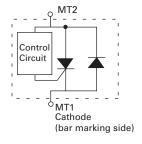
PLEDxUSWxA Series - Unidirectional, White Body



Agency Approvals

Agency File Number
E133083

Schematic Symbol

Description

PLEDxUSWxA open LED protectors provide a switching electronic shunt path when an LED in an LED string fails as an open circuit. This ensures that the remaining string of LEDs will continue to function if a single LED does not.

The devices is designed to enable higher reliability in indoor LED lighting applications such as advertisement lighting and other applications. Additionally, it is molded from white material to make them less visible in the LED fixture and the white molding also reflects more light to improve overall light engine efficiency.

Compatible with one, two and three watt LEDs that have a nominal 3V forward characteristic, PLEDxUSWxA is available in SMB surface mount package. The DO-214AA (SMB) low profile package is ideal for dense board applications.

Features & Benefits

- Ideal for protecting high brightness LED with high operating current at specified condition.
- White compound for better optical appearances
- Fast switching
- Reverse Battery/Power Protection
- Low profile, small foot print standard DO-214AA package

- Compatible with industrial lighting environments
- Compatible with PWM frequencies up to 30 kHz
- RoHS compliant and halogen-free
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin(Sn) (IPC/ JEDEC J-STD-609A.01)

Electrical Characteristics (All parameters are measured at T=25°C unless otherwise noted)

	Marking	V _{BR} breakdown		V _{DRM} breakdown	I _H	l _s	Ι _Τ @ V _Τ	V _T @ I _T = 1 Amp	l _o 1	Critical rate of rise dV/dt
Part Number		Vo	lts	Volts	mAmps	mAmps	Amps	Volts	Amps	Volts
		Min	Max	Min	Min	Max	Max	Max	Min	Max
PLED6USW2A	PL62A	6	16	6	5	100	1.0	1.2	2	250V/µs

Notes

1. $\rm I_{o}\text{-}$ Operation current tested @ alumium boards, ambient temp 85C

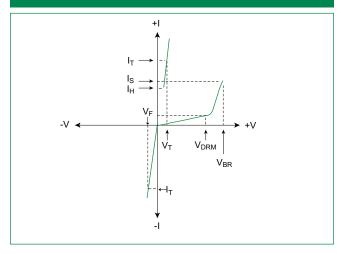
Thermal Considerations

Package	Symbol	Parameter	Value	Unit
DO-214AA in White	T _J	Operating Junction Temperature Range	-40 to +150	°C
DO-214AA III WIIILE	T _s Storage Temperature Range		-65 to +150	°C
	R _{eJA}	Thermal Resistance: Junction to Ambient	DO-214AA: 90 ¹ DO-214AA: 40 ²	°C/W

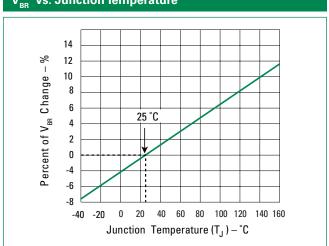
Notes:

1) Standard FR-4 PCB with Copper Pads (Recommended Size)

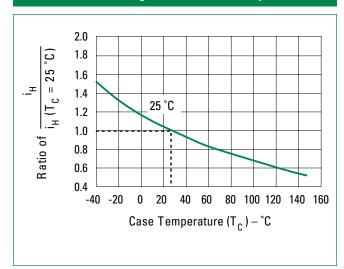
2) Aluminum PCB

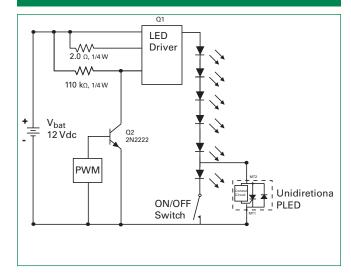

Thickness: 1.6mm

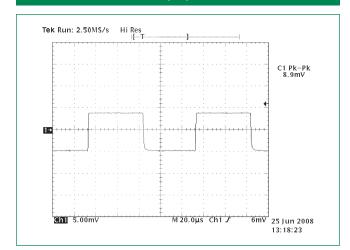
Grade: 1-2 W/mK Thermal Conductivity Trace thickness: 2 oz

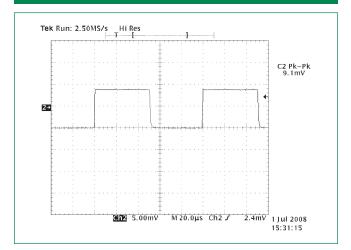

Insulation layer thickness: 215 um

Solder Pad Dimensions: 2.0mm x 2.8mm (Recommended Size)

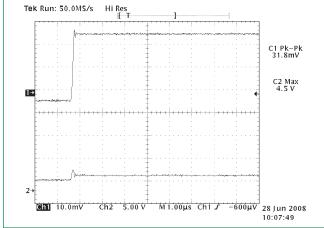

V-I Characteristics


V_{BR} vs. Junction Temperature

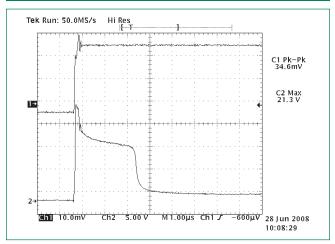

Normalized DC Holding Current vs. Case Temperature


LED Interference Test Circuit

6 LEDs in Series 50% Duty Cycle 10kHz

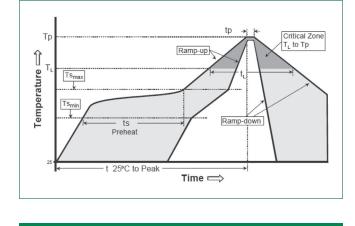


5 LEDs and 1 PLED in Series 50% Duty Cycle 10kHz


Note: These two graphs show the current magnitude through the LED string with and without the PLED included. There is no noticeable effect on the LED current magnitude when the PLED is included in the circuit as compared to the LED current magnitude when the PLED is not in the circuit. (The conversion factor for the test measurement in the graphs above is 10mA/mV for the Pearson coil measurement, therefore, the current magnitude in the first figure is 10mA*8.9 = 89mA, while the second figure is 91mA.)

PLED in the Off-State 10kHz

Channel 1: current through LEDs (318 mA) Channel 2: voltage across PLED device (4.5 V)


PLED device zeners and then turns fully on 10kHz

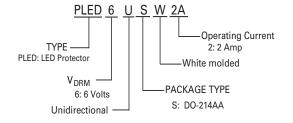
Channel 1: current through LEDs (346 mA) and PLED device once it is fully turned on 2.5 μ sec later Channel 2: voltage across PLED device (21.3 V before PLED crowbars with 2 V drop)

Soldering Parameters

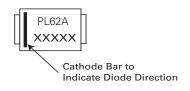
Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (LiquidusTemp (T _L) to peak		3°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max	
Poflow	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260+ ^{0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		30 seconds	
Ramp-dow	vn Rate	6°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes max	
Do not exc	ceed	260°C	

Physical Specifications

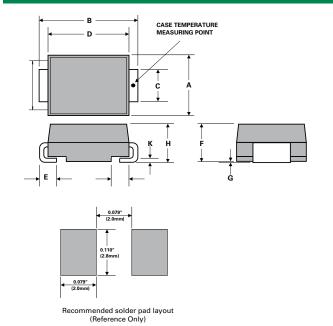
Terminal Material	Copper Alloy		
Terminal Finish	100% Matte Tin Plated		
Body Material	UL recognized epoxy meeting flammability classification V-0		


Environmental Specifications

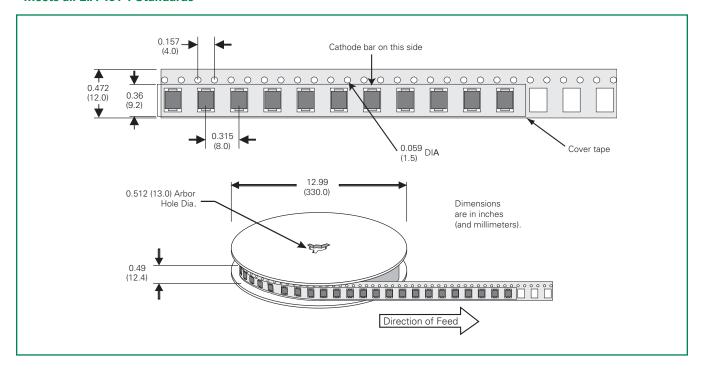
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A 80% min V _{DRM} (VAC-peak), 150°C, 504 hours		
Temperature Cycling	MIL-STD-750: Method 1051 -65°C to 150°C, 15-minute dwell, 100 cycles		
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 80%V _{DRM} , 85°C, 85%RH, 1008 hours		
High Temperature Storage	MIL-STD-750: Method 1031 150°C, 1008 hours		
Low Temperature Storage	-65°C, 1008 hours		
Thermal Shock	MIL-STD-750: Method 1056 0°C to 100°C, 5-minute dwell, 10-second transfer, 10 cycles		
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds		


Packaging

Package	Description	Packaging Quantity	Industry Standard
S	DO-214AA	2500	EIA-481-1


Part Numbering System

Part Marking System


Dimensions - DO-214 AA Package

Dimensions	Incl	nes	Millimeters		
DIFFERSIONS	Min	Max	Min	Max	
А	0.130	0.156	3.30	3.95	
В	0.201	0.220	5.10	5.60	
С	0.077	0.087	1.95	2.20	
D	0.159	0.181	4.05	4.60	
Е	0.030	0.063	0.75	1.60	
F	0.075	0.096	1.90	2.45	
G	0.002	0.008	0.05	0.20	
Н	0.077	0.104	1.95	2.65	
K	0.006	0.016	0.15	0.41	

DO-214AA Embossed Carrier Reel Pack (RP)

Meets all EIA-481-1 Standards

