

HGTG24N60D1

May 1995

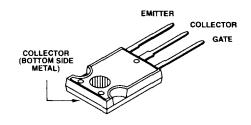
24A, 600V N-Channel IGBT

Features

- 24A, 600V
- · Latch Free Operation
- Typical Fall Time <500ns
- · High Input Impedance
- . Low Conduction Loss

Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.


IGBTs are ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND			
HGTG24N60D1	TO-247	G24N60D1			

JEDEC STYLE TO-247

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specific

	HGTG24N60D1	UNITS
Collector-Emitter Voltage	600	V
Collector-Gate Voltage R _{GE} = 1MΩ	600	V
Collector Current Continuous at T _C = +25°C	40	Α
at $V_{GE} = 15V$ at $T_C = +90^{\circ}C \dots I_{C90}$	24	Α
Collector Current Pulsed (Note 1)	96	Α
Gate-Emitter Voltage Continuous	±25	V
Switching Safe Operating Area at T _J = +150°C	60A at 0.8 BV _{CES}	-
Power Dissipation Total at T _C = +25°C	125	W
Power Dissipation Derating T _C > +25°C	1.0	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C
(0.125 inch from case for 5s)		

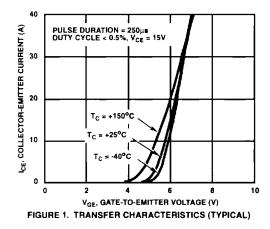
NOTE:

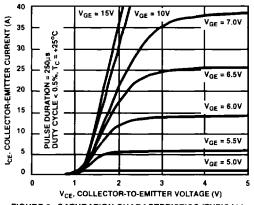
1. Repetitive Rating: Pulse width limited by maximum junction temperature.

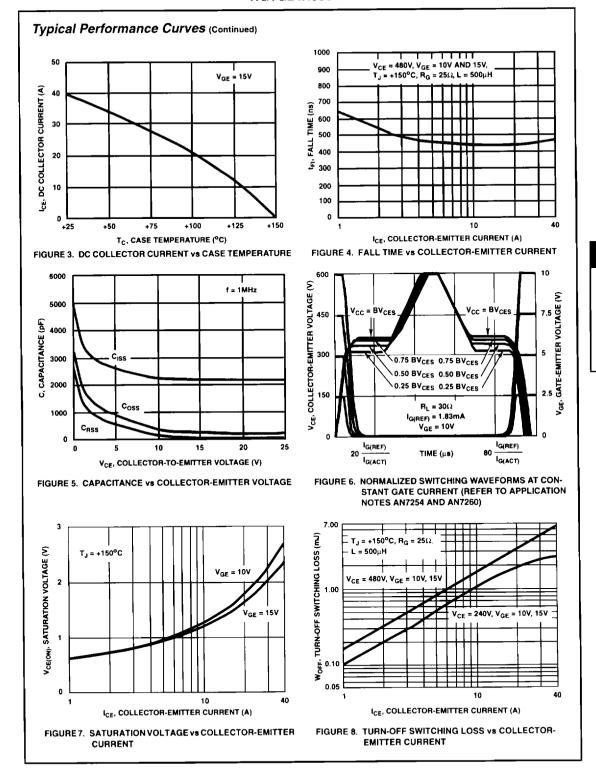
HARRIS S	SEMICONDUCTO	R IGBT PRODU	CT IS COVERED	BY ONE OR M	ORE OF THE FO	LLOWING U.S.	PATENTS:
4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright © Harris Corporation 1995

File Number 2831.3


Specifications HGTG24N60D1


Electrical Specifications T_C = +25°C, Unless Otherwise Specified


			LIMITS				
PARAMETERS	PARAMETERS SYMBOL TEST CONDITIONS		DITIONS	MIN TYP		мах	UNITS
Collector-Emitter Breakdown Voltage	BV _{CES}	I _C = 250μA, V _{GE} = 0V		600		-	V
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	T _C = +25°C	-	-	1.0	mA
		V _{CE} = 0.8 BV _{CES}	T _C = +125°C	-	-	4.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = I _{C90} , V _{GE} = 15V	T _C = +25°C	-	1.7	2.3	٧
			T _C = +125°C		1.9	2.5	٧
Gate-Emitter Threshold Voltage	V _{GE(TH)}	t _C = 250μA, V _{CE} = V _{GE}	T _C = +25°C	3.0	4.5	6.0	V
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±500	nA
Gate-Emitter Plateau Voltage	V _{GEP}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}		-	6.3	-	V
On-State Gate Charge	Q _{G(ON)}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}	V _{GE} = 15V	-	120	155	nC
			V _{GE} = 20V	-	155	200	nC
Current Turn-On Delay Time	t _{D(ON)I}	L = 500μH, I _C = I _C		-	100		ns
Current Rise Time	t _{RI}	$V_{GE} = 15V, T_J = +150^{\circ}C,$ $V_{CE} = 0.8 \text{ BV}_{CES}$		-	150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}	1	-	700	900	ns	
Current Fall Time	t _{FI}	1			450	600	ns
Turn-Off Energy (Note 1)	W _{OFF}	1		-	4.3	-	mJ
Thermal Resistance	R _{euc}	+		-	-	1.00	°C/W

NOTE: 1. Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG24N60D1 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves

Typical Performance Curves (Continued)

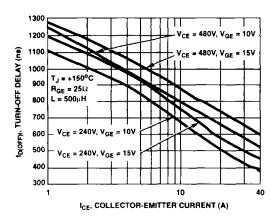


FIGURE 9. TURN-OFF DELAY VS COLLECTOR-EMITTER CURRENT

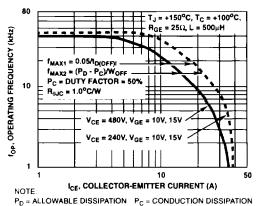


FIGURE 10. OPERATING FREQUENCY VS COLLECTOR-EMITTER CURRENT AND VOLTAGE

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/f_{D(OFF)I}$. $f_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $f_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2} = (P_D - P_C)/W_{OFF}$. The allowable dissipation (P_D) is defined by $P_D = (T_{JMAX} - T_C)/R_{BJC}$. The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C = (V_{CE} \bullet I_{CE})/2$. W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE} = 0A)$.

The switching power loss (Figure 10) is defined as f_{MAX2} • W_{OFF} Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.