface.

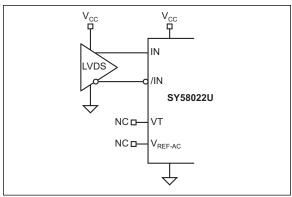


FIGURE 7-3:

LVDS Input Interface.

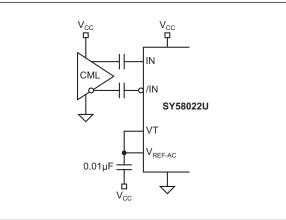


FIGURE 7-4: Interface.

AC-Coupled CML Input

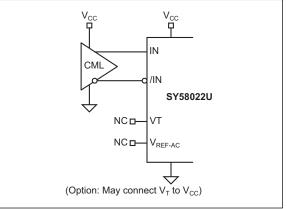
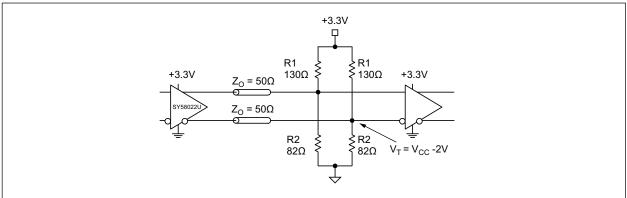
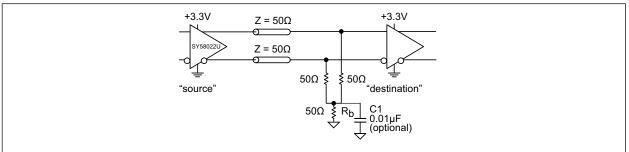
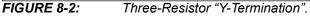


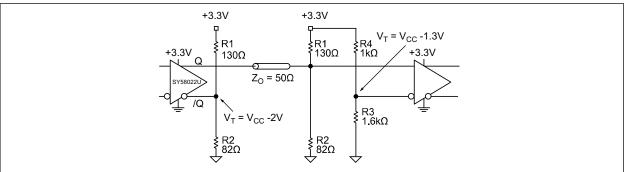
FIGURE 7-5:

CML Input Interface.

8.0 OUTPUT TERMINATION RECOMMENDATIONS

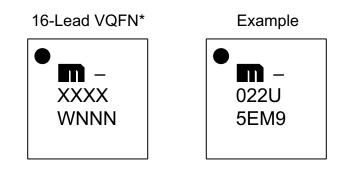
LVPECL outputs have very low output impedance (open emitter), and small signal swing which results in low EMI (electro-magnetic interference). The LVPECL is ideal for driving 50Ω -controlled and 100Ω -controlled impedance transmission lines. In addition, LVPECL is compatible for driving standard PECL inputs because PECL inputs require only 100 mV input swing. Further, there are several techniques in terminating the LVPECL outputs, as shown in Figure 8-1 through Figure 8-3.

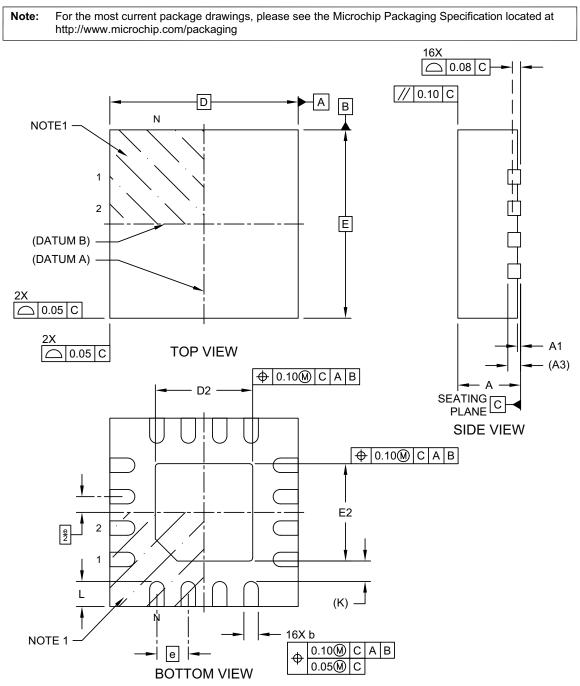

FIGURE 8-1: Parallel Termination – Thevenin Equivalent.

Note: For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω. For +3.3V systems: R1 = 130Ω, R2 = 83Ω.

Note: Power-saving alternative to Thevenin termination. Place termination resistors as close to destination inputs as possible. R_b resistor sets the DC bias voltage, equal to V_T . For +2.5V systems, $R_b = 19\Omega$. For 3.3V systems, $R_b = 46\Omega$ to 50Ω . C1 is an optional bypass capacitor intended to compensate for any t_r/t_f mismatches.

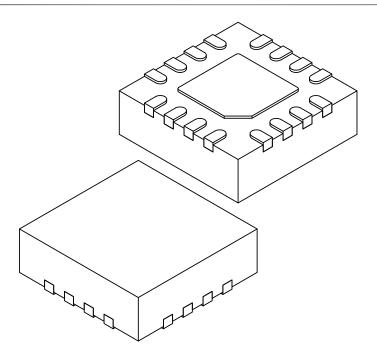


Note: Unused output (/Q) must be terminated to balance the output. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω , R3 = $1.25 k\Omega$, R4 = $1.2 k\Omega$. For +3.3V systems: R1 = 130Ω , R2 = 82Ω , R3 = $1 k\Omega$, R4 = $1.6 k\Omega$. Unused output pairs (Q and /Q) may be left floating.


9.0 PACKAGING INFORMATION

9.1 Package Marking Information

Legend:	Y YY WW NNN @3 *	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package. Pin one index is identified by a dot, delta up, or delta down (triangle
b c tł	e carriec haracters he corpora	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.


16-Lead Very Thin Plastic Quad Flat, No Lead Package (NCA) - 3x3x1.0 mm Body [VQFN] With 1.55 mm Exposed Pad; Micrel Legacy Package QFN33-16LD-PL-1

Microchip Technology Drawing C04-1103-NCA Rev C Sheet 1 of 2

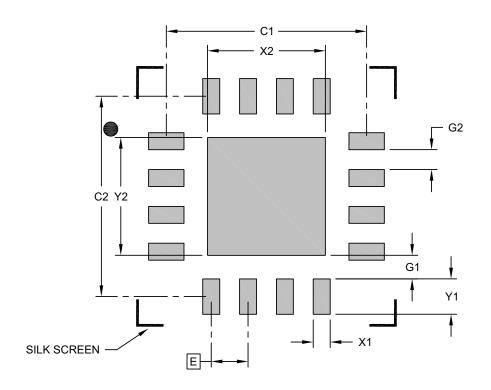
16-Lead Very Thin Plastic Quad Flat, No Lead Package (NCA) - 3x3x1.0 mm Body [VQFN] With 1.55 mm Exposed Pad; Micrel Legacy Package QFN33-16LD-PL-1

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	Ν		16		
Pitch	е		0.50 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.203 REF			
Overall Length	D	3.00 BSC			
Exposed Pad Length	D2	1.50	1.55	1.60	
Overall Width	E		3.00 BSC		
Exposed Pad Width	E2	1.50	1.55	1.60	
Terminal Width	b	0.18	0.23	0.28	
Terminal Length	L	0.35	0.40	0.45	
Terminal-to-Exposed-Pad	К		0.33 REF		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Package is saw singulated

 Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1103-NCA Rev C Sheet 2 of 2

16-Lead Very Thin Plastic Quad Flat, No Lead Package (NCA) - 3x3x1.0 mm Body [VQFN] With 1.55 mm Exposed Pad; Micrel Legacy Package QFN33-16LD-PL-1

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Center Pad Width	X2			1.60
Center Pad Length	Y2			1.60
Contact Pad Spacing	C1		2.72	
Contact Pad Spacing	C2		2.72	
Contact Pad Width (Xnn)	X1			0.23
Contact Pad Length (Xnn)	Y1			0.48
Contact Pad to Center Pad (Xnn)	G1	0.32		
Contact Pad to Contact Pad (Xnn)	G2	0.27		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3103-NCA Rev C

APPENDIX A: REVISION HISTORY

Revision A (August 2023)

- Converted Micrel document SY58022U to Microchip data sheet template DS20006800A.
- Swapped Figure 7-4 and Figure 7-5. These were sorted incorrectly in the legacy document.
- Minor text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Device Supply Voltage Package Temperature Range Media Type Media Type: a) SY58022UMG: Device: SY58022: 5.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: S.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: S.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: S.7 Size Sys8022: SY58022: S.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: SY58022: S.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: SY58022: S.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: S.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination SY58022: S.5 Sidez 2: SY58022: SY5802: SY58022: SY5802: SY58022: SY5802: SY5802:	Part No.	X	X	X	- <u>XX</u>	Exampl	es:
SY58022, 2.5V/3.3V Supply Voltage, 16- Lead VQFN, -40°C to +85°C Temperature Range, 100/Tube Device: 5.5 GHz 1:4 Fanout Buffer/Translator with 400 mV LVPECL Outputs and Internal Input Termination Supply Voltage: U = 2.5V/3.3V Package: M = 3 mm x 3 mm 16-Lead VQFN Temperature Range: G = -40°C to +85°C Media Ture: <blank> = 100/Tube</blank>	Device		Package	•	Media Type	a) SY58	3022UMG:
Supply Voltage: U = 2.5V/3.3V Supply Voltage, 16-Lead VQFN, -40°C to +85°C Temperature Range, 1,000/Reel Package: M = 3 mm x 3 mm 16-Lead VQFN Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. Media Ture: <blank> = 100/Tube</blank>	Device:		400 mV LVP	Fanout Buffer/Tran		b) SY58	Lead VQFN, -40°C to +85°C Temperature Range, 100/Tube
Temperature Range: G = -40°C to +85°C catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. Media Type: <blank> = 100/Tube</blank>	Supply Voltage:	U =					Lead VQFN, -40°C to +85°C Temperature
Temperature Range: G = -40°C to +85°C the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. Media Type: <blank> = 100/Tube</blank>	Package:	M =	3 mm x 3 mm	16-Lead VQFN		Note 1:	catalog part number description. This identifier is
		G =	–40°C to +85	°C			the device package. Check with your Microchip Sales Office for package availability with the Tape
	Media Type:						

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc c}}$ 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2970-2

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Italy - Padova Tel: 39-049-7625286

> **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820