

HARRIS HGTG20N100D2

May 1995

20A, 1000V N-Channel IGBT

Features

- 34A, 1000V
- · Latch Free Operation
- . Typical Fall Time 520ns
- · High Input Impedance
- Low Conduction Loss

Description

The HGTG20N100D2 is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOS-FET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.

IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND		
HGTG20N100D2	TO-247	G20N100D2		

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

HGTG20N100D2

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	11010201110002	UNITS
Collector-Emitter Voltage	1000	V
Collector-Gate Voltage R _{GE} = 1MΩ	1000	V
Collector Current Continuous at T _C = +25°C	34	Α
at T _C = +90°C	20	Α
Collector Current Pulsed (Note 1)	100	Α
Gate-Emitter Voltage Continuous	±20	V
Gate-Emitter Voltage Pulsed	±30	V
Switching Safe Operating Area at T _J = +150°C	100A at 0.8 BV _{CES}	-
Power Dissipation Total at T _C = +25°C	150	w
Power Dissipation Derating T _C > +25°C	1.20	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C
Short Circuit Withstand Time (Note 2) at V _{GE} = 15V	3	μs
at V _{GE} = 10V	15	μs

NOTES:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. $V_{CE(PEAK)} = 600V$, $T_C = +125^{\circ}C$, $R_{GE} = 25\Omega$.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright © Harris Corporation 1995

File Number 2826.3

HNITS

Specifications HGTG20N100D2

Electrical Specifications T_C = +25°C, Unless Otherwise Specified

				LIMITS			
PARAMETERS	PARAMETERS SYMBOL TEST CONDITIONS		DITIONS	MIN	TYP	MAX	UNITS
Collector-Emitter Breakdown Voltage	BV _{CES}	I _C = 250mA, V _{GE} = 0V		1000	-		
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	$T_C = +25^{\circ}C$	-	-	250	μА
		V _{CE} = 0.8 BV _{CES}	T _C = +125°C	-	-	1.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = I _{C90} . V _{GE} = 15V	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	3.1	3.8	٧
			$T_C = +125^{\circ}C$	-	2.9	3.6	٧
	1	I _C = I _{C90} ,	T _C = +25°C	-	3.3	4.1	٧
		V _{GE} = 10V	$T_{\rm C} = +125^{\rm o}{\rm C}$	-	3.2	4.0	٧
Gate-Emitter Threshold Voltage	V _{GE(TH)}	I _C = 500μA, V _{CE} = V _{GE}	T _C = +25°C	3.0	4.5	6.0	٧
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±250	nA
Gate-Emitter Plateau Voltage	V _{GEP}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}		-	7.1	٠	٧
On-State Gate Charge	Q _{G(ON)}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}	V _{GE} = 15V		120	160	nC
			V _{GE} = 20V	-	163	212	nC
Current Turn-On Delay Time	t _{D(ON)I}	$\begin{split} L &= 50 \mu H, I_C = I_{C90}, R_G = 25 \Omega, \\ V_{GE} &= 15 V, T_J = +125^{\circ} C, \\ V_{CE} &= 0.8 BV_{CES} \end{split}$		-	100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}			-	500	650	ns
Current Fall Time	t _{FI}			-	520	680	ns
Turn-Off Energy (Note 1)	W _{OFF}			-	3.7	-	mJ
Current Turn-On Delay Time	t _{D(ON)I}	$ \begin{array}{c} L = 50 \mu H, I_{C} = _{C90}, R_{G} = 25 \Omega, \\ V_{GE} = 10 V, T_{J} = +125 ^{\circ} C, \\ V_{CE} = 0.8 \; BV_{CES} \end{array} $			100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off	t _{D(OFF)I}			-	410	530	ns
Current Fall Time	t _{FI}	1		520	680	ns	
Turn-Off Energy (Note 1)	W _{OFF}	1		-	3.7	-	mJ
Thermal Resistance	Reuc			-	0.7	0.83	°C/W

NOTE: 1. Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG20N100D2 was tested per JEDEC standard No. 24-1

Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves

Typical Performance Curves (Continued)

FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE

FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE

FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER CURRENT

FIGURE 4. FALL TIME VS COLLECTOR-EMITTER CURRENT

FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT CON-STANT GATE CURRENT (REFER TO APPLICATION NOTES AN7254 AND AN7260)

FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOR-EMITTER CURRENT

Typical Performance Curves (Continued)

FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

P_D = ALLOWABLE DISSIPATION P_C = CONDUCTION DISSIPATION
FIGURE 10. OPERATING FREQUENCY vs COLLECTOREMITTER CURRENT AND VOLTAGE

FIGURE 11. COLLECTOR-EMITTER SATURATION VOLTAGE

Test Circuit

FIGURE 12. INDUCTIVE SWITCHING TEST CIRCUIT

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/t_{D(OFF)l}$. $t_{D(OFF)l}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)l}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2} = (P_D - P_C) W_{OFF}$. The allowable dissipation (P_D) is defined by $P_D = (T_{JMAX} - T_C) / R_{BJC}$. The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C = (V_{CE} \bullet I_{CE}) / 2$. W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE} = 0A)$.

The switching power loss (Figure 10) is defined as $f_{MAX2} \bullet W_{OFF}$. Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components