

RELIABILITY REPORT

FOR

MAX2172ETL+

PLASTIC ENCAPSULATED DEVICES

March 18, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by			
Ken Wendel			
Quality Assurance			
Director, Reliability Engineering			

Conclusion

The MAX2172ETL+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX2172 direct-conversion to low-IF tuner is designed for digital audio broadcast (DAB) and terrestrial digital multimedia broadcast (T-DMB) applications, covering an input frequency range of 168MHz to 240MHz (VHF-III), 1452MHz to 1492MHz (L-band), and also 87MHz to 108MHz (FM). The MAX2172 achieves a high level of component integration, allowing lowpower, tuner-on-board designs. The direct-conversion to low-IF architecture eliminates the need for an IF-SAW filter while providing a balanced 2.048MHz center frequency baseband output to the demodulator. The MAX2172 provides a buffered reference clock at the crystal frequency. A sigma-delta fractional-N synthesizer is incorporated to optimize both close-in and wideband phase noise performances for OFDM applications where sensitivity to both 1kHz phase noise and wideband phase noise related to strong adjacents can be a problem. The MAX2172 is available in a 40-pin thin QFN package (6mm x 6mm) with an exposed pad. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range.

II. Manufacturing Information

A. Description/Function: Direct-Conversion to Low-IF Tuner for Digital Audio Broadcast

B. Process: MB3

C. Number of Device Transistors: 42202
D. Fabrication Location: California
E. Assembly Location: ASAT China

F. Date of Initial Production: December 18, 2008

III. Packaging Information

A. Package Type: 40-pin TQFN 6x6

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Au (1.0 mil dia.)
F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 39°C/W
K. Single Layer Theta Jc: 1.5°C/W
L. Multi Layer Theta Ja: 28°C/W
M. Multi Layer Theta Jc: 1.5°C/W

IV. Die Information

A. Dimensions: 119.3X112.2 mils

B. Passivation: BCB

C. Interconnect: 2 x Aluminum/Cu (Cu = 0.5%), top layer 100% Cu

D. Backside Metallization: None
E. Minimum Metal Width: 0.35 um
F. Minimum Metal Spacing: 0.35 um
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = 1 \over MTTF$$
 = 1.83 (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$x = 22.4 \times 10^{-9}$$

% = 22.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the MB3HT Process results in a FIT Rate of 0.7 @ 25C and 11.5 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard $85^{\circ}\text{C}/85\%\text{RH}$ or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The WG56 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA, 1.5x VCCMax Overvoltage per JESD78.

Table 1
Reliability Evaluation Test Results

MAX2172ETL+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (Note 1)				
,	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.	·			
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data