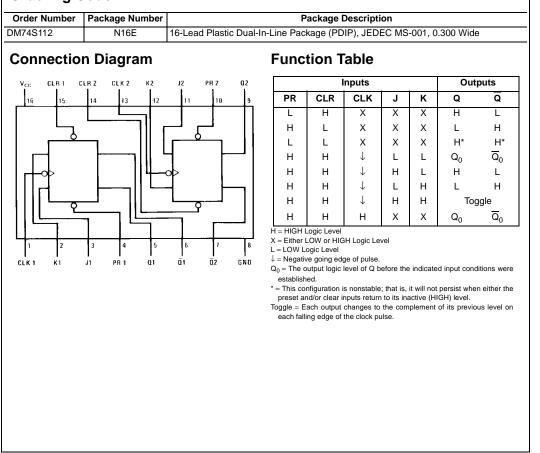
Outputs

DM74S112 Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs


General Description

FAIRCHILD

SEMICONDUCTOR

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. Data on the J and K inputs can be changed while the clock is HIGH or LOW without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Ordering Code:

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	ol Parameter		Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
VIH	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
I _{ОН}	HIGH Level Output Current LOW Level Output Current				-1	mA	
I _{OL}					20	mA	
f _{CLK}	Clock Frequency (Note 2)		0	125	80	MHz	
f _{CLK}	Clock Frequency (Note 3)		0	80	60	MHz	
t _W	Pulse Width	Clock HIGH	6				
	(Note 2)	Clock LOW	6.5				
		Clear LOW	8			ns	
		Preset LOW	8			1	
t _W	Pulse Width	Clock HIGH	8			ns	
	(Note 3)	Clock LOW	8				
		Clear LOW	10				
		Preset LOW	10				
t _{SU}	Setup Time (Note 4)(Note 5)		7↓			ns	
t _H	Input Hold Time (Note 4)(Note 5)		0↓			ns	
T _A	Free Air Operating Temperature		0		70	°C	

Note 2: C_L = 15 pF, R_L = 280Ω, T_A = 25°C and V_{CC} = 5V.

Note 3: C_L = 50 pF, R_L = 2800, T_A = 25°C and V_{CC} = 5V.

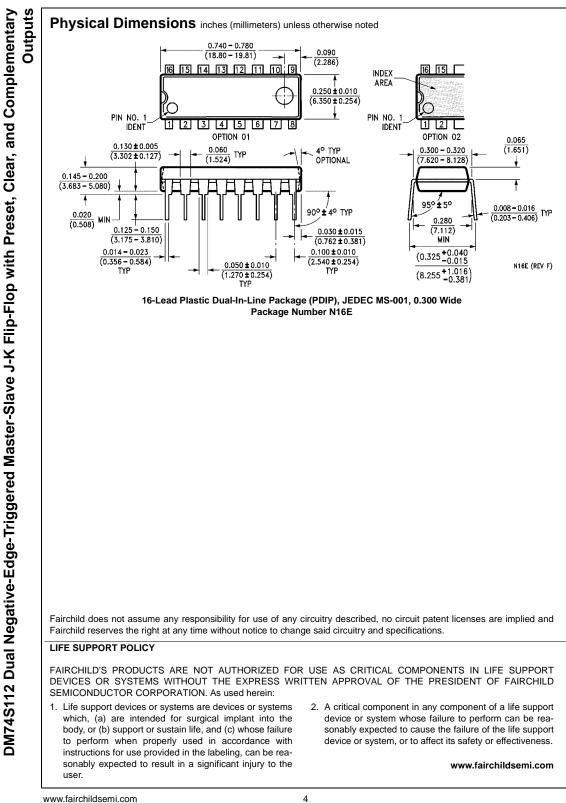
Note 4: T_A = 25°C and V_{CC} = 5V.

Note 5: The symbol (\downarrow) indicates the falling edge at the clock pulse is used for reference.

www.fairchildsemi.com

	nmended operating free air temperatu	re (unless otherwise noted)		1			
Symbol	Parameter	Conditions	5	Min	Typ (Note 6)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.2	V
V _{OH}	HIGH Level	$V_{CC} = Min, I_{OH} = Max$		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$					
V _{OL}	LOW Level	$V_{CC} = Min, I_{OL} = Max$				0.5	V
	Output Voltage	$V_{IH} = Min, V_{IL} = Max$				0.5	v
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$	$V_{\rm CC} = Max, V_{\rm I} = 5.5 V$			1	mA
I _{IH}	HIGH Level	V _{CC} = Max	J, K			50	
	Input Current	$V_{I} = 2.7V$	Clear			100	μΑ
			Preset			100	
			Clock		1	100	
IIL	LOW Level	V _{CC} = Max	J, K			-1.6	
	Input Current	$V_{I} = 0.5V$	Clear		1	-7	
		(Note 7)	Preset			-7	mA
			Clock		1 1	-4	
los	Short Circuit Output Current	V _{CC} = Max (Note 8)		-40		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 9)			30	50	mA

Note 6: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 7: Clear is tested with preset HIGH and preset is tested with clear HIGH.

Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 9: With all outputs OPEN, I_{CC} is measured with the Q and Q outputs HIGH in turn. At the time of measurement, the clock input is grounded.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

	bol Parameter	From (Input) To (Output)	$R_L = 280\Omega$				
Symbol			C _L = 15 pF		$C_L = 50 \ pF$		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		80		60		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Preset to Q		7		9	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Preset to Q		7		12	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to \overline{Q}		7		9	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		7		12	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or \overline{Q}		7		9	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or \overline{Q}		7		12	ns

