feATURES

- No Design Required
- Operates at Supply Voltages from 1V to 30V
- Consumes Only 95uA Supply Current
- Works in Step-Up or Step-Down Mode
- Only Three External Off-the-Shelf Components Required
- Low-Battery Detector Comparator On-Chip
- User-Adjustable Current Limit
- Internal 1A Power Switch
- Fixed or Adjustable Output Voltage Versions
- Space-Saving 8-Pin PDIP or S0-8 Package

APPLICATIONS

- Pagers
- Cameras
- Single-Cell to 5V Converters
- Battery Backup Supplies
- Laptop and Palmtop Computers
- Cellular Telephones
- Portable Instruments
- 4mA to 20 mA Loop Powered Instruments
- Hand-Held Inventory Computers
- Battery-Powered α, β, and γ Particle Detectors

DESCRIPTION

The LT®1073 is aversatile micropower DC/DC converter. The device requires only three external components to deliver a fixed output of 5 V or 12 V . The very low minimum supply voltage of 1 V allows the use of the LT1073 in applications where the primary power source is a single cell. An on-chip auxiliary gain block can function as a low-battery detector or linear post-regulator.
Average current drain of the LT1073-5 used as shown in the Typical Application circuitbelow is just 135 μ A unloaded, making it ideal for applications where long battery life is important. The circuit shown can deliver 5 V at 40 mA from an input as low as 1.25 V and 5 V at 10 mA from a 1 V input.
The device can easily be configured as a step-up or stepdown converter, although for most step-down applications or input sources greater than 3 V , the LT1173 is recommended. Switch current limiting is user-adjustable by adding a single external resistor. Unique reverse-battery protection circuitry limits reverse current to safe, nondestructive levels at reverse supply voltages up to 1.6 V .

[^0]
TYPICAL APPLICATION

Single Alkaline "AA" Cell Operating Hours vs DC Load Current

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage, Step-Up Mode 15 V
Supply Voltage, Step-Down Mode 36V
SW1 Pin Voltage 50V
SW2 Pin Voltage -0.4 to V_{IN}
Feedback Pin Voltage (LT1073) 5 V
Switch Current 1.5A
Maximum Power Dissipation 500 mW
Operating Temperature Range

\qquad
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

pIn CONFIGURATIOn
 PIn CONFIGURATIOn

Consult factory for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=1.5 \mathrm{~V}$ unless otherwise specified.

ELECTRICAL CHARACTERISTICS The \bullet denotes the speciications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{I N}=1.5 \mathrm{~V}$ unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | ---: | ---: | ---: | UNITS

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: This specification guarantees that both the high and low trip point of the comparator fall within the 202 mV to 222 mV range.
Note 3: This specification guarantees that the output voltage of the fixed versions will always fall within the specified range. The waveform at the SENSE pin will exhibit a sawtooth shape due to the comparator hysteresis.

Note 4: 100k resistor connected between a 5 V source and the AO pin.
Note 5: The LT1073 is guaranteed to withstand continuous application of 1.6 V applied to the GND and SW2 pins while $\mathrm{V}_{\text {IN }}$, $\mathrm{I}_{\mathrm{LIM}}$ and SW 1 pins are grounded.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

PIn functions

$\mathrm{I}_{\text {LIM }}$ (Pin 1): Connect this pin to $\mathrm{V}_{\text {IN }}$ for normal use. Where lower current limit is desired, connect a resistor between $\mathrm{I}_{\text {LIM }}$ and $\mathrm{V}_{\text {IN. }}$. 220Ω resistor will limit the switch current to approximately 400 mA .
$V_{\text {IN }}$ (Pin 2): Input Supply Voltage
SW1 (Pin 3): Collector of Power Transistor. For step-up mode connect to inductor/diode. For step-down mode connect to V_{IN}.
SW2 (Pin 4): Emitter of Power Transistor. For step-up mode connect to ground. For step-down mode connect to inductor/diode. This pin must never be allowed to go more than a Schottky diode drop below ground.

GND (Pin 5): Ground.
AO (Pin 6): Auxiliary Gain Block (GB) Output. Open collector, can sink $100 \mu \mathrm{~A}$.
SET (Pin 7): GB Input. GB is an op amp with positive input connected to SET pin and negative input connected to 212 mV reference.
FB/SENSE(Pin8): On the LT1073 (adjustable) this pin goes to the comparator input. On the LT1073-5 and LT1073-12, this pin goes to the internal application resistor that sets output voltage.

BLOCK DIAGRAMS

LT1073-5 and LT1073-12

OPERATION

LT1073

The LT1073 is gated oscillator switcher. This type architecture has very low supply current because the switch is cycled only when the feedback pin voltage drops below the reference voltage. Circuit operation can best be understood by referring to the LT1073 Block Diagram. Comparator A1 compares the FB pin voltage with the 212 mV reference signal. When FB drops below 212 mV , A1 switches on the 19 kHz oscillator. The driver amplifier boosts the signal level to drive the output NPN power switch Q1. An adaptive base drive circuit senses switch current and provides just enough base drive to ensure switch saturation without overdriving the switch, resulting in higher efficiency. The switch cycling action raises the output voltage and FB pin voltage. When the FB voltage is sufficient to trip A1, the oscillator is gated off. A small amount of hysteresis built into A1 ensures loop stability without external frequency compensation. When the comparator is low the oscillator and all high current circuitry is turned off, lowering device quiescent currentto just $95 \mu \mathrm{~A}$ for the reference, A 1 and A 2 .

The oscillator is set internally for $38 \mu \mathrm{~s}$ ON time and $15 \mu \mathrm{~s}$ OFF time, optimizing the device for step-up circuits where $V_{\text {OUT }} \approx 3 \mathrm{~V}_{\text {IN }}$, e.g., 1.5 V to 5 V . Other step-up ratios as well as step-down (buck) converters are possible at slight losses in maximum achievable power output.

A2 is a versatile gain block that can serve as a low-battery detector, a linear post-regulator, or drive an undervoltage lockout circuit. The negative input of A 2 is internally connected to the 212 mV reference. An external resistor divider from $\mathrm{V}_{\text {IN }}$ to GND provides the trip point for A2. The AO output can sink $100 \mu \mathrm{~A}$ (use a 56 k resistor pull-up to 5 V). This line can signal a microcontroller that the battery voltage has dropped below the preset level.

A resistor connected between the $\mathrm{I}_{\text {LIM }}$ pin and $\mathrm{V}_{\text {IN }}$ adjusts maximum switch current. Whenthe switch currentexceeds the set value, the switch is turned off. This feature is especially useful when small inductance values are used with high input voltages. If the internal current limit of 1.5 A is desired, I LIM should be tied directly to $\mathrm{V}_{\text {IN }}$. Propagation delay through the current-limit circuitry is about $2 \mu \mathrm{~s}$.

In step-up mode, SW2 is connected to ground and SW1 drives the inductor. In step-down mode, SW1 is connected to $\mathrm{V}_{\text {IN }}$ and SW2 drives the inductor. Output voltage is set by the following equation in either step-up or step-down modes where R1 is connected from FB to GND and R2 is connected from $\mathrm{V}_{\text {OUT }}$ to FB .

$$
V_{\text {OUT }}=(212 \mathrm{mV})\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right)
$$

LT1073-5 and LT1073-12

The LT1073-5 and LT1073-12 fixed outputvoltage versions have the gain-setting resistor on-chip. Only three external components are required to construct a fixed-output converter. $5 \mu \mathrm{~A}$ flows through R1 and R2 in the LT1073-5, and $12.3 \mu \mathrm{~A}$ flows in the LT1073-12. This current represents a load and the converter must cycle from time to time to maintain the proper output voltage. Output ripple, inherently present in gated-oscillator designs, will typically run around 150 mV for the LT1073-5 and 350 mV for the LT1073-12 with the proper inductor/capacitor selection. This output ripple can be reduced considerably by using the gain block amp as a preamplifier in front of the FB pin. See the Applications Information section for details.

APPLICATIONS INFORMATION

Table 1. Component Selection for Step-Up Converters

INPUT VOLTAGE (V)	BATIERY TYPE	OUTPUT VOLTAGE (V)	OUTPUT CURRENT (MIN)	INDUCTOR VALUE ($\mu \mathrm{H})$	INDUCTOR PART NUMBER	CAPACITOR VALUE ($\mu \mathrm{F})$	NOTES

Measuring Input Current at Zero or Light Load

Obtaining meaningful numbers for quiescent current and efficiency at low output current involves understanding how the LT1073 operates. At very low or zero load current, the device is idling for seconds at a time. When the output voltage falls enough to trip the comparator, the power switch comes on for a few cycles until the output voltage rises sufficiently to overcome the comparator hysteresis. When the power switch is on, inductor current builds up to hundreds of milliamperes. Ordinary digital multimeters are not capable of measuring average current because of bandwidth and dynamic range limitations. A different approach is required to measure the $100 \mu \mathrm{~A}$ off-state and 500 mA on-state currents of the circuit.

Figure 1. Test Circuit Measures No-Load Quiescent Current of LT1073 Converter

Quiescent current can be accurately measured using the circuit in Figure 1. $V_{\text {SET }}$ is set to the input voltage of the

LT1073. The circuit must be "booted" by shorting V2 to $\mathrm{V}_{\text {SET }}$. After the LT1073 output voltage has settled, disconnect the short. Input voltage is V 2 and average input current can be calculated by this formula:

$$
\mathrm{I}_{\mathrm{N}}=\frac{\mathrm{V} 2-\mathrm{V} 1}{100 \Omega}
$$

Inductor Selection

ADC/DC converter operates by storing energy as magnetic flux, in an inductor core and then switching this energy into the load. Since it is flux, not charge, that is stored, the output voltage can be higher, lower, or opposite in polarity to the input voltage by choosing an appropriate switching topology. To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst-case condition of minimum input voltage and switch ON time. The inductance must also be high enough so that maximum current ratings of the LT1073 and inductor are not exceeded at the other worst-case condition of maximum input voltage and ON time. Additionally, the inductor core must be able to store the required flux, i.e., it must not saturate. At power levels generally encountered with LT1073-based designs, small axial-lead units with

APPLICATIONS IIFORMATION

saturation current ratings in the 300 mA to 1 A range (depending on application) are adequate. Lastly, the inductor must have sufficiently low DC resistance so that excessive power is not lost as heat in the windings. An additional consideration is electro-magnetic interference (EMI). Toroid and pot core type inductors are recommended in applications where EMI must be kept to a minimum; for example, where there are sensitive analog circuitry or transducers nearby. Rod core types are a less expensive choice where EMI is not a problem.

Specifying a proper inductor for an application requires first establishing minimum and maximum input voltage, output voltage and output current. In a step-up converter, the inductive events add to the input voltage to produce the output voltage. Power required from the inductor is determined by:

$$
P_{L}=\left(V_{\text {OUT }}+V_{D}-V_{\text {IN }}\right)\left(I_{\text {OUT }}\right)
$$

where V_{D} is the diode drop (0.5 V for a 1 N 5818 Schottky).
Maximum power in the inductor is

$$
\begin{aligned}
P_{\mathrm{L}} & =\mathrm{E}_{\mathrm{L}} \cdot \mathrm{f}_{\mathrm{OSC}} \\
& =\frac{1}{2} \mathrm{~L} \mathrm{i}_{\mathrm{PEAK}}{ }^{2} \cdot \mathrm{f}_{\mathrm{OSC}}
\end{aligned}
$$

where

$$
\mathrm{i}_{\mathrm{PEAK}}=\left(\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{R}}\right)\left(1-\mathrm{e} \frac{-\mathrm{Rt}_{\mathrm{ON}}}{\mathrm{~L}}\right)
$$

$R=$ Switch equivalent resistance (1Ω maximum) added to the DC resistance of the inductor and $\mathrm{t}_{\mathrm{ON}}=\mathrm{ON}$ time of the switch.

At maximum $V_{I N}$ and ON time, ípEAK should not be allowed to exceed the maximum switch current shown in Figure 2. Some input/output voltage combinations will cause continuous ${ }^{1}$ mode operation. In these cases a resistor is needed between $\mathrm{I}_{\text {LIM }}$ (Pin 1) and $\mathrm{V}_{\text {IN }}$ (Pin 2) to keep switch current under control. See the "Using the $l_{\text {LIM }}$ Pin" section for details.

Figure 2. Maximum Switch Current vs Input Voltage

Capacitor Selection

Selecting the right output capacitor is almost as important as selecting the right inductor. A poor choice for a filter capacitor can result in poor efficiency and/or high output ripple. Ordinary aluminum electrolytics, while inexpensive and readily available, may have unacceptably poor equivalent series resistance (ESR) and ESL (inductance). There are low-ESR aluminum capacitors on the market specifically designed for switch-mode DC/DC converters which work much better than general purpose units. Tantalum capacitors provide still better performance at more expense. We recommend OS-CON capacitors from Sanyo Corporation (San Diego, CA). These units are physically quite small and have extremely low ESR. To illustrate, Figures 3, 4, and 5 show the outputvoltage of an LT1073 based converter with three $100 \mu \mathrm{~F}$ capacitors. The peak switch current is 500 mA in all cases. Figure 3 shows a Sprague 501D aluminum capacitor. Vout jumps by over 150 mV when the switch turns off, followed by a drop in voltage as the inductor dumps into the capacitor. This works out to be an ESR of over $300 \mathrm{~m} \Omega$. Figure 4 shows the same circuit, but with a Sprague 150D tantalum capacitor replacing the aluminum unit. Output jump is now about 30 mV , corresponding to an ESR of $60 \mathrm{~m} \Omega$. Figure 5 shows the circuit with an OSCON unit. ESR is now only $30 \mathrm{~m} \Omega$.

In very low power applications where every microampere is important, leakage current of the capacitor must be considered. The OS-CON units do have leakage current in the $5 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$ range. If the load is also in the

APPLICATIONS INFORMATION

$20 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 3. Aluminum

$20 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 4. Tantalum

$20 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 5. OS-CON
microampere range, a leaky capacitor will noticeably decrease efficiency. In this type application tantalum capacitors are the best choice, with typical leakage currents in the $1 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$ range.

Diode Selection

Speed, forward drop and leakage current are the three main considerations in selecting a catch diode for LT1073 converters. "General-purpose" rectifiers such as the 1N4001 are unsuitable for use in any switching regulator application. Although they are rated at 1A, the switching time of a 1 N 4001 is in the $10 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s}$ range. At best, efficiency will be severely compromised when these diodes are used and at worst, the circuit may not work at all. Most LT1073 circuits will be well served by a 1N5818 Schottky diode. The combination of 500 mV forward drop at 1 A current, fast turn-on and turn-off time and $4 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$ leakage current fit nicely with LT1073 requirements. At peak switch currents of 100 mA or less, a 1N4148 signal diode may be used. This diode has leakage current in the 1 nA to 5 nA range at $25^{\circ} \mathrm{C}$ and lower cost than a 1N5818. (You can also use them to get your circuit up and running, but beware of destroying the diode at 1 A switch currents.) In situations where the load is intermittent and the LT1073 is idling most of the time, battery life can sometimes be extended by using a silicon diode such as the 1N4933, which can handle 1A but has leakage current of less than $1 \mu \mathrm{~A}$. Efficiency will decrease somewhat compared to a 1N5818 while delivering power, but the lower idle current may be more important.

Step-Up (Boost Mode) Operation

A step-up DC/DC converter delivers an output voltage higher than the input voltage. Step-up converters are
not short-circuit protected since there is a DC path from input to output.

The usual step-up configuration for the LT1073 is shown in Figure 6. The LT1073 first pulls SW1 low causing $\mathrm{V}_{\text {IN- }}$ $V_{\text {CESAT }}$ to appear across L1. A current then builds up in L1. At the end of the switch ON time the current in L1 is ${ }^{2}$:

$$
\mathrm{i}_{\text {PEAK }}=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~L}} \mathrm{t}_{\mathrm{ON}}
$$

NOTE 2: This simple expression neglects the effect of switch and coil resistance. These are taken into account in the "Inductor Selection" section.

Figure 6. Step-Up Mode Hookup. (Refer to Table 1 for Component Values)

Immediately after switch turn-off, the SW1 voltage pin starts to rise because current cannot instantaneously stop flowing in L1. When the voltage reaches $\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}$, the inductor current flows through D1 into C1, increasing $V_{\text {OUT }}$. This action is repeated as needed by the LT1073 to keep V_{FB} at the internal reference voltage of 212 mV . R1 and R2 set the output voltage according to the formula:

$$
\mathrm{V}_{\mathrm{OUT}}=\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)(212 \mathrm{mV})
$$

APPLICATIONS INFORMATION

Step-Down (Buck Mode) Operation

A step-down DC/DC converter converts a higher voltage to a lower voltage. It is short-circuit protected because the switch is in series with the output. Step-down converters are characterized by low output voltage ripple but high input current ripple. The usual hookup for an LT1073-based step-down converter is shown in Figure 7.

Figure 7. Step-Down Mode Hookup
When the switch turns on, SW2 pulls up to $\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\text {SW }}$. This puts a voltage across $L 1$ equal to $V_{I N}-V_{S W}-V_{\text {OUT }}$, causing a current to build up in L1. At the end of the switch ON time, the current in L1 is equal to

$$
\mathrm{i}_{\text {PEAK }}=\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SW }}-\mathrm{V}_{\text {OUT }}}{\mathrm{L}} \mathrm{t}_{\mathrm{ON}}
$$

When the switch turns off the SW2 pin falls rapidly and actually goes below ground. D1 turns on when SW2 reaches 0.4 V below ground. D1 MUST BE A SCHOTTKY DIODE. The voltage at SW2 must never be allowed to go below -0.5 V . A silicon diode such as the 1 N 4933 will allow SW2 to go to -0.8 V , causing potentially destructive power dissipation inside the LT1073. Output voltage is determined by

$$
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right)(212 \mathrm{mV})
$$

R3 programs switch current limit. This is especially important in applications where the input varies over a wide range. Without R3, the switch stays on for a fixed time each cycle. Under certain conditions the current in L1 can build up to excessive levels, exceeding the switch rating and/or
saturating the inductor. The 220Ω resistor programs the switch to turn off when the current reaches approximately 400mA. When using the LT1073 in step-down mode, output voltage should be limited to 6.2 V or less.

Inverting Configurations

The LT1073 can be configured as a positive-to-negative converter (Figure 8), or a negative-to-positive converter (Figure 9). In Figure 8, the arrangement is very similar to a step-down, except that the high side of the feedback is referred to ground. This level shifts the output negative. As in the step-down mode, D1 must be a Schottky diode, and $\left|\mathrm{V}_{\text {Out }}\right|$ should be less than 6.2V.
In Figure 9, the input is negative while the output is positive. In this configuration, the magnitude of the input voltage can be higher or lower than the output voltage. A level shift, provided by the PNP transistor, supplies proper polarity feedback information to the regulator.

Figure 8. Positive-to-Negative Converter

Figure 9. Negative-to-Positive Converter

APPLICATIONS INFORMATION

Using the ILIM Pin

The LT1073 switch can be programmed to turn off at a set switch current, a feature not found on competing devices. This enables the input to vary over a wide range without exceeding the maximum switch rating or saturating the inductor. Consider the case where analysis shows the LT1073 must operate at an 800 mA peak switch current with a 2 V input. If $\mathrm{V}_{\text {IN }}$ rises to 4 V , the peak switch current will rise to 1.6 A , exceeding the maximum switch current rating. With the proper resistor (see the "Maximum Switch Current vs R ${ }_{\text {LIIM" }}$ characteristic) selected, the switch current will be limited to 800 mA , even if the input voltage increases. The LT1073 does this by sampling a small fraction of the switch current and passing this current through the external resistor. When the voltage on the $\mathrm{I}_{\text {LIM }}$ pin drops a $\bigvee_{B E}$ below $\bigvee_{I N}$, the oscillator terminates the cycle. Propagation delay through this loop is about $2 \mu \mathrm{~s}$.
Another situation where the $\mathrm{I}_{\text {LIM }}$ feature is useful is when the device goes into continuous mode operation. This occurs in step-up mode when

$$
\frac{V_{\text {OUT }}+V_{\text {DIODE }}}{V_{I N}-V_{S W}}<\frac{1}{1-D C}
$$

When the input and output voltages satisfy this relationship, inductor current does not go to zero during the switch OFF time. When the switch turns on again, the current ramp starts from the nonzero current level in the inductor just prior to switch turn-on. As shown in

Figure 10. No Current Limit Causes Large Inductor Current Build-Up

Figure 10, the inductor current increases to a high level before the comparator turns off the oscillator. This high current can cause excessive output ripple and requires oversizing the output capacitor and inductor. With the $l_{\text {LIM }}$ feature, however, the switch current turns off at a programmed level as shown in Figure 11, keeping output ripple to a minimum.

Using the Gain Block

The gain block (GB) on the LT1073 can be used as an error amplifier, low-battery detector or linear post-regulator. The gain block itself is a very simple PNP input op amp with an open-collector NPN output. The (-) input of the gain block is tied internally to the 212 mV reference. The $(+)$ input comes out on the SET pin.
Arrangement of the gain block as a low battery detector is straightforward. Figure 12 shows hookup. R1 and R2 need only be low enough in value so that the bias current of the SET input does not cause large errors. $100 \mathrm{k} \Omega$ for R2 is adequate.
Output ripple of the LT1073, normally 150 mV at $5 \mathrm{~V}_{\text {OUT }}$, can be reduced significantly by placing the gain block in front of the FB input as shown in Figure 13. This effectively reduces the comparator hysteresis by the gain of the gain block. Output ripple can be reduced to just a few millivolts using this technique. Ripple reduction works with stepdown or inverting modes as well.

Figure 11. Current Limit Keeps Inductor Current Under Control

APPLICATIONS INFORMATION

Figure 12. Settling Low Battery Detector Trip Point
Table 2. Inductor Manufacturers

MANUFACTURER	PART NUMBERS
Gowanda Electronics Corporation	GA10 Series
1 Industrial Place	GA40 Series
Gowanda, NY 14070	
$716-532-2234$	7300 Series
Caddell-Burns	6860 Series
258 East Second Street	
Mineola, NY 11501	
$516-746-2310$	Custom Toroids
Coiltronics International	Surface Mount
984 S.W. 13th Court	
Pompano Beach, FL 33069	
305-781-8900	Type 8RBS
Toko America Incorporated	
1250 Feehanville Drive	
Mount Prospect, IL 60056	
312-297-0070	RL1283
Renco Electronics Incorporated	
60 Jefryn Boulevard, East	
Deer Park, NY 11729	
$800-645-5828$	

TYPICAL APPLICATIONS

1.5V to 3V Step-Up Converter

1.5V to 9V Step-Up Converter

LT1073

TYPICAL APPLICATIONS

1.5 V to 12 V Step-Up Converter

3V to 12V Step-Up Converter

5V to 12V Step-Up Converter

3V to 5V Step-Up Converter

3V to 15V Step-Up Converter

5V to 15V Step-Up Converter

TYPICAL APPLICATIONS

1.5 V to 5 V Step-Up Converter with Logic Shutdown

* 1% METAL FILM
${ }^{\dagger}$ L1 = GOWANDA GA10-822k
OR CADDELL-BURNS 7300-12

9V to 3V Step-Down Converter

1.5V to 5V Bootstrapped Step-Up Converter

1.5V to 5V Step-Up Converter with Low-Battery Detector

9V to 5V Step-Down Converter

Memory Backup Supply

TYPICAL APPLICATIONS

3V to 5V Step-Up Converter with Undervoltage Lockout

1.5V to 5V Very Low Noise Step-Up Converter

3V to 6V at 1A Step-Up Converter

1.5V to 5V Low Noise Step-Up Converter

9V to 5V Reduced Noise Step-Down Converter

1.5V Powered 350ps Risetime Pulse Generator

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N8 Package

8-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

N8 1098
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.ם MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

FLASH SHALL NOT EXCEED 0.010" (0.254 mm) PER SIDEn
\square

LT1073

revision history

REV	DATE	DESCRIPTION	PAGE NUMBER
B	$1 / 23$	Updated Figure 8	9

TYPICAL APPLICATION

1.5V Powered Temperature Compensated Crystal Oscillator

1.5V Powered α, β, γ Particle Detector

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1307	Single Cell Micropower 600kHz PWM DC/DC Converter	3.3 V at 75 mA from One Cell, MSOP Package
LT1316	Burst ModeTM Operation DC/DC with Programmable Current Limit	1.5 V Minimum, Precise Control of Peak Current Limit
LT1317	2-Cell Micropower DC/DC with Low-Battery Detector	3.3 V at 200mA from Two Cells, 600kHz Fixed Frequency
LT1610	Single Cell Micropower DC/DC Converter	3 V at 30mA from 1V, 1.7MHz Fixed Frequency
LT1611	Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23	-5 V at 150mA from 5V Input, Tiny S0T-23 Package
LT1613	1.4MHz Switching Regulator in 5-Lead S0T-23	5 V at 200mA from 3.3V Input, Tiny SOT-23 Package
LT1615	Micropower Constant Off-Time DC/DC Converter in 5-Lead SOT-23	20V at 12mA from 2.5V, Tiny SOT-23 Package
LT1617	Micropower Inverting DC/DC Converter in 5-Lead S0T-23	-15 V at 12mA from 2.5V, Tiny SOT-23 Package
LT1930/LT1930A	$1.2 \mathrm{MHz} / 2.2 \mathrm{MHz}, 1 \mathrm{~A}$ Switching Regulator in 5-Lead SOT-23	5 V at 450mA from 3.3V Input, Tiny SOT-23 Package
LT1931/LT1931A	$1.2 \mathrm{MHz/2.2MHz}, \mathrm{1A} \mathrm{Inverting} \mathrm{Switching} \mathrm{Regulator} \mathrm{in} \mathrm{5-Lead} \mathrm{SOT-23}$	-5 V at 350mA from 5V Input, Tiny SOT-23 Package

Burst Mode operation is a trademark of Linear Technology Corporation.
Rev B•PRINTED IN USA
$1 / 23$
© ANALOG DEVICES, INC. 2023

[^0]: $\boldsymbol{\Sigma}$, LTC, and LT are registered trademarks of Linear Technology Corporation.

