o
AtmeL SAM3N Series

Atmel | SMART ARM-based MCU

DATASHEET

Description

The Atmel® | SMART SAM3N series is a member of a family of Flash
microcontrollers based on the high performance 32-bit ARM® Cortex®-M3 RISC
processor. It operates at a maximum speed of 48 MHz and features up to
256 Kbytes of Flash and up to 24 Kbytes of SRAM. The peripheral set includes 2
USARTS, 2 UARTSs, 2 TWIs, 3 SPIs, as well as a PWM timer, two 3-channel
general-purpose 16-bit timers, an RTC, a 10-bit ADC, and a 10-bit DAC.

The SAM3N devices have three software-selectable low-power modes: Sleep,
Wait and Backup. In Sleep mode, the processor is stopped while all other
functions can be kept running. In Wait mode, all clocks and functions are stopped
but some peripherals can be configured to wake up the system based on
predefined conditions. In Backup mode, only the RTC, RTT, 256-bit GPBR, and
wake-up logic are running.

The Real-time Event Managment allows peripherals to receive, react to and send
events in Active and Sleep modes without processor intervention.

The SAM3N series is ready for capacitive touch thanks to the Atmel QTouch®
library, offering an easy way to implement buttons, wheels and sliders.

The SAM3N device is an entry-level general purpose microcontroller. That makes
the SAM3N the ideal starting point to move from 8-/16-bit to 32-bit
microcontrollers.

It operates from 1.62V to 3.6V and is available in 48-pin, 64-pin and 100-pin QFP,
48-pin and 64-pin QFN, and 100-pin BGA packages.

The SAM3N series is the ideal migration path from the SAM3S for applications
that require a reduced BOM cost. The SAM3N series is pin-to-pin compatible with
the SAMS3S series. Its aggressive price point and high level of integration pushes
its scope of use far into cost-sensitive, high-volume applications.

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

1. Features

e Core
— ARM Cortex-M3 revision 2.0 running at up to 48 MHz
— Thumb®-2 Instruction Set
— 24-bit SysTick Counter
— Nested Vector Interrupt Controller
Pin-to-pin compatible with SAM7S legacy products (48/64-pin versions) and SAM3S (48/64/100-pin versions)
Memories
— From 16 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator, single plane
— From 4 to 24 Kbytes embedded SRAM
— 16 Kbytes ROM with embedded bootloader routines (UART) and IAP routines
e System
— Embedded voltage regulator for single supply operation
— Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation
— Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure Detection and optional low power
32.768 kHz for RTC or device clock
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default frequency for device startup.
In-application trimming access for frequency adjustment
— Slow Clock Internal RC oscillator as permanent low-power mode device clock
— One PLL up to 130 MHz for device clock
— Up to 10 Peripheral DMA (PDC) channels
e Low Power Modes
— Sleep, Wait, and Backup modes, down to 1.2 pA in Backup mode with RTC, RTT, and 256-bit GPBR
Peripherals
— Upto 2 USARTs with RS-485 and SPI mode support. One USART (USARTO) has 1SO7816, IrDA® and PDC
support in addition
— Two 2-wire UARTs
— Two 2-wire Interfaces (I2C compatible)
— One SPI
— Up to two 3-channel 16-bit Timer Counters with capture, waveform, compare and PWM mode, Quadrature
Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
— 4-channel 16-bit PWM
— 32-bit low-power Real-time Timer (RTT)
— Low-power Real-time Clock (RTC) with calendar and alarm features
— Upto 16 channels, 384 ksps 10-bit ADC
— One 500 ksps 10-bit DAC
— Register Write Protection

— Upto 79 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-
die Series Resistor Termination
— Three 32-bit Parallel Input/Output Controllers
Packages
— 100-lead LQFP — 14 x 14 mm, pitch 0.5 mm
— 100-ball TFBGA — 9 x 9 mm, pitch 0.8 mm
— 64-lead LQFP — 10 x 10 mm, pitch 0.5 mm
— 64-pad QFN — 9 x 9 mm, pitch 0.5 mm
— 48-lead LQFP — 7 x 7 mm, pitch 0.5 mm
— 48-pad QFN — 7 x 7 mm, pitch 0.5 mm

2 SAM3N Series [DATASHEET] /ltmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

1.1 Configuration Summary

The SAM3N series devices differ in memory size, package and features list. Table 1-1 summarizes the

configurations.
Table 1-1. Configuration Summary
Flash SRAM Number ADC Timer PDC

Device (Kbytes) | (Kbytes) Package of PIOs Channels | Channels | Channels USART DAC
LQFP48

SAM3N4A 256 24 34 8 6w 8 1 _
QFN48
LQFP64

SAM3N4B 256 24 47 10 6 10 2 1
QFN64
LQFP100

SAM3N4C 256 24 79 16 6 10 2 1
BGA100
LQFP48

SAM3N2A 128 16 34 8 6w 8 1 _
QFN48
LQFP64 .

SAM3N2B 128 16 47 10 6(? 10 2 1
QFN64
LQFP100

SAM3N2C 128 16 79 16 6 10 2 1
BGA100
LQFP48

SAM3N1A 64 8 34 8 6w 8 1 _
QFN48
LQFP64 ,

SAM3N1B 64 8 47 10 6 10 2 1
QFN64
LQFP100

SAM3N1C 64 8 79 16 6 10 2 1
BGA100
LQFP48

SAM3NOA 32 8 34 8 6w 8 1
QFN48 -
LQFP64

SAM3NOB 32 8 47 10 6 10 2 1
QFN64
LQFP100

SAM3NOC 32 8 79 16 6 10 2 1
BGA100
LQFP48

SAM3NOOA 16 4 34 8 6w 8 1 _
QFN48
LQFP64

SAM3NOOB 16 4 47 10 6 10 2 1
QFN64

Notes: 1. Only two TC channels are accessible through the PIO.
2. Only three TC channels are accessible through the PIO.

/ItmeL SAM3N Series [DATASHEET] 3

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

2.

4

SAM3N Block Diagram

Figure 2-1. SAM3N 100-pin version Block Diagram
o
$
S
O X
O v
O & $
S g &
PN & RO
AAAdA * +
System Controller YYVYY
ibowe W) ,) e
PCKO-PCK2 €] |€—— ¢ T ¢ ¢ g
PMC Y
PLL |> JTAG & Serial Wire |
XIN (—)DZ Oscillator ¢ T * * T
XOUT <€} 3-20 MHz Py =m——"
WDT N-CIrcul mulator . Flash SRAM
RC 0% - 24-bit n | | 256 Kbytes
1218/4 MH] SM SysTick Counter| |/ | | 128 Kbytes || 24 Kbytes
Cortex-M3 Processor | 64 Kbytes 16 Kbytes ROM
WKUPOS »| surc f 48 MHz c || 32xoytes [| 8Kbytes | [16 Koytes
I 16 Kbytes 4 Kbytes
XIN32 <€ > Osc 32k
xouT32 €| |« s¢ lI/D ls 1 I I
ERASE <>} RC 32k
[~ 256-bit
GPBR
RTT
RTC
POR
VDDIO —]
RSTC
NRST <€ —— ¢ TiPher 2
PIOA PIOB Bridge
PIOC
M\,
VDDCORE ——
o
URXDO > Timer Counter 0 | < » TCLK[0:2)
UTXDO <——> PDC 0:2)
«—> < > |« > TIOA[0:2]
URXD1 <—1—> UART1 | TC0-2] |« > |« TioBp2]
UTXD1 < >
RXD0 ¢ > >
oo < = >| usarTo
SRggg < > |« — D Timer Counter 1 | < > TCLK[3:5]
CTSO < > PDC
= > <> < > |« > TIOA[3:5]
$§31 < o < > TC3-3] |« > |« > TIOB[3:5]
SCK1 < <y > >
R e USART1 -«
CTS1 < < >
PDC < > |« » NPCSO
feecl > | > NPCS1
<Bb > NPCS2
<> SPI > | » NPCS3
PWM[0:3] ¢ < PWM > < > |« > MOS
< > | > SPCK
ADTRG ¢ >) PDCI twio > |« > TWCKO
ADD.15] <—1 > > 10-bitADC P < | Twek
— PDC
ADVREF _ﬂ | |« > TWCK1
o — > <> Wit ———>| |« > TWD1
DACO > |«)
10-bit DAC p T
DATRG ¢ _ > [Foc] <>}l Real-Time Event

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

Figure 2-2.

o
N
A A
el "2
o<\q;a\$~k56$ & S
PN & RO
AAAA + +
System Controller F' YVYV Volta
TST —> ge
(] Regulator
PCKO-PCK2 <€ i T ¢ ¢
PMC Y
JTAG & Serial Wire |
XIN <€ Oscillator * T * * T
XOUT <€ 3-20 MHz| —
In-circuit Emulator Flash SRAM
24-bit N 256 Kbytes
SysTick Counter} \, | | 128 Kbytes | | 24 Kbytes
Cortex-M3 Processor | 64 Kbytes 16 Kbytes ROM
WKUPO-15 > supc f . 48 MHz c|| 32Kbytes 8 Kbytes | [16 Kbytes
s 16 Kbytes 4 Kbytes
XIN32 <€ Pl 0sc 30k
X0UT32 €| | sc ll/D ls 1 I 1
ERASE <€ RC 32k
[~ 256-bit
GPBR
RTT
RTC
POR
vDDIO —
RSTC
NRST <€ —— € TiPheral]
PIOA || PIOB Bridge
VDDCORE ——]
)
URXDO Timer Counter 0 < <
UTXDO PDC
il TC[0..2] |« i | D
URXD1 | | > |«
UTXD1 <——> UARTI
RXD0 < »> <
TXDO < <l D <
< > | - ART <>)
g%gg < < USARTO Timer Counter 1
RXD1 - > > il TC[3..5]
SCK1 - > |« > USART1 < >
RTS1 <Bn
CTS1 <= > >
PDC < > | <
> | <]
> SPI < <l
PWM[0:3] & < PWM > - » <
ADTRG el Twio <] 2
ADD.9] < » > 10-bit ADC <> -
— PDC
AovReEF —f———| > TWIt — |z
DACO > | —) ¢
10-bit DAC <—>J| Real-Time Event
DATRG > > PDC

Atmel

SAM3N 64-pin version Block Diagram

\ 4

YY

rYYY iv!

Yy

Yy

TCLK([0:2]

TIOA[0:2]
TIOB[0:2]

NPCS0
NPCS1
NPCS2
NPCS3
MISO

SPCK

TWCKO
TWDO

TWCK1
TWD1

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Figure 2-3.

SAM3N 48-pin version Block Diagram

» TCLK[0..1]

> TIOA[0..1]

> TIOB[0..1]

NPCS0

NPCS1

NPCS2

NPCS3

MISO

YYYYYYY

SPCK

TWCKO

Yy

TWDO

TWCK1

Yy

©
AN
[
O & $
N 0(\ 2 & K o\é)
XA N KOS
A A A A * *
st System Controller I Yy YYV | Voltage
PCKO-PCK2 (—)D{— i T ¢ l Regulator
PMC Y
PLL > JTAG & Serial Wire |
XIN <€ Oscillator
XOUT <€ 3-20 MHZ| * T * ¢1TE o
WDT n-circuit Emulator - Flash SRAM
RC Osc. 24-bit N | | 256 Kbytes
12/8/4 MH, SysTick Counter|,, | | 128 Kbytes | [24 Kbytes
Cortex-M3 Processor 64 Kbytes 16 Kbytes ROM
WKUP0-15 > supc fax 48 MHZ :132 igytes ;81 ﬁgytes 16 Kbytes
t
XIN32 €|] > 0Osc 32k yes e
xouT32 €| | sc ll/D ls 1 1
ERASE <€ RC 32k
[~ 256-bit
GPBR
RTT
RTC
POR
VDDIO —]
RSTC
NRST <€ —— € TiPheral
PIOA || PIOB Bridge
VDDCORE ——
M)
l'ﬁégg < > T Timer Counter 0 < <
> TC[0..1] |« > <
UTXD1 > UART1
RXDO ¢ > > .
TXDO < <l b > USARTO Timer Counter 1
SCKO ¢ > |« »> <>
RTSO ¢ < -«
CTSO < > > PDC TCL
[PDC < < D
- SPI — > [«
PWM[0:3] < PWM -—> > <l b
ADTRG ¢ > > ¢ PDC > |«
AD[0..7] <— > > 10-bit ADC N ~ |
ADVREF = > PDC
Real-Time Event TWI | |«
———p| <
6 SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

TWD1

Atmel

3. Signal Description

Table 3-1 gives details on the signal name classified by peripheral.

Table 3-1. Signal Description List
Active | Voltage
Signal Name Function Type Level | Reference | Comments
Power Supplies
VDDIO Peripherals I/O Lines Power Supply Power 1.62V to 3.6V
VDDIN ggﬁesﬁzgsam“ ADC and DAC Power 1.8V to 3.6V
VDDOUT Voltage Regulator Output Power 1.8V Output
VDDPLL Oscillator and PLL Power Supply Power 1.65V to 1.95V
1.65V to 1.95V
VDDCORE rl:]c;vr\;]eorritg ;gée{htg %:g;)?]i?:gd Power Connected externally to
VDDOUT
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input Reset State:
XOuT Main Oscillator Output Output - PIO Input
XIN32 Slow Clock Oscillator Input Input - Internal Pull-up disabled”
XOUT32 Slow Clock Oscillator Output Output voplo | Schmitt Trigger enabled”
Reset State:
PCKO-PCK2 Programmable Clock Output Output - P10 Input
- Internal Pull-up enabled
- Schmitt Trigger enabled™®
ICE and JTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input Reset State:
TDOITRACESWO Ezst; I:())aﬁ? Out/Trace Asynchronous Output voDIO | - iﬁjﬂifpt’:iiz disabled®
TMS/SWDIO E;Ltjyglizjeled /Serial Wire Input/ 10 - Schmitt Trigger enabled™
JTAGSEL JTAG Selection Input High Permanent Internal pull-down
Flash Memory
Reset State:
ERASE Elrzzz @:mNr;/x“fonﬂguraﬁon - nput High VbDIO EZZ?E;FSS;[I-down enabled
- Schmitt Trigger enabled®
Reset/Test
NRST Microcontroller Reset 1/0 Low VDDIO | Permanent Internal pull-up
TST Test Mode Select Input VDDIO Permanent Internal pull-down
SAM3N Series [DATASHEET] 7

Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 3-1. Signal Description List (Continued)
Active | Voltage
Signal Name Function Type Level | Reference | Comments
Universal Asynchronous Receiver Transceiver - UARTX
URXDx UART Receive Data Input
UTXDx UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
PAO-PA31 Parallel 1O Controller A I{e] Reset State:
PB0O-PB14 Parallel 10 Controller B 1o vbDlo |~ P10 or System 10s®
- Internal pull-up enabled
PCO-PC31 Parallel IO Controller C 110 - Schmitt Trigger enabled®
Universal Synchronous Asynchronous Receiver Transmitter - USARTX
SCKx USARTX Serial Clock I/0
TXDx USARTXx Transmit Data 10
RXDx USARTX Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTX Clear To Send Input
Timer Counter - TC
TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A 110
TIOBx TC Channel x I/O Line B /10
Pulse Width Modulation Controller - PWM
PWMXx PWM Waveform Output for channel x ’ Output ‘ ‘
Serial Peripheral Interface - SPI
MISO Master In Slave Out I/0
MOSI Master Out Slave In I}
SPCK SPI Serial Clock /0
SPI_NPCSO0 SPI Peripheral Chip Select 0 1/0 Low
SPI_NPCS1-SPI_NPCS3 | SPI Peripheral Chip Select Output Low
Two-Wire Interface - TWIx
TWDx TWIx Two-wire Serial Data I/0
TWCKXx TWIx Two-wire Serial Clock I/0
Analog
ADVREF ADC and DAC Reference ‘ Analog ‘ ‘
10-bit Analog-to-Digital Converter - ADC
ADO-AD15 Analog Inputs Analog
ADTRG ADC Trigger Input VDDIO
Digital-to-Analog Converter Controller - DACC
DACO DACC Channel Analog Output Analog
DATRG DACC Trigger Input VDDIO
8 SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

Table 3-1. Signal Description List (Continued)
Active | Voltage
Signal Name Function Type Level | Reference | Comments
Fast Flash Programming Interface - FFPI
PGMENO-PGMEN2 Programming Enabling Input
PGMMO-PGMM3 Programming Mode Input
PGMDO-PGMD15 Programming Data I/0
PGMRDY Programming Ready Output High
VDDIO
PGMNVALID Data Direction Output Low
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low

Notes: 1. Schmitt triggers can be disabled through PIO registers.
2. Some PIO lines are shared with System |Os.
3. See Section 5.4 “Typical Powering Schematics” for restriction on voltage range of analog cells.
4

. TDO pinis set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this
PIO line must be enabled to avoid current consumption due to floating input.

/ItmeL SAM3N Series [DATASHEET] 9

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

4. Package and Pinout

SAM3N4/2/1/0/00 series is pin-to-pin compatible with SAM3S products. Furthermore SAM3N4/2/1/0/00 devices
have new functionalities referenced in italic in Table 4-1, Table 4-3 and Table 4-4.

4.1 SAM3N4/2/1/0/00C Package and Pinout
4.1.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51

1 1
76 — 50

100 o
26
\ —
U 1
1 25

See Section 37. “Mechanical Characteristics” for mechanical drawings and specifications.
4.1.2 100-ball TFBGA Package Outline

Figure 4-2. Orientation of the 100-ball TFBGA Package

TOP VIEW

10| o o o 0o o o o 0o o ©
9 o o oo 0o 00 0 o0 o0
8| o o o o o oo o0 oo
7| o o oo o000 0O
6| o o oo oo 00 o0 o0
5| o o oo oooo oo
4] o 0o o o 0o 0o 00 0 o0
3] o o oo oo oo oo
2] o o o oo 0o oo oo
1| o o o 0o oo 00 o0o0

©
" ABCDEFGHIJK
BALL A1

The 100-ball TFBGA package respects Green Standards.

See Section 37. “Mechanical Characteristics” for mechanical drawings and specifications.

10 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

4.1.3 100-Lead LQFP Pinout

Table 4-1. 100-lead LQFP SAM3N4/2/1/0/00C Pinout

1 ADVREF 26 GND 51 TDI/PB4 76 | TDO/TRACESWO/PB5
2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL

3 PBO/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18

4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6
5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19

6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31

7 PB2/AD6 32 PC6 57 PA27 82 PC20

8 PC31/AD15 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7
9 PB3/AD7 34 PA24 59 PA28 84 PC21

10 VDDIN 35 PC5 60 NRST 85 VDDCORE

11 VDDOUT 36 VDDCORE 61 TST 86 PC22

12 PA17/PGMD5/ADO 37 PC4 62 PC9 87 ERASE/PB12
13 PC26 38 PA25 63 PA29 88 PB10

14 PA18/PGMD6/AD1 39 PA26 64 PA30 89 PB11

15 PA21/AD8 40 PC3 65 PC10 90 PC23

16 VDDCORE 41 PA12/PGMDO 66 PA3 91 VDDIO

17 pPC27 42 PA11/PGMM3 67 PA2/PGMEN2 92 PC24

18 PA19/PGMD7/AD2 43 PC2 68 PC11 93 PB13/DACO

19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25

20 PA22/AD9 45 GND 70 GND 95 GND

21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT

22 PA23 47 PC1 72 PA1/PGMEN1 97 PB9/PGMCKI/XIN
23 PC12/AD12 48 | PA8/XOUT32/PGMMO 73 PC16 98 VDDIO

24 PA20/AD3 49 | PA7/XIN32/PGMNVALID 74 PAO/PGMENO 99 PB14

25 PCO 50 VDDIO 75 PC17 100 VDDPLL
/ItmeL SAM3N Series [DATASHEET] 11

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

4.1.4 100-ball TFBGA Pinout

Table 4-2. 100-ball TFBGA SAM3N4/2/1/0/00C Pinout

Al PB1 C6 PB7 F1 PA18/PGMD6 H6 PC4

A2 PC29 Cc7 PC16 F2 PC26 H7 PA11/PGMM3
A3 VDDIO C8 PA1/PGMEN1 F3 VDDOUT H8 PC1

A4 PB9/PGMCK C9 PC17 F4 GND H9 PA6/PGMNOE
A5 PB8 C10 PAO/PGMEN F5 VDDIO H10 PB4

A6 PB13 D1 PB3 F6 PA27 J1 PC15

A7 PB11 D2 PBO F7 PC8 J2 PCO

A8 PB10 D3 PC24 F8 PA28 J3 PA16/PGMD4
A9 PB6 D4 PC22 F9 TST Ja PC6
A10 JTAGSEL D5 GND F10 PC9 J5 PA24

Bl PC30 D6 GND Gl PA21 J6 PA25

B2 ADVREF D7 VDDCORE G2 PC27 J7 PA10/PGMM2
B3 GNDANA D8 PA2/PGMEN2 G3 PA15/PGMD3 J8 GND

B4 PB14 D9 PC11 G4 VDDCORE J9 VDDCORE
B5 PC21 D10 PC14 G5 VDDCORE J10 VDDIO
B6 PC20 El PA17/PGMD5 G6 PA26 K1 PA22

B7 PA31 E2 PC31 G7 PA12/PGMDO K2 PC13

B8 PC19 E3 VDDIN G8 PC28 K3 PC12

B9 PC18 E4 GND G9 PA4/PGMNCMD K4 PA20
B10 PB5 E5 GND G10 PA5/PGMRDY K5 PC5

C1 PB2 E6 NRST H1 PA19/PGMD7 K6 PC3

C2 VDDPLL E7 PA29 H2 PA23 K7 PC2

C3 PC25 E8 PA30 H3 PC7 K8 PA9/PGMM1
C4 PC23 E9 PC10 H4 PA14/PGMD2 K9 PA8/PGMMO
C5 PB12 E10 PA3 H5 PA13/PGMD1 K10 PA7/PGMVALID

12 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

4.2 SAM3N4/2/1/0/00B Package and Pinout

Figure 4-3. Orientation of the 64-pad QFN Package

64 49
uuuuyuuuuuuuuuuuu
1P 48
> O g
- [am
-] [a=
-’ [am
-y [em
-’ [am
-y [am
-y [@m
- [@m
-y [em
-y [em
-’ (e
-] [a=
-] [a=
16p g33
ANNNNANNNANANNNAN
17 32
TOP VIEW
Figure 4-4. Orientation of the 64-lead LQFP Package
48 33
]]
49 o b 32
64 < ° P 17
]]
16

See Section 37. “Mechanical Characteristics” for mechanical drawings and specifications.

AtmeL SAM3N Series [DATASHEET] 13

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

4.2.1 64-Lead LQFP and QFN Pinout

64-pin version SAM3N devices are pin-to-pin compatible with SAM3S products. Furthermore, SAM3N products
have new functionalities shown in italic in Table 4-3.

Table 4-3. 64-pin SAM3N4/2/1/0/00B Pinout

1 ADVREF 17 GND 33 TDI/PB4 49 | TDO/TRACESWO/PB5
2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL

3 PBO/AD4 19 PA16/PGMD4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6
4 PB1AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31

5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/SWCLK/PB7
6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE

7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12

8 VDDOUT 24 VDDCORE 40 TST 56 PB10

9 PA17/PGMD5/AD0O 25 PA25/PGMD13 41 PA29 57 PB11

10 PA18/PGMD6/AD1 26 PA26/PGMD14 42 PA30 58 VDDIO

11 PA21/PGMD9/AD8 27 PA12/PGMDO 43 PA3 59 PB13/DACO
12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND

13 PA19/PGMD7/AD2 29 PA10/PGMM2 45 VDDIO 61 XOuUT/PB8

14 PA22/PGMD10/AD9 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9
15 PA23/PGMD11 31 | PA8/XOUT32/PGMMO a7 PA1/PGMEN1 63 PB14

16 PA20/PGMD8/AD3 32 PA7|/3X(I;|,\\IA3£\//);(E:JDT32/ 48 PAO/PGMENO 64 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

14 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

4.3 SAM3N4/2/1/0/00A Package and Pinout

Figure 4-5. Orientation of the 48-pad QFN Package

48 37
cuuuuguuuuuu
1 B> — 36
> O —
—) —_
—} [
— (e
—) —_
— (e
—) —_
— (e
—} [
—} [
12> 25
A0nannannana
13 24
TOP VIEW
Figure 4-6. Orientation of the 48-lead LQFP Package
36 25
0 0
37 o D 24
48 o o > 13
[[
1 12

See Section 37. “Mechanical Characteristics” for mechanical drawings and specifications.

4.3.1 48-Lead LQFP and QFN Pinout

Table 4-4. 48-pin SAM3N4/2/1/0/00A Pinout
1 ADVREF 13 VDDIO 25 TDI/PB4 37 | TDO/TRACESWO/PB5
2 GND 14 PA16/PGMD4 26 PA6/PGMNOE 38 JTAGSEL
3 PBO/AD4 15 PA15/PGMD3 27 PA5/PGMRDY 39 TMS/SWDIO/PB6
4 PB1/AD5 16 PA14/PGMD2 28 PA4/PGMNCMD 40 TCK/SWCLK/PB7
5 PB2/AD6 17 PA13/PGMD1 29 NRST 41 VDDCORE
6 PB3/AD7 18 VDDCORE 30 TST 42 ERASE/PB12
7 VDDIN 19 PA12/PGMDO 31 PA3 43 PB10
8 VDDOUT 20 PA11/PGMM3 32 PA2/PGMEN2 44 PB11
9 PA17/PGMD5/ADO 21 PA10/PGMM2 33 VDDIO 45 XOUT/PB8
10 PA18/PGMD6/AD1 22 PA9/PGMM1 34 GND 46 XIN/P/PB9/GMCK
11 PA19/PGMD7/AD2 23| PA8/XOUT32/PGMMO 35 PA1/PGMEN1 47 VDDIO
12 PA20/AD3 24 | PA7/XIN32/PGMNVALID 36 PAO/PGMENO 48 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

/ItmeL SAM3N Series [DATASHEET] 15

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

5. Power Considerations

5.1 Power Supplies

The SAM3N product has several types of power supply pins:

e VDDCORE pins: Power the core, including the processor, the embedded memories and the peripherals.
Voltage ranges from 1.62V to 1.95V.

e VDDIO pins: Power the peripherals I/O lines, backup part, 32 kHz crystal oscillator and oscillator pads.
Voltage ranges from 1.62V to 3.6V

e VDDIN pin: Voltage Regulator, ADC and DAC Power Supply. Voltage ranges from 1.8V to 3.6V for the
Voltage Regulator.

e VDDPLL pin: Powers the PLL, the Fast RC and the 3 to 20 MHz oscillators. Voltage ranges from 1.62V to
1.95V.

5.2 Power-up Considerations

5.2.1 VDDIO Versus VDDCORE

Vppio Must always be higher or equal to Vppcogre-

Vppio Must reach its minimum operating voltage (1.62 V) before Vppcore has reached Vppcorgmin: The minimum
slope for Vppcore is defined by (Vppcore(min - Vr+) / trst-

If Vppeore rises at the same time as Vpp o, the Vpp o rising slope must be higher than or equal to 5V/ms.

If VDDCORE is powered by the internal regulator, all power-up considerations are met.

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V) 4
VDDIO
VDDIo(mm) VDDCORE
VDDCORE(min)
A
Time (t)

Core supply POR output

16 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

5.2.2 VDDIO Versus VDDIN
At power-up, Vpp,o Needs to reach 0.6 V before Vpp, reaches 1.0 V.
VDDIO voltage needs to be equal to or below (VDDIN voltage + 0.5 V).
5.3 Voltage Regulator
The SAM3N embeds a voltage regulator that is managed by the Supply Controller.
This internal regulator is intended to supply the internal core of SAM3N. It features two different operating modes:

e In Normal mode, the voltage regulator consumes less than 700 pA static current and draws 60 mA of output
current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load
current. In Wait mode quiescent current is only 7 pA.

e In Backup mode, the voltage regulator consumes less than 1 pA while its output (VDDOUT) is driven
internally to GND. The default output voltage is 1.80 V and the start-up time to reach Normal mode is less
than 100 ps.

For adequate input and output power supply decoupling/bypassing, refer to Table 36-3 "1.8V Voltage Regulator
Characteristics”.
5.4 Typical Powering Schematics
The SAM3N supports a 1.62-3.6 V single supply mode. The internal regulator input connected to the source and
its output feeds VDDCORE. Figure 5-2 shows the power schematics.
As VDDIN powers the voltage regulator and the ADC/DAC, when the user does not want to use the embedded
voltage regulator, it can be disabled by software via the SUPC (note that it is different from Backup mode).
Figure 5-2. Single Supply
VDDIO
j_ \ 4 [ﬂ— 1/0s.
Main Supply II' T
(18-36V) : ADC, DAC
VDDIN =
VDDOUT [
4[5]‘_ Voltage
! Regulator
VDDCORE [~
£ []
VDDPLL E:l:
SAM3N Series [DATASHEET 17
Atmel [:

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

18

Figure 5-3. Core Externally Supplied

|
Main Supply VbDIo I
(162V-3.6V) —@ 1 I : | Vos.
' RS
Can be the :
I}
same supply ! ADC, DAC
|
ADC, DAC Supply IV VDDIN

R 1

(3V-3.6V) Ii, |
VDDOUT |I|<— Voltage

‘1

Regulator
VDDCOR

VDDCORE Supply N

(1.62V-1.95V) If

VDDPLL [é:l

Note: Restrictions:
- With Main Supply < 3V, ADC and DAC are not usable.
- With Main Supply > 3V, all peripherals are usable.

Figure 5-4 provides an example of the powering scheme when using a backup battery. Since the PIO state is
preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the
PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from
a push button or any signal. See Section 5.7 “Wake-up Sources” for further details.

Figure 5-4. Core Externally Supplied (Backup Battery)

VDDIO T
Backup I L 4 E:I— I/Os.

Battery | + III
ADC, DAC

I VDDIN f
Main Supply N out VDDOUT II' o
33V oltage

! Regulator

LDO VDDCORE —
ONOFF I.-'-_’—'E:I

VDDPLL E:l
I E | PIOx (Output)

44:;] WAKEUPX
External wakeup signal

Notes: 1. The two diodes provide a “switchover circuit” (for illustration purpose) between the backup battery and
the main supply when the system is put in backup mode.
2. Restrictions:
- With Main Supply < 3V, ADC and DAC are not usable.
- With Main Supply > 3V, all peripherals are usable.

SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

55 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal
oscillator or the PLL. The power management controller can be used to adapt the frequency and to disable the
peripheral clocks.

5.6 Low Power Modes

The various low-power modes of the SAM3N are described below.

5.6.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system that is performing
periodic wakeups to carry out tasks but not requiring fast startup time (< 0.1ms). Total current consumption is 3 pA
typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or
crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are
off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3N can be woken up from this mode through pins WKUPO0-15, the supply monitor (SM), the RTT or RTC
wake-up event.

Backup mode can be entered by using the WFE instruction.

The procedure to enter Backup mode using the WFE instruction is the following:

1. Write a 1 to the SLEEPDEEP bit in the Cortex-M3 processor System Control Register (SCR) (refer to
Section 11.21.7 “System Control Register”).

2. Execute the WFE instruction of the processor.

Exit from Backup mode happens if one of the following enable wake-up events occurs:
e Level transition, configurable debouncing on pins WKUPENO-15
e SMalarm
e RTCalarm
e RTT alarm

5.6.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a
powered state for a startup time of less than 10 ps. Current consumption in Wait mode is typically 15 pA (total
current consumption) if the internal voltage regulator is used or 8 pA if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR).
The Cortex-M3 is able to handle external or internal events in order to wake up the core (WFE). By configuring the
WKUPO-15 external lines as fast startup wake-up pins (refer to Section 5.8 “Fast Startup”). RTC or RTT Alarm
wake-up events can be used to wake up the CPU (exit from WFE).
The procedure to enter Wait Mode is the following:

1. Select the 4/8/12 MHz fast RC oscillator as Main Clock

2. Setthe LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)

3. Execute the WFE instruction of the processor

AtmeL SAM3N Series [DATASHEET] 19

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the
effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared
is recommended to ensure that the core will not execute undesired instructions.

5.6.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode,
only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is
application dependent.

This mode is entered via Wait for Interrupt (WFI) or WFE instructions with LPM = 0 in PMC_FSMR.

The processor can be woken up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if
the WFE instruction is used to enter this mode.

5.6.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake
up sources can be individually configured. Table 5-1 on page 21 shows a summary of the configurations of the low
power modes.

20 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

GT-Idy-9T 199YSeIRa-SaUaS-NENYS-IWHV.LY-OTTOT T-ouny

[L33HSV1VvA] seuas NEWVS

oWy

T¢

Table 5-1. Low Power Mode Configuration Summary
SUPC,
32 kHz Osc.,
RTC, RTT, GPBR, Core PIO State
POR Memory Core at |Whilein Low | PIO State at |Consumption|Wake-up
Mode | (Backup Region) |Regulator| Peripherals Mode Entry Potential Wake-up Sources Wake-up | Power Mode | Wake-up @6 Time®
WKUPO-15 pins PIOA & PIOB
Backup ON OFF OFF WFE RTC alarm Reset Previous state |& PIOC 3pAtyp® | <01ms
(Not powered) |+ SLEEPDEEP = 1 |RTT alarm saved inputs with ’
SM alarm pull ups
Any event from
Powered WFE - Fast startup through pins WKUP0O-15 Previous state
Wait ON ON + SLEEPDEEP =0 |- RTC alarm Clocked back|__“" Unchanged |5 pA/15 uA ©) | <10 ps
(Not clocked) +LPMbit=1 _RTT alarm
- SM alarm
Entry mode = WFI Interrupt Only;
Entry mode = WFE
Any enabled interrupt
Powered” WFE or WFI andjor Previous state
Sleep ON ON + SLEEPDEEP = 0 |any event from Clocked back|__ ° Unchanged © ©
(Not clocked) +LPM bit =0 - Fast startup through pins WKUP0-15
- RTC alarm
- RTT alarm
- SM alarm
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz Fast RC
oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first
instruction is fetched.
2. The external loads on PIOs are not taken into account in the calculation.
3. Supply Monitor current consumption is not included.
4. Total current consumption.
5. 5 pA on VDDCORE, 15 pA for total current consumption (using internal voltage regulator), 8 pA for total current consumption (without using internal voltage
regulator).
6. Depends on MCK frequency.
7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.7 Wake-up Sources

The wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply and the SRAM power
supply, if they are not already enabled. See Figure 17-4, "Wake Up Sources" on page 255.

5.8 Fast Startup

The SAM3N allows the processor to restart in a few microseconds while the processor is in wait mode. A fast
startup can occur upon detection of a low level on one of the 19 wake-up inputs (WKUPO to 15 + SM + RTC +
RTT).

The fast restart circuitry (shown in Figure 25-3, "Fast Startup Circuitry" on page 337), is fully asynchronous and
provides a fast start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4 MHz fast RC oscillator, switches the master clock on this 4 MHz
clock and reenables the processor clock.

6. Input/Output Lines

The SAM3N has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO) and system |/Os.
GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line
can be used whether in 10 mode or by the multiplexed peripheral. System 1/Os include pins such as test pins,
oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-
down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt.
Programming of these modes is performed independently for each I/O line through the PIO controller user
interface. For more details, refer to the product P1O controller section.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3N embeds high speed pads able to handle up to 45 MHz for SPI clock lines and 35 MHz on other lines.
See Section 36.8 “AC Characteristics” for more details. Typical pull-up and pull-down value is 100 kQ for all 1/Os.

Each 1/O line also embeds an ODT (On-Die Termination) (see Figure 6-1). ODT consists of an internal series
resistor termination scheme for impedance matching between the driver output (SAM3N) and the PCB trace
impedance preventing signal reflection. The series resistor helps to reduce 1/0O switching current (di/dt) thereby
reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect
between devices or between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

PTTTTTTTTTTT T I Ty 20~Z,+ Ry,
! OoDT |
E 36 Q Typ. '
E E)) Receiver
! SAMB3N Driver with : PCB Trace
LRI ;o 20-s00

22 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

6.2 System I/O Lines

Table 6-1 lists the SAM3N system /O lines shared with PIO lines. These pins are software configurable as general
purpose I/O or system pins. At startup, the default function of these pins is always used.

Table 6-1. System |/O Configuration Pin List
CCFG_SYSIO | Default Function Constraints For
Bit No. After Reset Other Function Normal Start Configuration
12 ERASE PB12 Low Level at startup®”
! TCKISWCLK PB7 - In Matrix User Interface Registers (refer to
6 TMS/SWDIO PB6 - System I/O Configuration Register in Section 22.
5 TDO/TRACESWO PBS5 - Bus Matrix (MATRIX)')
4 TDI PB4 -
- PA7 XIN32 -
2
- PA8 XOUT32 -
- PB9 XIN -
3
- PB8 XOuT -

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode.

2. Referto Section 17.4.2 “Slow Clock Generator”.
3. Refer to Section 24.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator”.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin
JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1
"Signal Description List”.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer
to Section 12. “Debug and Test Features”.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port
is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general 10
mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad
for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a
permanent pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and
enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be
used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to
Section 12. “Debug and Test Features”.

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3N
series. The TST pin integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can be left
unconnected for normal operations. To enter fast programming mode, see Section 20. “Fast Flash Programming
Interface (FFPI)". For more on the manufacturing and test mode, refer to Section 12. “Debug and Test Features”.

AtmeL SAM3N Series [DATASHEET] 23

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and
the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length
of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a
permanent pull-up resistor to VDDIO of about 100 kQ2. By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read
as logic level 1). The ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content
without the use of a debug tool. When the security bit is activated, the ERASE pin provides the capability to
reprogram the Flash content. It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left
unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than
100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase
operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured
as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted
erasing. Please refer to Section 10.3 “Peripheral Signal Multiplexing on I/O Lines” on page 32. Also, if the ERASE
pin is used as a standard 1/O output, asserting the pin to high does not erase the Flash.

24 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

7.

7.1
Figure 7-1.

0x00000000
0x00400000
0x00800000
0x00C00000

Ox1FFFFFFF

Memories

Product Mapping

SAM3N4/2/1/0/00 Product Mapping

Code

Boot Memory

Internal Flash

1 Mbyte
bit band <
Internal ROM region
Reserved Lot

Atmel

Address Memory Space

-0x00000000
Code
."0x20000000
*.0x20100000
- SRAM
0x22000000 |- - - cmmmmm e e o
Undefined
0x24000000
32 Mbytes
bit band alias
0x40000000
Peripherals
0x60000000
Reserved
0xA0000000
Reserved
0xE0000000
System
OXFFFFFFFF
offset

0x40000000 Peripherals
," Reserved 1
0x40004000]
,', Reserved H
0x40008000 :
. SPI H
040000000 211
S Reserved H
/" 0x40010000 Teo '
J, TCO i
+oxd0 =
K TC1 .
+0x80 240
I -‘
0x40014000 21
S :
+0x40 26 H
) S '
Y +0x80 27 H
! T s :
\ 0x40018000 28 H
‘-‘ ™o '_
-“ 0x4001C000 ' Moyt
v Wi ibitband !
'\ 0x40020000 20 ! region ..'
s .
| P : ;
o 0x40024000 b ;!
B USARTO PR
1 0x40028000 14 P
' USARTI o
4x4002C000 ros
"‘ Reserved :' N
0x40038000 .
\ aoc P
0x4003C000 P
E DACC i
* 30 L
0x40040000 i
' Reserved N
0x40044000 N
Y Reserved :,'
0x40048600 ':' .
° Reserved 1 R
0x400E0090 e
\ System Controller H Lo ‘
0x400E260(§‘ ."
! Reserved
0x40100000
Reserved
0x40200000 32 Mbytes
bit band alias
0x40400000
Reserved
0x60000000

.
.
'

1

.
1
.

Il
.

'
I
'

0x400E0000
"' Reserved
0x400E0200
: MATRIX
0x400E0400
N PMC
0x400E6600 5
:' UARTO .
0x400E0740
! CHIPID
0x4$0E0800
i UART1 .
0%400E0AQ0
EEFC]
X400E0C00
, Reserved
1 0x400EOE00
) PIOA
0x400E 1000
PIOB
0x400E1200 12
PIOC
0x400E1400 13
SYSC Rste
+0x10
SYSC supc
+0x30
sYsc .
+0x50
sysc oo
+0x60
SYSC 1o
+0x90
SYSC Gpar
0x400E1600
Reserved
Ox4007FFFF.

System Controller

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

25

7.2 Embedded Memories

7.2.1 Internal SRAM

Table 7-2 shows the SRAM size for the various devices.

Table 7-1. Embedded High-speed SRAM per Device

Device SRAM Size (Kbytes)
SAM3N4 24
SAM3N2 16
SAM3N1 8
SAM3NO

SAM3NOO 4

The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF FFFF.

RAM size must be configurable by calibration fuses.

7.2.2 Internal ROM

The SAM3N product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA), In Application
Programming (IAP) routines and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.
7.2.3 Embedded Flash

7.2.3.1 Flash Overview
Table 7-2 shows the Flash organization for the various devices.

Table 7-2. Embedded Flash Memory Organization per Device
Device Flash Size (Kbytes) | Number of Banks | Number of Pages Page Size (bytes) Plane
SAM3N4 256 1 1024 256 Single
SAM3N2 128 1 512 256 Single
SAM3N1 64 1 256 256 Single
SAM3NO 32 1 128 256 Single
SAM3NOO 16 1 64 256 Single

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

7.2.3.2 Flash Power Supply
The Flash is supplied by VDDCORE.

7.2.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It
enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The EEFC ensures the interface of the Flash block with the 32-bit internal bus. Its 128-bit wide memory interface
increases performance.

26 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit
access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set
of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

7.2.3.4 Flash Speed
The user needs to set the number of wait states depending on the frequency used.
For more details, refer to Section 36.8 “AC Characteristics”.

7.2.3.5 Lock Regions

Several lock bits used to protect write and erase operations on lock regions. A lock region is composed of several
consecutive pages, and each lock region has its associated lock bit.

Table 7-3. Lock bit number
Product Number of Lock Bits Lock Region Size
SAM3N4 16 16 Kbytes (64 pages)
SAM3N2 8 16 Kbytes (64 pages)
SAM3N1 4 16 Kbytes (64 pages)
SAM3NO 2 16 Kbytes (64 pages)
SAM3NOO 1 16 Kbytes (64 pages)

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC triggers an
interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables
the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

7.2.3.6 Security Bit Feature

The SAM3N features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, either through the ICE interface or through the Fast Flash
Programming Interface (FFPI), is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, after a full Flash erase
is performed. When the security bit is deactivated, all accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation.
However, it is safer to connect it directly to GND for the final application.

7.2.3.7 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured
and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

7.2.3.8 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed
by the user. The ERASE pin has no effect on the unique identifier.

/ItmeL SAM3N Series [DATASHEET] 27

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

7.2.3.9 Fast Flash Programming Interface (FFPI)

The FFPI allows programming the device through either a serial JTAG interface or through a multiplexed fully-
handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.
The FFPI is enabled and the Fast Programming Mode is entered when TST and PAO and PA1 are tied low.

7.2.3.10 SAM-BA Boot

The SAM-BA Boot is a default boot program which provides an easy way to program in-situ the on-chip Flash
memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

7.2.3.11 GPNVM Bits

The SAM3N features three GPNVM bits that can be cleared or set respectively through the commands “Clear
GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

Table 7-4. General-purpose Non volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection

7.2.4 Boot Strategies

The system always boots at address 0x0. To ensure a maximum boot possibilities the memory layout can be
changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-purpose NVM Bit” and
“Set General-purpose NVM Bit” of the EEFC User Interface.

Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting
ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

28 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

8. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to determine and

perform the action required.

8.1 Embedded Characteristics
10 peripherals generate event triggers which are directly routed to event managers such as ADC or DACC,

for example, to start measurement/conversion without processor intervention.

e UART, USART, SPI, TWI, ADC, DACC, PIO also generate event triggers directly connected to Peripheral
DMA Controller (PDC) for data transfer without processor intervention.

e Parallel capture logic is directly embedded in PIO and generates trigger event to PDC to capture data
without processor intervention.

8.2 Real-time Event Mapping

Table 8-1. Real-time Event Mapping List
Function Application Description Event Source Event Destination
PIO (ADTRG)
TC: TIOAO _to-Diai
Mea;urement General-purpose | Trigger source selection in ADC Analog-to-Digital
trigger TC: TIOAL Converter (ADC)
TC: TIOA2
PIO DATRG
. TC Output 0 Digital-to-Analog
Cotrrniver(;srlon General-purpose | Trigger source selection in DACC ©) Converter
99 TC Output 1 Controller (DACC)
TC Output 2
Direct
Memor General-purnose Peripheral trigger event generation to transfer USART/UART, TWI, Peripheral DMA
Accessy purp data to/from system memory ©) ADC Controller (PDC)

1. Referto “Conversion Triggers” and the “ADC Mode Register” (ADC_MR) in Section 34. “Analog-to-digital Converter (ADC)".
2. Refer to “DACC Mode Register” (DACC_MR) in Section 35. “Digital to Analog Converter Controller (DACC)”.
3. Refer to Section 23. “Peripheral DMA Controller (PDC)”

Notes:

/It L SAM3N Series [DATASHEET] 29
m e Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

9. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the system, such as but not
limited to power, resets, clocks, time, interrupts, and watchdog.

9.1 System Controller and Peripheral Mapping
Please refer to Figure 7-1, "SAM3N4/2/1/0/00 Product Mapping" on page 25.
All the peripherals are in the bit band region and are mapped in the bit band alias region.

9.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3N embeds three features to monitor, warn and/or reset the chip:
e Power-on-Reset on VDDIO
e Brownout Detector on VDDCORE
e Supply Monitor on VDDIO

9.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power
down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to Section
36. “Electrical Characteristics”.

9.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or
sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to
Section 17. “Supply Controller (SUPC)” and Section 36. “Electrical Characteristics”.

9.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is inactive by default. It can be activated by software and is fully
programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the Supply Controller
(SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to
2048. For more information, refer to Section 17. “Supply Controller (SUPC)” and Section 36. “Electrical
Characteristics”.

30 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

10. Peripherals

10.1 Peripheral Identifiers

Table 10-1 defines the Peripheral Identifiers of the SAM3N4/2/1/0/00. A peripheral identifier is required for the
control of the peripheral interrupt with the Nested Vectored Interrupt Controller and for the control of the peripheral
clock with the Power Management Controller.

Table 10-1. Peripheral Identifiers
Instance NVIC PMC Clock
Instance ID Name Interrupt Control Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real-time Clock
3 RTT X Real-time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFC X Enhanced Embedded Flash Controller
7 - - Reserved
8 UARTO X X Universal Asynchronous Receiver Transceiver 0
9 UART1 X X Universal Asynchronous Receiver Transceiver 1
10 - - - Reserved
11 PIOA X X Parallel 1/0 Controller A
12 PIOB X X Parallel /0 Controller B
13 PIOC X X Parallel 1/0 Controller C
14 USARTO X X Universal Synchronous Asynchronous Receiver Transmitter O
15 USART1 X X Universal Synchronous Asynchronous Receiver Transmitter 1
16 - - - Reserved
17 - - - Reserved
18 - - - Reserved
19 TWIO X X Two-wire Interface 0
20 TWIL1 X X Two-wire Interface 1
21 SPI X X Serial Peripheral Interface
22 - - - Reserved
23 TCO X X Timer Counter Channel 0
24 TC1 X X Timer Counter Channel 1
25 TC2 X X Timer Counter Channel 2
26 TC3 X X Timer Counter Channel 3
27 TC4 X X Timer Counter Channel 5
28 TC5 X X Timer Counter Channel 5
29 ADC X X Analog-to-Digital Converter
30 DACC X X Digital-to-Analog Converter Controller
31 PWM X X Pulse Width Modulation

Atmel

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

31

10.2 APB/AHB Bridge
The SAM3N4/2/1/0/00 product embeds one peripheral bridge.
The peripherals of the bridge are clocked by MCK.

10.3 Peripheral Signal Multiplexing on I/O Lines
The SAM3N product features up to three PIO controllers (PIOA, PIOB, and PIOC) that multiplex the 1/O lines of the
peripheral set:
e 2 PIO controllers on 48-pin and 64-pin version devices
e 3 PIO controllers on 100-pin version devices
The SAM3N 64-pin and 100-pin PIO Controller controls up to 32 lines (see Table 10-2, “Multiplexing on PIO
Controller A (PIOA),” on page 33). Each line can be assigned to one of three peripheral functions: A, B or C. The

multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and C are
multiplexed on the PIO Controllers.

Note that some output-only peripheral functions might be duplicated within the tables.

32 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

10.3.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PAO PWMO TIOAO WKUPO ® High drive
PA1 PWM1 TIOBO wKup1® High drive
PA2 PWM2 SCKO DATRG wkup2® High drive
PA3 TWDO NPCS3 High drive
PA4 TWCKO TCLKO WKUP3W
PA5 RXDO NPCS3 WKUP4W
PA6 TXDO PCKO
PA7 RTSO PWM3 XIN32 @
PA8 CTSO ADTRG WKUP5W XouT32?
PA9 URXDO NPCS1 wKUP6W
PA10 UTXDO NPCS2
PA11 NPCSO0 PWMO WKUp7W
PA12 MISO PWM1
PA13 MOSI PWM2
PA14 SPCK PWM3 wKupg®W
PA15 TIOA1L wKUP14®
PA16 TIOB1 WKUP15")
PA17 PCK1 ADO ®
PA18 PCK2 AD1®)
PA19 AD2/WKUP9 @
PA20 AD3/WKUP10®¥
PA21 RXD1 PCK1 AD8® 64/100-pin versions
PA22 TXD1 NPCS3 AD9® 64/100-pin versions
PA23 SCK1 PWMO 64/100-pin versions
PA24 RTS1 PWM1 64/100-pin versions
PA25 CTS1 PWM2 64/100-pin versions
PA26 TIOA2 64/100-pin versions
PA27 TIOB2 64/100-pin versions
PA28 TCLK1 64/100-pin versions
PA29 TCLK2 64/100-pin versions
PA30 NPCS2 WKUP11®W 64/100-pin versions
PA31 NPCS1 PCK2 64/100-pin versions

WKUPXx can be used if PIO controller defines the I/O line as “input”.
Refer to Section 6.2 “System /O Lines”.

To select this extra function, refer to Section 34.5.3 “Analog Inputs”.
Analog input has priority over WKUPX pin.

PwbheE

/ItmeL SAM3N Series [DATASHEET] 33

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

10.3.2 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B (PIOB)

I/0O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PBO PWMO AD4®
PB1 PWM1 AD5(Y)
PB2 URXD1 NPCS2 AD6/WKUP12 @
PB3 UTXD1 PCK2 AD7Y
PB4 TWD1 PWM2 TDI®
PB5 TWCK1 WKUP13 ® TDO/TRACESWO®
PB6 TMS/SWDIO®)
PB7 TCK/SWCLK®
PBS XouT®
PB9 XIN®
PB10
PB11
PB12 ERASE®)
PB13 PCKO DACO® 64/100-pin versions
PB14 NPCS1 PWM3 64/100-pin versions

To select this extra function, refer to Section 34.5.3 “Analog Inputs”.

Analog input has priority over WKUPX pin.

Refer to Section 6.2 “System I/O Lines”.

WKUPX can be used if PIO controller defines the I/O line as “input”.

DACO is enabled when DACC_MR.DACEN is set. See Section 35.7.2 “DACC Mode Register”.

a kM wnhpRE

34 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

10.3.3 PIO Controller C Multiplexing

Table 10-4. Multiplexing on PIO Controller C (PIOC)

1/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PCO 100-pin version
PC1 100-pin version
PC2 100-pin version
PC3 100-pin version
PC4 NPCS1 100-pin version
PC5 100-pin version
PC6 100-pin version
PC7 NPCS2 100-pin version
PC8 PWMO 100-pin version
PC9 PWM1 100-pin version
PC10 PWM2 100-pin version
PC11 PWM3 100-pin version
PC12 AD12® 100-pin version
PC13 AD10™M 100-pin version
PC14 PCK2 100-pin version
PC15 AD11® 100-pin version
PC16 PCKO 100-pin version
PC17 PCK1 100-pin version
PC18 PWMO 100-pin version
PC19 PWM1 100-pin version
PC20 PWM2 100-pin version
PC21 PWM3 100-pin version
pPC22 PWMO 100-pin version
PC23 TIOA3 100-pin version
PC24 TIOB3 100-pin version
PC25 TCLK3 100-pin version
PC26 TIOA4 100-pin version
pPC27 TIOB4 100-pin version
pPC28 TCLK4 100-pin version
PC29 TIOA5 AD13% 100-pin version
PC30 TIOBS AD14™") 100-pin version
PC31 TCLK5 AD15™%) 100-pin version

1. To select this extra function, refer to Section 34.5.3 “Analog Inputs”.
/ItmeL SAM3N Series [DATASHEET] 35

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.

11.1

11.2

ARM Cortex-M3 Processor

About this section

This section provides the information required for application and system-level software development. It does not
provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have no experience of
ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by ARM Ltd. in terms of
Atmel’s license for the ARM Cortex-M3 processor core. This information is copyright ARM Ltd., 2008 - 2009.

Embedded Characteristics
e \ersion 2.0
Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
Three-stage pipeline.
Single cycle 32-bit multiply.
Hardware divide.
Thumb and Debug states.
Handler and Thread modes.
Low latency ISR entry and exit.
SysTick Timer
— 24-bit down counter
— Self-reload capability
— Flexible System timer
e Nested Vectored Interrupt Controller
— Thirty-two maskable external interrupts
— Sixteen priority levels
— Processor state automatically saved on interrupt entry, and restored on
— Dynamic reprioritization of interrupts
— Priority grouping

selection of pre-empting interrupt levels and non pre-empting interrupt levels

— Support for tail-chaining and late arrival of interrupts

back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
Processor state automatically saved on interrupt entry and restored on interrupt exit, with no instruction overhead

11.3 About the Cortex-M3 processor and core peripherals

36

e The Cortex-M3 processor is a high performance 32-bit processor designed for the microcontroller market. It
offers significant benefits to developers, including:

e outstanding processing performance combined with fast interrupt handling

e enhanced system debug with extensive breakpoint and trace capabilities

e efficient processor core, system and memories

e ultra-low power consumption with integrated sleep modes

SAM3N Series [DATASHEET] AtmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Figure 11-1. Typical Cortex-M3 Implementation

Cortex-M3
Processor

NVIC | Processor
3 Core

Debug Serial
—— Access Wire
Port Viewer
Flash Data
Patch Watchpoint

v v

Bus Matrix
Code SRAM and
InteArface Peripheral Interface
A A
\/ \/

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power
efficiency through an efficient instruction set and extensively optimized design, providing high-end processing
hardware including single-cycle 32x32 multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set, ensuring high code
density and reduced program memory requirements. The Cortex-M3 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit
microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to deliver industry-
leading interrupt performance. The NVIC provides up to 16 interrupt priority levels. The tight integration of the
processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the
interrupt latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler stubs, removing any code
overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down.

11.3.1 System level interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables
faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

/ItmeL SAM3N Series [DATASHEET] 37

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.3.2 Integrated configurable debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high system visibility of
the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is
ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial
Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information
through a single pin.

11.3.3 Cortex-M3 processor features and benefits summary

e tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
code-patch ability for ROM system updates
power control optimization of system components
integrated sleep modes for low power consumption
fast code execution permits slower processor clock or increases sleep mode time
hardware division and fast multiplier
deterministic, high-performance interrupt handling for time-critical applications
extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging and
tracing.

11.3.4 Cortex-M3 core peripherals

These are:

11.3.4.1 Nested Vectored Interrupt Controller
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing.

11.3.4.2 System control block

The System control block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions.

11.3.4.3 System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick
timer or as a simple counter.

38 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4 Programmers model

This section describes the Cortex-M3 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

11.4.1 Processor mode and privilege levels for software execution

The processor modes are:

11.4.1.1 Thread mode
Used to execute application software. The processor enters Thread mode when it comes out of reset.

11.4.1.2 Handler mode
Used to handle exceptions. The processor returns to Thread mode when it has finished exception processing.
The privilege levels for software execution are:

11.4.1.3 Unprivileged
The software:
e has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e cannot access the system timer, NVIC, or system control block
e might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

11.4.1.4 Privileged
The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged, see
“CONTROL register” on page 51. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

11.4.2 Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last stacked item on the
stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then
writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, with independent copies of the stack pointer, see “Stack Pointer” on page 41.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack,
see “CONTROL register” on page 51. In Handler mode, the processor always uses the main stack. The options for
processor operations are:

Table 11-1. Summary of processor mode, execution privilege level, and stack use options
Privilege level for software

Processor mode | Used to execute execution Stack used

Thread Applications Privileged or unprivileged @ Main stack or process stack®

Handler Exception handlers Always privileged Main stack
1. See “CONTROL register” on page 51.

SAM3N Series [DATASHEET 39
Atmel [:

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3 Core registers

The processor core registers are:

(RO

R1

R2

R3

R4

R5

R6 General-purpose registers

R7

R8

R9

High registers R10

R11

R12
Stack Pointer SP (R13) | pspt || wmspP *Banked version of SP
Link Register LR (R14)

Program Counter PC (R15)

Low registers

PSR
PRIMASK

Program status register

FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register

Table 11-2. Core register set summary

Name Type @ | Required privilege @ | Reset value Description
RO-R12 RW Either Unknown “General-purpose registers” on page 41
MSP RW Privileged See description | “Stack Pointer” on page 41
PSP RW Either Unknown “Stack Pointer” on page 41
LR RW Either OXFFFFFFFF “Link Register” on page 41
PC RW Either See description | “Program Counter” on page 41
PSR RW Privileged 0x01000000 “Program Status Register” on page 42
ASPR RwW Either 0x00000000 “Application Program Status Register” on page 44
IPSR RO Privileged 0x00000000 “Interrupt Program Status Register” on page 45
EPSR RO Privileged 0x01000000 “Execution Program Status Register” on page 46
PRIMASK RW Privileged 0x00000000 “Priority Mask Register” on page 48
FAULTMASK | RW Privileged 0x00000000 “Fault Mask Register” on page 49
BASEPRI RW Privileged 0x00000000 “Base Priority Mask Register” on page 50
CONTROL RW Privileged 0x00000000 “CONTROL register” on page 51

1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

40 SAM3N Series [DATASHEET] /It m eL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.1 General-purpose registers

RO-R12 are 32-bit general-purpose registers for data operations.

11.4.3.2 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer
to use:

e 0= Main Stack Pointer (MSP). This is the reset value.

e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

11.4.3.3 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor loads the LR value OXFFFFFFFF.

11.4.3.4 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is always O because
instruction fetches must be halfword aligned. On reset, the processor loads the PC with the value of the reset
vector, which is at address 0x00000004.

/ItmeL SAM3N Series [DATASHEET] 41

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.5 Program Status Register
The Program Status Register (PSR) combines:
e Application Program Status Register (APSR)
e Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

* APSR:
31 30 29 28 27 26 25 24

| N | z C Vv | Q | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* IPSR:
31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |SR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

« EPSR
31 30 29 28 27 26 25 24

| Reserved ICUIT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICI/IT Reserved |
7 6 5 4 3 2 1 0

| Reserved |

42 SAM3N Series [DATASHEET
[] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

The PSR bit assignments are:

31 30 29 28 27 26 25 24

| N | z | C v | Q | ICINT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICI/T Reserved | ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

Access these registers individually or as a combination of any two or all three registers, using the register name as
an argument to the MSR or MRS instructions. For example:

e read all of the registers using PSR with the MRS instruction
e write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 11-3. PSR register combinations

Register Type Combination
PSR Rw @) @) APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR
IAPSR RW® APSR and IPSR
EAPSR RW®) APSR and EPSR
1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to the these bits.

See the instruction descriptions “MRS” on page 136 and “MSR” on page 137 for more information about how to
access the program status registers.

/ItmeL SAM3N Series [DATASHEET] 43

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.6 Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions. See the register
summary in Table 11-2 on page 40 for its attributes. The bit assignments are:

* N

Negative or less than flag:

0 = operation result was positive, zero, greater than, or equal
1 = operation result was negative or less than.

e Z
Zero flag:
0 = operation result was not zero

1 = operation result was zero.

« C

Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

eV
Overflow flag:
0 = operation did not result in an overflow

1 = operation resulted in an overflow.

* Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1 = indicates when an ssAT or UsAT instruction results in saturation.

This bit is cleared to zero by software using an MRrs instruction.

44 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR). See the register
summary in Table 11-2 on page 40 for its attributes. The bit assignments are:

* ISR_NUMBER

This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug
13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO
26 = IRQ32

see “Exception types” on page 62 for more information.

/It m eL SAM3N Series [DATASHEET] 45

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.8 Execution Program Status Register

The EPSR contains the Thumb state bit, and the execution state bits for either the:
e If-Then (IT) instruction
e Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

See the register summary in Table 11-2 on page 40 for the EPSR attributes. The bit assignments are:

e ICI
Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 47.

o T
Indicates the execution state bits of the IT instruction, see “IT” on page 127.

e T

Always set to 1.
Attempts to read the EPSR directly through application software using the MSR instruction always return zero.
Attempts to write the EPSR using the MSR instruction in application software are ignored. Fault handlers can

examine EPSR value in the stacked PSR to indicate the operation that is at fault. See “Exception entry and return”
on page 66.

46 SAM3N Series [DATASHEET] /ltmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.9 Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM or STM instruction, the processor:
e stops the load multiple or store multiple instruction operation temporarily
e stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:
e returns to the register pointed to by bits[15:12]
e resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

11.4.3.10 If-Then block

The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is
conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See
“IT” on page 127 for more information.

11.4.3.11 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS” on page 136, “MSR” on page 137, and “CPS” on page 132 for
more information.

/ItmeL SAM3N Series [DATASHEET] 47

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.12 Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See the register summary in
Table 11-2 on page 40 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIMASK |

* PRIMASK

0 = no effect

1 = prevents the activation of all exceptions with configurable priority.

48 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.13 Fault Mask Register

The FAULTMASK register prevents activation of all exceptions. See the register summary in Table 11-2 on page
40 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved FAULTMASK |

¢ FAULTMASK

0 = no effect

1 = prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

/ItmeL SAM3N Series [DATASHEET] 49

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.14 Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero
value, it prevents the activation of all exceptions with same or lower priority level as the BASEPRI value. See the
register summary in Table 11-2 on page 40 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| BASEPRI |

« BASEPRI

Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this
field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 151 for more information. Remem-
ber that higher priority field values correspond to lower exception priorities.

50 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.4.3.15 CONTROL register

The CONTROL register controls the stack used and the privilege level for software execution when the processor
is in Thread mode. See the register summary in Table 11-2 on page 40 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

Active Stack Thread Mode

Reserved

Pointer

Privilege Level

» Active stack pointer

Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.

» Thread mode privilege level
Defines the Thread mode privilege level:
0 = privileged

1 = unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR
instruction to set the Active stack pointer bit to 1, see “MSR” on page 137.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 135

SAM3N Series [DATASHEET] 51

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

11.4.4 Exceptions and interrupts

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses handler mode to handle all exceptions except for reset. See “Exception entry” on page
67 and “Exception return” on page 68 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on page 144 for more
information.

11.4.5 Data types

The processor:
e supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
e supports 64-bit data transfer instructions.

e manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus (PPB)
accesses are always little-endian. See “Memory regions, types and attributes” on page 54 for more
information.

11.4.6 The Cortex Microcontroller Software Interface Standard

For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e acommon way to:
— access peripheral registers
— define exception vectors
e the names of:
— the registers of the core peripherals
— the core exception vectors
e adevice-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M3 processor. It
also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to
include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ from the
architectural short names that might be used in other documents.
The following sections give more information about the CMSIS:

e “Power management programming hints” on page 71

e “Intrinsic functions” on page 76

e “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 144

e “NVIC programming hints” on page 156.

52 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.5 Memory model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding
features. The processor has a fixed memory map that provides up to 4GB of addressable memory. The memory

map is:
OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
- ; OXEOOFFFFF
Prlvatebpuesrlpheral 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB
0xA0000000
OX9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OXSFFFFFFF
Ox400FFFFF . _ Peripheral 0.5GB
[1MB Bit band region
0x40000000 0x40000000
O0X23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x22000000 OX1FFFFFFF
Code 0.5GB
0x200FFFFF _ .
0x20000000 I MB_Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit
data, see “Bit-banding” on page 57.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers,
see “About the Cortex-M3 peripherals” on page 143.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory mapping of this product,
refer to the Memories section of the datasheet.

/ItmeL SAM3N Series [DATASHEET] 53

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.5.1 Memory regions, types and attributes

The memory map split the memory map into regions. Each region has a defined memory type, and some regions
have additional memory attributes. The memory type and attributes determine the behavior of accesses to the
region.

The memory types are:
11.5.1.1 Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

11.5.1.2 Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

11.5.1.3 Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include.

11.5.1.4 Shareable

For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data coherency
between the bus masters.

11.5.1.5 Execute Never (XN)

Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an XN region causes
a memory management fault exception.

54 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.5.2 Memory system ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, providing
this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on
two memory accesses completing in program order, software must insert a memory barrier instruction between the
memory access instructions, see “Software ordering of memory accesses” on page 56.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered
memory. For two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses caused by two instructions is:

i Strongly-

A2 Normal Device access gly

A1 access ordered

Non-shareable| Shareable access

Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:
- Means that the memory system does not guarantee the ordering of the accesses.
< Means that accesses are observed in program order, that is, Al is always observed before A2.

11.5.3 Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

Table 11-4. Memory access behavior

Address
range Memory region Memory type XN Description
0x00000000- Executable region for program code. You can also put

@ -
OXLFFFFFFF | C°de Normal data here.

Executable region for data. You can also put code here.
0x20000000- @ . L . . .
OX3EEEEEEE | SRAM Normal - This region includes bit band and bit band alias areas, see
Table 11-6 on page 58.

0x40000000- Peripheral Device®) XN This region includes bit band and bit band alias areas, see
OX5FFFFFFF P Table 11-6 on page 58.
0x60000000- .

(€] -
OXOEEFFFFF External RAM Normal Executable region for data.
0xA0000000- . . .

(@)
OXDEEEEEEE External device Device XN External Device memory
0xE0000000- | Private : o) This region includes the NVIC, System timer, and system
OXEQOFFFFF | Peripheral Bus | Stondly-ordered™ | XN ool block.
0xE0100000- .

(€]
OXFFFFEEFF Reserved Device XN Reserved

1. See “Memory regions, types and attributes” on page 54 for more information.
SAM3N Series [DATASHEET 55
Atmel : :

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs
always use the Code region. This is because the processor has separate buses that enable instruction fetches and
data accesses to occur simultaneously.

11.5.3.1 Additional memory access constraints for shared memory
When a system includes shared memory, some memory regions have additional access constraints, and some
regions are subdivided, as Table 11-5 shows:

Table 11-5. Memory region share ability policies

Address range Memory region Memory type Shareability
0x00000000-
@ -
OX1FFFFFFF Code Normal
0x20000000- o i
OX3FFFFFFF SRAM Normal
0x40000000- . .
) (1) -
OXSEEFFFFF Peripheral Device
0x60000000-
@
OX7FFFFFFF WBWA
External RAM Normal® -
0x80000000- @
OX9FFFFFFF wr
0xA0000000-
(€]
OXBFFFFFFF Shareable
External device Device™ -
0xC0000000-
- (@)
OXDEEEEFFF Non-shareable
0xE0000000- . . 5) (1) i
OXEOOEFFFF Private Peripheral Bus Strongly- ordered Shareable
0xE0100000- . . .
_ @ @ - -
OXFEEEEEEF Vendor-specific device Device
1. See “Memory regions, types and attributes” on page 54 for more information.
2. The Peripheral and Vendor-specific device regions have no additional access constraints.

11.5.4 Software ordering of memory accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e the processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e the processor has multiple bus interfaces
e memory or devices in the memory map have different wait states
e some memory accesses are buffered or speculative.

56 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

“Memory system ordering of memory accesses” on page 55 describes the cases where the memory system
guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must
include memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

11.5.4.1 DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See “DMB” on page 133.

11.5.4.2 DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See “DSB” on page 134.

11.5.4.3 ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB” on page 135.

Use memory barrier instructions in, for example:

e \Vector table. If the program changes an entry in the vector table, and then enables the corresponding
exception, use a DMB instruction between the operations. This ensures that if the exception is taken
immediately after being enabled the processor uses the new exception vector.

e Self-modifying code. If a program contains self-modifying code, use an ISB instruction immediately after the
code modification in the program. This ensures subsequent instruction execution uses the updated program.

e Memory map switching. If the system contains a memory map switching mechanism, use a DSB instruction
after switching the memory map in the program. This ensures subsequent instruction execution uses the
updated memory map.

e Dynamic exception priority change. When an exception priority has to change when the exception is pending
or active, use DSB instructions after the change. This ensures the change takes effect on completion of the
DSB instruction.

e Using a semaphore in multi-master system. If the system contains more than one bus master, for example, if
another processor is present in the system, each processor must use a DMB instruction after any
semaphore instructions, to ensure other bus masters see the memory transactions in the order in which they
were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require the use of DMB
instructions.

11.5.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1MB of the SRAM and peripheral memory regions.
The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

e accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown in Table 11-6

e accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as shown in Table
11-7.

/ItmeL SAM3N Series [DATASHEET] 57

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 11-6. SRAM memory bit-banding regions

Address

range Memory region Instruction and data accesses

0x20000000- SRAM bit-band region Direct accesses to this memory range behave as SRAM memory accesses,

0x200EFEEF but this region is also bit addressable through bit-band alias.

0x22000000- Data accesses to this region are remapped to bit band region. A write
SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not

0x23FFFFFF remapped.

Table 11-7. Peripheral memory bit-banding regions

Address

range Memory region Instruction and data accesses

0x40000000- . . . Direct accesses to this memory range behave as peripheral memory
Peripheral bit-band alias . L . . ’

O0x400EFFEE accesses, but this region is also bit addressable through bit-band alias.

0x42000000- Data accesses to this region are remapped to bit band region. A write
Peripheral bit-band region | operation is performed as read-modify-write. Instruction accesses are not

0x43FFFFFF permitted.

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-
band region.

The following formula shows how the alias region maps onto the bit-band region:
bit _word_offset = (byte_offset x 32) + (bit_nunber x 4)
bit_word_addr = bit_band_base + bit_word_offset
where:
e Bit_word_offset is the position of the target bit in the bit-band memory region.
Bit _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t _band_base is the starting address of the alias region.
Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.
Bi t _nunber is the bit position, 0-7, of the targeted bit.
Figure 11-2 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-
band region:
e The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEO = 0x22000000 +
(OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0 *4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+
(0*32) + (7*4).

58 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Figure 11-2. Bit-band mapping

32MB alias region

I 0x23FFFFFC I 0x23FFFFF8 | 0x23FFFFF4 | O0x23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEO I

°

°

°

/ I 0x2200001C I 0x22000018 0x22000014 0x22000010 | 0x22000! 0x22000008 0x22000004 I 0x22000000 I
1MB SRAM bit-band region \
\7 6 5 4 3 2 1 0,7 6 3 21 07 6 5 4 3 2107 6 5 4 3 2 10
| | [| [| ~ I [| I [|
0x200FFFFF 0x200FFFFE \\ 0x200FFFFD 0x200FFFFC
| | | | | | | | | | | |
.
.
.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 0
I l [I l [I l [I l [
0x20000003 0x20000002 0x20000001 0x20000000
| | | | | | | | | | | |

11.5.5.1 Directly accessing an alias region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-

band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0
writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.

Reading a word in the alias region:
e (0x00000000 indicates that the targeted bit in the bit-band region is set to zero
e 0x00000001 indicates that the targeted bit in the bit-band region is set to 1
11.5.5.2 Directly accessing a bit-band region

“Behavior of memory accesses” on page 55 describes the behavior of direct byte, halfword, or word accesses to
the bit-band regions.

11.5.6 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,

bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. or “Little-endian format” describes
how words of data are stored in memory.

/ItmeL SAM3N Series [DATASHEET] 59

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.5.6.1 Little-endian format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and
the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3 B3 msbyte

11.5.7 Synchronization primitives

The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use
them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

11.5.7.1 A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

11.5.7.2 A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:
0: it indicates that the thread or process gained exclusive access to the memory, and the write succeeds,
1: it indicates that the thread or process did not gain exclusive access to the memory, and no write is performed,
The pairs of Load-Exclusive and Store-Exclusive instructions are:
e the word instructions LDREX and STREX
e the halfword instructions LDREXH and STREXH
e the byte instructions LDREXB and STREXB.
Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform a guaranteed read-modify-write of a memory location, software must:
e Use a Load-Exclusive instruction to read the value of the location.
e Update the value, as required.

e Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and tests
the returned status bit. If this bit is:

0: The read-modify-write completed successfully,

1: No write was performed. This indicates that the value returned the first step might be out of date. The
software must retry the read-modify-write sequence,

60 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.5.8

Software can use the synchronization primitives to implement a semaphores as follows:
e Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is
free.
e Ifthe semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.

e If the returned status bit from the second step indicates that the Store-Exclusive succeeded then the
software has claimed the semaphore. However, if the Store-Exclusive failed, another process might have
claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:

e It executes a CLREX instruction

e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means the processor can resolve semaphore conflicts between different threads.

In a multiprocessor implementation:
e executing a CLREX instruction removes only the local exclusive access tag for the processor

e executing a Store-Exclusive instruction, or an exception. removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” on page 97 and
“CLREX” on page 99.

Programming hints for the synchronization primitives

ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide intrinsic functions
for generation of these instructions:

Table 11-8. C compiler intrinsic functions for exclusive access instructions

Instruction Intrinsic function

LDREX, LDREXH, or LDREXB unsigned int __ldrex(volatile void *ptr)
STREX, STREXH, or STREXB int __strex(unsigned int val, volatile void *ptr)
CLREX void __clrex(void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the require LDREXB operation:
__ldrex((vol atile char *) OxFF);

/ItmeL SAM3N Series [DATASHEET] 61

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.6 Exception model

This section describes the exception model.

11.6.1 Exception states

Each exception is in one of the following states:

11.6.1.1 Inactive
The exception is not active and not pending.

11.6.1.2 Pending
The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.
11.6.1.3 Active
An exception that is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in
the active state.
11.6.1.4 Active and pending
The exception is being serviced by the processor and there is a pending exception from the same source.

11.6.2 Exception types

The exception types are:

11.6.2.1 Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

11.6.2.2 Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.

NMIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.

11.6.2.3 Hard fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

11.6.2.4 Bus fault

A bus fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

62 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.6.2.5 Usage fault

A usage fault is an exception that occurs because of a fault related to instruction execution. This includes:
e an undefined instruction
e anillegal unaligned access
e invalid state on instruction execution
e an error on exception return.

The following can cause a usage fault when the core is configured to report them:
e an unaligned address on word and halfword memory access
e division by zero.

11.6.2.6 SVCall
A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

11.6.2.7 PendSV
PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

11.6.2.8 SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

11.6.2.9 Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the
processor.

/ItmeL SAM3N Series [DATASHEET] 63

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 11-9. Properties of the different exception types

Exception Vector address

number @ IRQ number® | Exception type Priority or offset @ Activation

1 - Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Hard fault -1 0x0000000C -

4 -12 Memory management fault | Configurable ' | 0x00000010 Synchronous
Synchronous when

5 -1 Bus fault Configurable® | 0x00000014 gfyﬁiﬁ;onous when
imprecise

6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 svcall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above | 0 and above ® | Interrupt (IRQ) Configurable ® | 0x00000040 and above ©® | Asynchronous

1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other than

IR

11.6.3

interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” on page 45.
See “Vector table” on page 65 for more information.
See “System Handler Priority Registers” on page 170.
See the “Peripheral Identifiers” section of the datasheet.
See “Interrupt Priority Registers” on page 151.
Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 11-9 on page 64 shows as having configurable priority,
see:

e “System Handler Control and State Register” on page 174
e “Interrupt Clear-enable Registers” on page 147.

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault
handling” on page 68.
Exception handlers

The processor handles exceptions using:

11.6.3.1 Interrupt Service Routines (ISRs)

Interrupts IRQO to IRQ32 are the exceptions handled by ISRs.

11.6.3.2 Fault handlers

64

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.6.3.3 System handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system
handlers.

11.6.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 11-3 on page 65 shows the order of the exception vectors in the vector
table. The least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 11-3. Vector table

Exception number IRQ number Offset Vector
45 29 IRQ29
0x00B4
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
1 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 Reserved
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80, see
“Vector Table Offset Register” on page 163.

/ItmeL SAM3N Series [DATASHEET] 65

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.6.5 Exception priorities

As Table 11-9 on page 64 shows, all exceptions have an associated priority, with:

e alower priority value indicating a higher priority

e configurable priorities for all exceptions except Reset, Hard fault.
If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see

e “System Handler Priority Registers” on page 170

e ‘“Interrupt Priority Registers” on page 151.

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[O0]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[O] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

11.6.6 Interrupt priority grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:
e an upper field that defines the group priority
e alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register” on page 164.

11.6.7 Exception entry and return

Descriptions of exception handling use the following terms:

11.6.7.1 Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt priority grouping” on page 66 for
more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception entry” on
page 67 more information.

66 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.6.7.2 Return
This occurs when the exception handler is completed, and:
e there is no pending exception with sufficient priority to be serviced
e the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception return” on page 68 for more information.

11.6.7.3 Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

11.6.7.4 Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

11.6.7.5 Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:
e the processor is in Thread mode
e the new exception is of higher priority than the exception being handled, in which case the new exception
preempts the original exception.
When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask registers, see “Exception
mask registers” on page 47. An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred as stack frame. The stack frame contains the following information:
e RO-R3,R12
e Return address
e PSR
e LR
Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. Unless stack

alignment is disabled, the stack frame is aligned to a double-word address. If the STKALIGN bit of the
Configuration Control Register (CCR) is set to 1, stack align adjustment is performed during stacking.

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the was processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler
and automatically changes the status of the corresponding pending interrupt to active.

/ItmeL SAM3N Series [DATASHEET] 67

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

If another higher priority exception occurs during exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

11.6.7.6 Exception return

Exception return occurs when the processor is in Handler mode and executes one of the following instructions to
load the EXC_RETURN value into the PC:

e a POP instruction that includes the PC

e aBX instruction with any register.

e an LDR or LDM instruction with the PC as the destination.
EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value
to detect when the processor has completed an exception handler. The lowest four bits of this value provide
information on the return stack and processor mode. Table 11-10 shows the EXC_RETURN][3:0] values with a
description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to oxFFFFFFF. When this value is loaded into the PC it indicates to the
processor that the exception is complete, and the processor initiates the exception return sequence.
Table 11-10. Exception return behavior

EXC_RETURNI3:0] | Description

bXXX0 Reserved.
Return to Handler mode.
b0001 Exception return gets state from MSP.
Execution uses MSP after return.
b0011 Reserved.
b01X1 Reserved.

Return to Thread mode.
b1001 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.
b1101 Exception return gets state from PSP.
Execution uses PSP after return.

b1X11 Reserved.

11.7 Fault handling

Faults are a subset of the exceptions, see “Exception model” on page 62. The following generate a fault:
— abus error on:
— aninstruction fetch or vector table load
— adata access

e an internally-detected error such as an undefined instruction or an attempt to change state with a BX
instruction

e attempting to execute an instruction from a memory region marked as Non-Executable (XN).

68 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.7.1 Fault types

Table 11-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” on page 176 for

more information about the fault status registers.

Table 11-11. Faults
Fault Handler Bit name Fault status register
Bus error on a vector read Hard fault VECTTBL “Hard Fault Status Register”
Fault escalated to a hard fault FORCED on page 182
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus faul IBUSERR ;E;;Se':lz;gt Status Register” on
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state) Usage fault INVSTATE “Usage Fault Status Register”
Invalid EXC_RETURN value INVPC on page 180
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
1. Attempting to use an instruction set other than the Thumb instruction set.

11.7.2 Fault escalation and hard faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority
Registers” on page 170. Software can disable execution of the handlers for these faults, see “System Handler

Control and State Register” on page 174.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler. as described in

“Exception model” on page 62.

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and

the fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself because it must have the same priority as the current priority

level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the

handler for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently

executing exception.

Atmel

A fault occurs and the handler for that fault is not enabled.

SAM3N Series [DATASHEET] 69

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a
hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack
push for the handler failed. The fault handler operates but the stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

11.7.3 Fault status registers and fault address registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 11-12.

Table 11-12. Fault status and fault address registers

Status register Address register

Handler name name Register description

Hard fault HFSR - “Hard Fault Status Register” on page 182
“Memory Management Fault Status Register” on

age 177

Memory management MMESR MMEAR pag |

fault “Memory Management Fault Address Register”
on page 183
“Bus Fault Status Register” on page 178

Bus fault BFSR BFAR)
“Bus Fault Address Register” on page 184

Usage fault UFSR - “Usage Fault Status Register” on page 180

11.7.4 Lockup
The processor enters a lockup state if a hard fault occurs when executing the hard fault handlers. When the
processor is in lockup state it does not execute any instructions. The processor remains in lockup state until:
e tisreset

11.8 Power management

The Cortex-M3 processor sleep modes reduce power consumption:
e Backup Mode
e Wait Mode
e Sleep Mode
The SLEEPDEEP bit of the SCR selects which sleep mode is used, see “System Control Register” on page 167.

For more information about the behavior of the sleep modes see “Low Power Modes” in the PMC section of the
datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

11.8.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore software must be able to put the processor back into sleep mode after such an event. A program might
have an idle loop to put the processor back to sleep mode.

70 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.8.1.1 Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a
WFI instruction it stops executing instructions and enters sleep mode. See “WFI” on page 142 for more
information.

11.8.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event
register. When the processor executes a WFE instruction, it checks this register:
e if the register is O the processor stops executing instructions and enters sleep mode
e ifthe register is 1 the processor clears the register to 0 and continues executing instructions without entering
sleep mode.

See “WFE” on page 141 for more information.

11.8.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of an exception
handler it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an exception occurs.

11.8.2 Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter sleep mode.

11.8.2.1 Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up
but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information about
PRIMASK and FAULTMASK see “Exception mask registers” on page 47.

11.8.2.2 Wakeup from WFE

The processor wakes up if:
e it detects an exception with sufficient priority to cause exception entry
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes

up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more
information about the SCR see “System Control Register” on page 167.

11.8.3 Power management programming hints

ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following intrinsic
functions for these instructions:

void __WFE(void) // Wait for Event

void __WFE(void) // Wait for Interrupt

/ItmeL SAM3N Series [DATASHEET] 71

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.9

72

Instruction set summary

The processor implements a version of the Thumb instruction set. Table 11-13 lists the supported instructions.

In Table 11-13:

angle brackets, <>, enclose alternative forms of the operand

braces, {}, enclose optional operands

the Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant

For more information on the instructions and operands, see the instruction descriptions.

most instructions can use an optional condition code suffix.

Table 11-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C.V page 101
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C.V page 101
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C\V page 101
ADR Rd, label Load PC-relative address - page 86
AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C page 103
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C page 104
B label Branch - page 124
BFC Rd, #Isb, #width Bit Field Clear - page 120
BFI Rd, Rn, #Isb, #width Bit Field Insert - page 120
BIC, BICS {Rd} Rn, Op2 Bit Clear N,Z,C page 103
BKPT #imm Breakpoint - page 131
BL label Branch with Link - page 124
BLX Rm Branch indirect with Link - page 124
BX Rm Branch indirect - page 124
CBNz Rn, label Compare and Branch if Non Zero - page 126
CBz Rn, label Compare and Branch if Zero - page 126
CLREX - Clear Exclusive - page 99
CLz Rd, Rm Count leading zeros - page 106
CMN, CMNS Rn, Op2 Compare Negative N,Z,C.V page 107
CMP, CMPS Rn, Op2 Compare N,Z,C,V page 107
CPSID iflags Change Processor State, Disable Interrupts - page 132
CPSIE iflags Change Processor State, Enable Interrupts - page 132
DMB - Data Memory Barrier - page 133
DSB - Data Synchronization Barrier - page 134
EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C page 103
ISB - Instruction Synchronization Barrier - page 135
IT - If-Then condition block - page 127
LDM Rn{'}, reglist Load Multiple registers, increment after - page 94

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

Table 11-13. Cortex-M3 instructions (Continued)
Mnemonic Operands Brief description Flags Page
tgmgi Rn{!}, reglist Load Multiple registers, decrement before - page 94
LDMFD, LDMIA | Rn{!}, reglist Load Multiple registers, increment after - page 94
LDR Rt, [Rn, #offset] Load Register with word - page 89
LDRB, LDRBT |Rt, [Rn, #offset] Load Register with byte - page 89
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes - page 89
LDREX Rt, [Rn, #offset] Load Register Exclusive - page 89
LDREXB Rt, [Rn] Load Register Exclusive with byte - page 89
LDREXH Rt, [Rn] Load Register Exclusive with halfword - page 89
LDRH, LDRHT |Rt, [Rn, #offset] Load Register with halfword - page 89
IEBE?ST Rt, [Rn, #offset] Load Register with signed byte - page 89
thg:T Rt, [Rn, #offset] Load Register with signed halfword - page 89
LDRT Rt, [Rn, #offset] Load Register with word - page 89
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,zZ,C page 104
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C page 104
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result - page 114
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 114
MOV, MOVS Rd, Op2 Move N,zZ,C page 108
MOVT Rd, #imm16 Move Top - page 110
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C page 108
MRS Rd, spec_reg Move from special register to general register - page 136
MSR spec_reg, Rm Move from general register to special register N,Z,C\V page 137
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z page 114
MVN, MVNS Rd, Op2 Move NOT N,Z,C page 108
NOP - No Operation - page 138
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C page 103
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C page 103
POP reglist Pop registers from stack - page 96
PUSH reglist Push registers onto stack - page 96
RBIT Rd, Rn Reverse Bits - page 111
REV Rd, Rn Reverse byte order in a word - page 111
REV16 Rd, Rn Reverse byte order in each halfword - page 111
REVSH Rd, Rn (F;)(:_t\éir;e byte order in bottom halfword and sign page 111
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C page 104
RRX, RRXS Rd, Rm Rotate Right with Extend N,zZ,C page 104
SAM3N Series [DATASHEET] 73

Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

74

Table 11-13. Cortex-M3 instructions (Continued)
Mnemonic Operands Brief description Flags Page
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V page 101
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,CV page 101
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract - page 121
SDIV {Rd,} Rn, Rm Signed Divide - page 116
SEV - Send Event - page 139
SMLAL RdLo, RdHi, Rn, Rm S_igned Multiply with Accumulate (32 x 32 + 64), 64- | page 115
bit result
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result - page 115
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q page 117
STM Rn{1}, reglist Store Multiple registers, increment after - page 94
§$mg}2 Rn{}, reglist Store Multiple registers, decrement before - page 94
STMFD, STMIA | Rn{}, reglist Store Multiple registers, increment after - page 94
STR Rt, [Rn, #offset] Store Register word - page 89
STRB, STRBT |Rt, [Rn, #offset] Store Register byte - page 89
STRD Rt, Rt2, [Rn, #offset] Store Register two words - page 89
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 97
STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 97
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 97
STRH, STRHT |Rt, [Rn, #offset] Store Register halfword - page 89
STRT Rt, [Rn, #offset] Store Register word - page 89
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V page 101
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V page 101
SsvC #imm Supervisor Call - page 140
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - page 122
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - page 122
TBB [Rn, Rm] Table Branch Byte - page 129
TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 129
TEQ Rn, Op2 Test Equivalence N,Z,C page 112
TST Rn, Op2 Test N,Z,C page 112
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract - page 121
ubDIV {Rd,} Rn, Rm Unsigned Divide - page 116
UMLAL RdLo, RdHi, Rn, Rm g;s)i(ggg‘i“gz;fi%'i_‘é"ii:?e'iﬁﬁ“m“'ate . page 115
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result - page 115
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q page 117
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte - page 122
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword - page 122
SAM3N Series [DATASHEET] AtmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 11-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
WFE - Wait For Event - page 141
WFI - Wait For Interrupt - page 142
SAM3N Series [DATASHEET 75
Atmel : :

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.10 Intrinsic functions

ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, you might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot directly access:

Table 11-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions

Instruction CMSIS intrinsic function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIEF void __enable_fault_irq(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 11-15. CMSIS intrinsic functions to access the special registers

Special register | Access | CMSIS function
Read uint32_t __get_ PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t ___get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get_MSP (void)
MSP
Write void __set_ MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set_PSP (uint32_t TopOfProcStack)
76 SAM3N Series [DATASHEET] /ItmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.11 About the instruction descriptions

The following sections give more information about using the instructions:

“Operands” on page 77

“Restrictions when using PC or SP” on page 77
“Flexible second operand” on page 77

“Shift Operations” on page 78

“Address alignment” on page 81

“PC-relative expressions” on page 81
“Conditional execution” on page 81

“Instruction width selection” on page 83.

11.11.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See “Flexible second
operand” .

11.11.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack Pointer (SP) for
the operands or destination register. See instruction descriptions for more information.

Bit[O] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M3 processor only supports
Thumb instructions.

11.11.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the
descriptions of the syntax of each instruction.

Operand?2 can be a:

“Constant”
“Register with optional shift” on page 78

11.11.3.1 Constant
You specify an Operand2 constant in the form:

#const ant

where const ant can be:

any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
any constant of the form 0x00XYOO0XY

any constant of the form 0xXY00XYQ00

any constant of the form OxXYXYXYXY.

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, const ant can take a wider range of values. These are described in
the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be

Atmel

SAM3N Series [DATASHEET] 77

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

11.11.3.2 Instruction substitution

Your assembler might be able to produce an equivalent instruction in cases where you specify a constant that is
not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

11.11.3.3 Register with optional shift

You specify an Operand? register in the form:

Rm {, shift}

where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:

ASR #n arithmetic shift right n bits, 1 <n < 32.

LSL #n logical shift left n bits, 1 <n < 31.

LSR #n logical shift right n bits, 1 < n < 32.

ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the
carry flag when used with certain instructions. For information on the shift operations and how they affect the carry
flag, see “Shift Operations”

11.11.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed:

e directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register

e during the calculation of Operand2 by the instructions that specify the second operand as a register with
shift, see “Flexible second operand” on page 77. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction description or
“Flexible second operand” on page 77. If the shift length is 0, no shift occurs. Register shift operations update the
carry flag except when the specified shift length is 0. The following sub-sections describe the various shift
operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value to be
shifted, and n is the shift length.

78 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.11.4.1 ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 11-4 on page 79.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result being rounded
towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 11-4. ASR #3

Carry

Y YV Flag
31 5(4(3(2(1]0 D
A_f | | Ai A f *

H '

11.11.4.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 11-5.

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to 0.

Figure 11-5. LSR#3

(I) (I) Carry
Y V¥ Flag
31 5(4|3(2|1|0 D
| A A f | Ai A f :A
R : ________ J
/ItmeL SAM3N Series [DATASHEET] 79

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.11.4.3 LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result. And it sets the right-hand n bits of the result to 0. See Figure 11-6 on page 80.

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’'s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-
n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 11-6. LSL #3

| [1]

I] 00 0

H vV

31 5/4|13/2/1/|0
Carry 4 4 A A

Flag ? l T |

11.11.4.4 ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it moves the right-hand n bits of the register into the left-hand n bits of the result. See
Figure 11-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register
Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated
to bit[31] of Rm.

e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 11-7. ROR #3

YVvYy

| Aﬂf Iliﬂf :
: ________ |

80 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.11.4.5 RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the carry flag into
bit[31] of the result. See Figure 11-8 on page 81.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 11-8. RRX

Carry
Flag

313 110

:]
ALY, MEEPE]

11.11.5 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

LDR, LDRT
LDRH, LDRHT
LDRSH, LDRSHT
STR, STRT
STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and
therefore their accesses must be address aligned. For more information about usage faults see “Fault handling” on
page 68.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not
support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.
To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control
Register to trap all unaligned accesses, see “Configuration and Control Register” on page 168.

11.11.6 PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too big, the assembler
produces an error.

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

11.11.7 Conditional execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see “Application Program Status Register” on page 44.

Atmel

SAM3N Series [DATASHEET] 81

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Some instructions update all flags, and some only update a subset. If a flag is not updated, the original value is
preserved. See the instruction descriptions for the flags they affect.
You can execute an instruction conditionally, based on the condition flags set in another instruction, either:

e immediately after the instruction that updated the flags

e after any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 11-16 on page 83 for a list of the suffixes to add to instructions to make them conditional

instructions. The condition code suffix enables the processor to test a condition based on the flags. If the condition
test of a conditional instruction fails, the instruction:

e does not execute
e does not write any value to its destination register
e does not affect any of the flags
e does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” on

page 127 for more information and restrictions when using the IT instruction. Depending on the vendor, the
assembler might automatically insert an IT instruction if you have conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on the result.
This section describes:
e “The condition flags”
e “Condition code suffixes” .
11.11.7.1 The condition flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
4 Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\% Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR see “Program Status Register” on page 42.
A carry occurs:
e if the result of an addition is greater than or equal to
e if the result of a subtraction is positive or zero
e as the result of an inline barrel shifter operation in a move or logical instruction.

232

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 231, or less than —23%.

Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

11.11.7.2 Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 11-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instructions in code.

82 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 11-16. Condition code suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

ﬁg or c=1 Higher or same, unsigned >
Eg or Cc=0 Lower, unsigned <

MI N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VvC V=0 No overflow

HI C=1landZ=0 Higher, unsigned >

LS C=0or Zz=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >
LT N!I=V Less than, signed <

GT Z=0and N=V Greater than, signed >

LE Z=1landN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

11.11.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = Rl, setting flags
1T M ; ITinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

11.11.7.4 Compare and update value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CWP RO, R1 ; Compare RO and R1, setting flags

ITT Gr : I Tinstruction for the two GI conditions

CVPGT R2, R3 ; If '"greater than', conpare R2 and R3, setting flags
MOVGT R4, R5 ; If still 'greater than', do R4 = RS

11.11.8 Instruction width selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, you can force a specific instruction
size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a
16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not
automatically generate the right size encoding.

/ItmeL SAM3N Series [DATASHEET] 83

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.11.8.1 Instruction width selection

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.
BCS. W | abel ; creates a 32-bit instruction even for a short branch

ADDS. WR0O, RO, Rl ; creates a 32-bit instruction even though the sane
; operation can be done by a 16-bit instruction

84 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 11-17 shows the memory access instructions:

11.12 Memory access instructions

Table 11-17. Memory access instructions
Mnemonic Brief description See
ADR Load PC-relative address “ADR” on page 86
CLREX Clear Exclusive “CLREX” on page 99
LDM{mode} Load Multiple registers “LDM and STM” on page 94
LDR{type} Load Register using immediate offset “LDR and STR, immediate offset” on page 87
LDR{type} Load Register using register offset “LDR and STR, register offset” on page 89
LDR{type}T Load Register with unprivileged access “LDR and STR, unprivileged” on page 91
LDR Load Register using PC-relative address “LDR, PC-relative” on page 92
LDREX{type} Load Register Exclusive “LDREX and STREX” on page 97
POP Pop registers from stack “PUSH and POP” on page 96
PUSH Push registers onto stack “PUSH and POP” on page 96
STM{mode} Store Multiple registers “LDM and STM” on page 94
STR{type} Store Register using immediate offset “LDR and STR, immediate offset” on page 87
STR{type} Store Register using register offset “LDR and STR, register offset” on page 89
STR{type}T Store Register with unprivileged access “LDR and STR, unprivileged” on page 91
STREX{type} Store Register Exclusive “LDREX and STREX” on page 97

Atmel

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

85

11.12.1 ADR

Load PC-relative address.

11.12.1.1 Syntax
ADR{cond} Rd, | abel

where:

cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.

label is a PC-relative expression. See “PC-relative expressions” on page 81.

11.12.1.2 Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the address
you generate is set tol for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-
aligned. See “Instruction width selection” on page 83.

11.12.1.3 Restrictions
Rd must not be SP and must not be PC.

11.12.1.4 Condition flags
This instruction does not change the flags.

11.12.1.5 Examples

ADR R1l, Text Message . Wite address value of a |location | abelled as
; Text Message to R1

86 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.2 LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

11.12.2.1 Syntax

op{type}{cond} R, [Rn {, #offset}] ; i mmedi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immedi ate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} R, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional execution” on page 81.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.

11.12.2.2 Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

11.12.2.3 Offset addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

11.12.2.4 Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode

IS:

[Rn, #offset]!

11.12.2.5 Post-indexed addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for

this mode is:
[R],

Atmel

#of f set

SAM3N Series [DATASHEET] 87

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address alignment” on page 81.

Table 11-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 11-18. Offset ranges
Instruction type Immediate offset Pre-indexed Post-indexed
Word, halfword, signed halfword, 255 to 4095 255 to 255 255 to 255

byte, or signed byte

Two words

multiple of 4 in the range
—-1020 to 1020

multiple of 4 in the range
—-1020 to 1020

multiple of 4 in the range
—-1020 to 1020

11.12.2.6 Restrictions
For load instructions:
e Rtcan be SP or PC for word loads only
e Rt must be different from Rt2 for two-word loads
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:
e hit[0] of the loaded value must be 1 for correct execution
e a branch occurs to the address created by changing bit[0] of the loaded value to 0
e f the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
e Rtcan be SP for word stores only
e Rtmustnot be PC
e Rn must not be PC
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

11.12.2.7 Condition flags
These instructions do not change the flags.

11.12.2.8 Examples

LDR R8, [R10] ; Loads R8 fromthe address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increments R5 by 960.
STR R2, [R9, #const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in

; R4, then increnment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the
: address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store Rl to

; a word 4 bytes above the address in R8,
; and then decrement R8 by 16.

88 SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

11.12.3 LDR and STR, register offset

Load and Store with register offset.

11.12.3.1 Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]

where:

op
LDR
STR

type

SB

SH

cond
Rt

Rn
Rm
LSL #n

11.12.3.2 Operation

is one of:

Load Register.

Store Register.

is one of:

unsigned byte, zero extend to 32 bits on loads.

signed byte, sign extend to 32 bits (LDR only).
unsigned halfword, zero extend to 32 bits on loads.
signed halfword, sign extend to 32 bits (LDR only).
omit, for word.

is an optional condition code, see “Conditional execution” on page 81.
is the register to load or store.

is the register on which the memory address is based.
is a register containing a value to be used as the offset.
is an optional shift, with n in the range 0 to 3.

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the
register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address alignment” on page 81.

11.12.3.3 Restrictions

In these instructions:

Rn must not be PC
Rm must not be SP and must not be PC
Rt can be SP only for word loads and word stores

e Rt can be PC only for word loads.

When Rt is PC in a word load instruction:
e hit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned

address

e if the instruction is conditional, it must be the last instruction in the IT block.

11.12.3.4 Condition flags
These instructions do not change the flags.

Atmel

SAM3N Series [DATASHEET] 89

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.3.5 Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and R1

LDRSB RO, [R5, Rl1, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two tines RL, sign extended it
; to a word value and put it in RO

STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
:and four tines R2

) SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.4 LDR and STR, unprivileged
Load and Store with unprivileged access.
11.12.4.1 Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; i mredi ate of fset
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 81.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

11.12.4.2 Operation

These load and store instructions perform the same function as the memory access instructions with immediate
offset, see “LDR and STR, immediate offset” on page 87. The difference is that these instructions have only
unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

11.12.4.3 Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

11.12.4.4 Condition flags
These instructions do not change the flags.

11.12.4.5 Examples

STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

/ItmeL SAM3N Series [DATASHEET] 91

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.5 LDR, PC-relative

Load register from memory.

11.12.5.1 Syntax
LDR{type}{cond} Rt, | abel

LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.
- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 81.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative expressions” on page 81.

11.12.5.2 Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label
or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address alignment” on page 81.

label must be within a limited range of the current instruction. Table 11-19 shows the possible offsets between
label and the PC.

Table 11-19. Offset ranges

Instruction type Offset range
Word, halfword, signed halfword, byte, signed byte —4095 to 4095
Two words —-1020 to 1020

You might have to use the .W suffix to get the maximum offset range. See “Instruction width selection” on page 83.

11.12.5.3 Restrictions
In these instructions:
e Rtcanbe SP or PC only for word loads
e Rt2 must not be SP and must not be PC
e Rt must be different from Rt2.
When Rt is PC in a word load instruction:

e hit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e if the instruction is conditional, it must be the last instruction in the IT block.

11.12.5.4 Condition flags
These instructions do not change the flags.

92 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.5.5 Examples
LDR RO, LookUpTabl e ;

LDRSB R7, | ocal data ;

Atmel

Load RO with a word of data from an address
| abel | ed as LookUpTabl e

Load a byte value froman address | abelled
as |l ocaldata, sign extend it to a word
value, and put it in R7

SAM3N Series [DATASHEET] 93

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.6 LDM and STM
Load and Store Multiple registers.
11.12.6.1 Syntax
op{addr_node}{cond} Rn{!}, reglist
where:
op is one of:
LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode is any one of the following:

1A Increment address After each access. This is the default.

DB Decrement address Before each access.
cond is an optional condition code, see “Conditional execution” on page 81.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I is present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or register range, see “Examples” on
page 95.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFED is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

11.12.6.2 Operation
LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page 96 for details.

94 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.6.3 Restrictions

In these instructions:

Rn must not be PC

reglist must not contain SP

in any STM instruction, reglist must not contain PC

in any LDM instruction, reglist must not contain PC if it contains LR
e reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglist in an LDM instruction:
e hit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address
e if the instruction is conditional, it must be the last instruction in the IT block.

11.12.6.4 Condition flags

These instructions do not change the flags.

11.12.6.5 Examples

LDM R8, { RO, R2, RO} ; LDMAis a synonymfor LDM
STMVDB R1!, { R3- R6, R11, R12}

11.12.6.6 Incorrect examples

STM R5! ,{R5, R4, RO} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at |east one register in the |ist
SAM3N Series [DATASHEET 95
Atmel : :

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

11.12.7.1 Syntax
PUSH{ cond} regli st
POP{cond} regli st

where:
cond is an optional condition code, see “Conditional execution” on page 81.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma

separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

11.12.7.2 Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” on page 94 for more information.

11.12.7.3 Restrictions
In these instructions:
e reglist must not contain SP
e for the PUSH instruction, reglist must not contain PC
e for the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:

e hit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e if the instruction is conditional, it must be the last instruction in the IT block.

11.12.7.4 Condition flags
These instructions do not change the flags.

11.12.7.5 Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
POP { RO, RLO, PC}

9 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.8 LDREX and STREX
Load and Store Register Exclusive.

11.12.8.1 Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{ cond} Rt, [Rn]
STREXH{ cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

11.12.8.2 Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization primitives” on page 60

If an Store-Exclusive instruction performs the store, it writes O to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes O to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

11.12.8.3 Restrictions

In these instructions:

do not use PC

do not use SP for Rd and Rt

for STREX, Rd must be different from both Rt and Rn

the value of offset must be a multiple of four in the range 0-1020.

11.12.8.4 Condition flags
These instructions do not change the flags.

/ItmeL SAM3N Series [DATASHEET] 97

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.8.5 Examples

MOV R1, #0x1 : Initialize the ‘lock taken' val ue
try

LDREX RO, [LockAddr] ; Load the |ock val ue
CWVP RO, #0 ; Is the lock free?
ITT EQ ; I T instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock
CVPEQ RO, #0 : Did this succeed?
BNE try ; No — try again
; Yes — we have the | ock

98 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.12.9 CLREX
Clear Exclusive.

11.12.9.1 Syntax
CLREX{ cond}
where:

cond is an optional condition code, see “Conditional execution” on page 81.

11.12.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization primitives” on page 60 for more information.
11.12.9.3 Condition flags

These instructions do not change the flags.

11.12.9.4 Examples
CLREX

/It m eL SAM3N Series [DATASHEET] 99

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13 General data processing instructions

Table 11-20 shows the data processing instructions:

Table 11-20. Data processing instructions

Mnemonic | Brief description See
ADC Add with Carry “ADD, ADC, SUB, SBC, and RSB” on page 101
ADD Add “ADD, ADC, SUB, SBC, and RSB” on page 101
ADDW Add “ADD, ADC, SUB, SBC, and RSB” on page 101
AND Logical AND “AND, ORR, EOR, BIC, and ORN" on page 103
ASR Arithmetic Shift Right “ASR, LSL, LSR, ROR, and RRX” on page 104
BIC Bit Clear “AND, ORR, EOR, BIC, and ORN" on page 103
CLz Count leading zeros “CLZ” on page 106
CMN Compare Negative “CMP and CMN” on page 107
CMP Compare “CMP and CMN” on page 107
EOR Exclusive OR “AND, ORR, EOR, BIC, and ORN" on page 103
LSL Logical Shift Left “ASR, LSL, LSR, ROR, and RRX" on page 104
LSR Logical Shift Right “ASR, LSL, LSR, ROR, and RRX” on page 104
MOV Move “MOV and MVN” on page 108
MOVT Move Top “MOVT"” on page 110
MOVW Move 16-bit constant “MOV and MVN” on page 108
MVN Move NOT “MOV and MVN" on page 108
ORN Logical OR NOT “AND, ORR, EOR, BIC, and ORN" on page 103
ORR Logical OR “AND, ORR, EOR, BIC, and ORN" on page 103
RBIT Reverse Bits “REV, REV16, REVSH, and RBIT” on page 111
REV Reverse byte order in a word “REV, REV16, REVSH, and RBIT” on page 111
REV16 Reverse byte order in each halfword “REV, REV16, REVSH, and RBIT” on page 111
REVSH Reverse byte order in bottom halfword and sign extend “REV, REV16, REVSH, and RBIT” on page 111
ROR Rotate Right “ASR, LSL, LSR, ROR, and RRX” on page 104
RRX Rotate Right with Extend “ASR, LSL, LSR, ROR, and RRX” on page 104
RSB Reverse Subtract “ADD, ADC, SUB, SBC, and RSB” on page 101
SBC Subtract with Carry “ADD, ADC, SUB, SBC, and RSB” on page 101
SUB Subtract “ADD, ADC, SUB, SBC, and RSB” on page 101
SUBW Subtract “ADD, ADC, SUB, SBC, and RSB” on page 101
TEQ Test Equivalence “TST and TEQ” on page 112
TST Test “TST and TEQ” on page 112

100 SAM3N Series [DATASHEET] /It m eL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

11.13.1.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #inml2 ; ADD and SUB only
where:
op is one of:
ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 81.

cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.

Operand?2 is a flexible second operand.
See “Flexible second operand” on page 77 for details of the options.
imm12 is any value in the range 0-4095.

11.13.1.2 Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide
range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on page 102.

See also “ADR” on page 86.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that
uses the imm12 operand.

11.13.1.3 Restrictions

In these instructions:

e Operand2 must not be SP and must not be PC

e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL

e Rncanbe SP only in ADD and SUB

e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— you must not specify the S suffix

SAMS3N Series [DATASHEET 101
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

— Rm must not be PC and must not be SP
— ifthe instruction is conditional, it must be the last instruction in the IT block

e with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:
— you must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00 before
performing the calculation, making the base address for the calculation word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant based on the
value of the PC. ARM recommends that you use the ADR instruction instead of ADD or SUB with Rn
equal to the PC, because your assembler automatically calculates the correct constant for the ADR
instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e bit[0] of the value written to the PC is ignored
e a branch occurs to the address created by forcing bit[0] of that value to 0.

11.13.1.4 Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

11.13.1.5 Examples

ADD R2, Rl, R3

SUBS R8, R6, #240 ; Sets the flags on the result

RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if Cflag set and Z

; flag clear

11.13.1.6 Multiword arithmetic examples

11.13.1.7 64-bit addition

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

ADDS R4, RO, R2 ; add the |east significant words
ADC R5, R1, R3 ; add the nost significant words with carry

11.13.1.8 96-bit subtraction

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,

and R2.
SUBS R6, R6, RO ; subtract the |east significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the nost significant words with carry
102 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

11.13.2.1 Syntax

op{S}{cond} {Rd,} Rn, Operand2

where:

op
AND
ORR
EOR
BIC
ORN

S

is one of:

logical AND.

logical OR, or bit set.

logical Exclusive OR.

logical AND NOT, or bit clear.

logical OR NOT.

is an optional suffix. If S is specified, the condition code flags are updated on the result of the

operation, see “Conditional execution” on page 81.

cond

Rd

Rn
Operand2

11.13.2.2 Operation

is an optional condition code, see See “Conditional execution” on page 81..

is the destination register.

is the register holding the first operand.

is a flexible second operand. See “Flexible second operand” on page 77 for details of the options.

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand?.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

11.13.2.3 Restrictions

Do not use SP and do not use PC.

11.13.2.4 Condition flags
If S is specified, these instructions:
e update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on page 77
e do not affect the V flag.

11.13.2.5 Examples

AND RO,
ORREQ R2,
ANDS R,
EORS R7,
BI C RO,
ORN R7,
ORNS R7

Atmel

R2, #0xFFOO

RO, R5

R8, #0x19

R11, #0x18181818
R1, #Oxab

R11, R14, ROR #4
R11, R14, ASR #32

SAM3N Series [DATASHEET] 103

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

11.13.3.1 Syntax

op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S} {cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 81.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least significant byte is

used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.
MOV{S}cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

11.13.3.2 Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations” on page 78.

11.13.3.3 Restrictions
Do not use SP and do not use PC.

11.13.3.4 Condition flags
If S is specified:
e these instructions update the N and Z flags according to the result

e the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” on
page 78.

104 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.3.5 Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1l, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, R5 ; Rotate right with extend
AtmeL SAM3N Series [DATASHEET] 105

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.4 CLZ

Count Leading Zeros.

11.13.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.

Rm is the operand register.

11.13.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set in the source register, and zero if bit[31] is set.

11.13.4.3 Restrictions

Do not use SP and do not use PC.
11.13.4.4 Condition flags

This instruction does not change the flags.

11.13.4.5 Examples

CLz R4, RO
CLZNE R2,R3

106 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.5 CMP and CMN

Compare and Compare Negative.

11.13.5.1 Syntax

CwvP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 77 for details of the options.

11.13.5.2 Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,
but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction,
except that the result is discarded.
11.13.5.3 Restrictions
In these instructions:
e donotusePC
e Operand2 must not be SP.

11.13.5.4 Condition flags
These instructions update the N, Z, C and V flags according to the result.

11.13.5.5 Examples

CwP R2, RO
CWN RO, #6400
CWGlr SP, R7, LSL #2

SAMS3N Series [DATASHEET 107
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.6 MOV and MVN
Move and Move NOT.

11.13.6.1 Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 81.

cond is an optional condition code, see “Conditional execution” on page 81.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 77 for details of the options.
imm16 is any value in the range 0-65535.

11.13.6.2 Operation
The MOV instruction copies the value of Operand2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:
ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{SHcond} Rd, Rm, LSL #nifn!=0
LSR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}H{cond} Rd, Rm, LSR #n
ROR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{SHcond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:
e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{SH{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX"” on page 104.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and
places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

11.13.6.3 Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:
e the second operand must be a register without shift
e you must not specify the S suffix.
When Rd is PC in a MOV instruction:
e hit[0] of the value written to the PC is ignored
e a branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability to the ARM instruction set.

108 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.6.4 Condition flags
If S is specified, these instructions:

e update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on page 77

e do not affect the V flag.
11.13.6.5 Example

MOVS R11, #0x000B ; Wite val ue
MOV R1, #O0xFAO05 . Wite val ue
MOVS R10, RI12 ; Wite val ue
MOV R3, #23 ;. Wite val ue
MOV R8, SP . Wite val ue
MNS R2, #O0xF ;. Wite val ue

of
of
in
of
of
of

0x000B to R11, flags get updated
OxFAO5 to R1, flags are not updated
R12 to R10, flags get updated

23 to R3

stack pointer to R8

OxFFFFFFFO (bitw se inverse of OxF)

; to the R2 and update fl ags

Atmel

SAM3N Series [DATASHEET] 109

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.7 MOVT
Move Top.

11.13.7.1 Syntax
MOVT{ cond} Rd, #i mi6

where:

cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

11.13.7.2 Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.
11.13.7.3 Restrictions

Rd must not be SP and must not be PC.
11.13.7.4 Condition flags

This instruction does not change the flags.

11.13.7.5 Examples

MOVT R3, #0xF123 ; Wite OxF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged

110 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

11.13.8.1 Syntax

op{cond} Rd, Rn

where:

op
REV
REV16
REVSH
RBIT

cond

Rd

Rn

11.13.8.2 Operation

is any of:

Reverse byte order in a word.

Reverse byte order in each halfword independently.

Reverse byte order in the bottom halfword, and sign extend to 32 bits.

Reverse the bit order in a 32-bit word.

is an optional condition code, see “Conditional execution” on page 81.

is the destination register.

is the register holding the operand.

Use these instructions to change endianness of data:

REV
REV16
REVSH

converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.

converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian data.

converts either:

16-bit signed big-endian data into 32-bit signed little-endian data

16-bit signed little-endian data into 32-bit signed big-endian data.

11.13.8.3 Restrictions

Do not use SP and do not use PC.

11.13.8.4 Condition flags

These instructions do not change the flags.

11.13.8.5 Examples
REV R3,
REV16 RO,
REVSH RO,
REVHS R3,
RBI T R7,

Atmel

R7
RO
R5
R7
R8

Rever se
Rever se
Rever se
Rever se
Rever se

byte order of value in R7 and wite it to R3

byte order of each 16-bit halfword in RO

Si gned Hal fword

with Hi gher or Sanme condition

bit order of value in R8 and wite the result to R7

SAM3N Series [DATASHEET] 111

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.13.9 TST and TEQ

Test bits and Test Equivalence.

11.13.9.1 Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 77 for details of the options.

11.13.9.2 Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the
result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1
and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.
This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.
11.13.9.3 Restrictions
Do not use SP and do not use PC.

11.13.9.4 Condition flags
These instructions:
e update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on page 77
e do not affect the V flag.

11.13.9.5 Examples

TST RO, #0x3F8 ; Perform bitwi se AND of RO val ue to O0x3FS8,
; APSR is updated but result is discarded
TEQEQ R10, RO ; Conditionally test if value in R1O is equal to

; value in R9, APSR is updated but result is discarded

112 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.14 Multiply and divide instructions

Table 11-21 shows the multiply and divide instructions:

Table 11-21.

Multiply and divide instructions

Mnemonic

Brief description

See

MLA

Multiply with Accumulate, 32-bit result

“MUL, MLA, and MLS” on page 114

MLS

Multiply and Subtract, 32-bit result

“MUL, MLA, and MLS” on page 114

MUL

Multiply, 32-bit result

“MUL, MLA, and MLS” on page 114

SDIV

Signed Divide

“SDIV and UDIV” on page 116

SMLAL

Signed Multiply with Accumulate (32x32+64), 64-bit
result

“UMULL, UMLAL, SMULL, and SMLAL” on page 115

SMULL

Signed Multiply (32x32), 64-bit result

“UMULL, UMLAL, SMULL, and SMLAL” on page 115

ubIv

Unsigned Divide

“SDIV and UDIV” on page 116

UMLAL

Unsigned Multiply with Accumulate (32x32+64), 64-
bit result

“UMULL, UMLAL, SMULL, and SMLAL” on page 115

UMULL

Unsigned Multiply (32x32), 64-bit result

“UMULL, UMLAL, SMULL, and SMLAL” on page 115

Atmel

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

113

11.14.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

11.14.1.1 Syntax
MUL{ S}{cond} {Rd,} Rn
MLA{ cond} Rd, Rn, Rm
M.S{cond} Rd, Rn, Rm

Rm; Miltiply
Ra ; Miultiply with accunul ate
Ra ; Miultiply with subtract

where:

cond is an optional condition code, see “Conditional execution” on page 81.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 81.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

11.14.1.2 Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in
Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and
places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

11.14.1.3 Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e you must not use the cond suffix.

11.14.1.4 Condition flags

If S is specified, the MUL instruction:
e updates the N and Z flags according to the result
e does not affect the C and V flags.

11.14.1.5 Examples

MUL R10, R2, R5 ; Miltiply, RIO = R2 x R5
M.A R10, R2, Rl, R5 ; Miltiply with accunulate, R0 = (R2 x Rl) + R5
MJULS RO, R2, R2 ; Miltiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R = R3 x R2
M.S R4, R5, R6, R7 ; Miltiply with subtract, R4 = R7 - (R5 x R6)
114 SAM3N Series [DATASHEET] /ItmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.14.2 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit
result.

11.14.2.1 Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:
op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional execution” on page 81.
RdHi, RdLo are the destination registers.

For UMLAL and SMLAL they also hold the accumulating value.

Rn, Rm are registers holding the operands.

11.14.2.2 Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,
adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

11.14.2.3 Restrictions

In these instructions:
e do not use SP and do not use PC
e RdHi and RdLo must be different registers.

11.14.2.4 Condition flags

These instructions do not affect the condition code flags.

11.14.2.5 Examples

UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 :; Signed (R5,R4) = (R5,R4) + R3 x R8
SAM3N Series [DATASHEET 115
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.14.3 SDIV and UDIV
Signed Divide and Unsigned Divide.
11.14.3.1 Syntax

SDI V{cond} {Rd,} Rn, Rm

uDl V{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.

11.14.3.2 Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
11.14.3.3 Restrictions

Do not use SP and do not use PC.
11.14.3.4 Condition flags

These instructions do not change the flags.

11.14.3.5 Examples

SDIV RO, R2, R4
ublvV R8, R8, RL

; Signed divide, RO = R2/R4
; Unsigned divide, R8 = R8/R1l

116 SAM3N Series [DATASHEET]
Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15 /I t m e L

11.15 Saturating instructions

This section describes the saturating instructions, SSAT and USAT.

11.15.1 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

11.15.1.1 Syntax
op{cond} Rd, #n, Rm{, shift #s}

where:

op is one of:
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT
n ranges from 0 to 31 for USAT.
Rm is the register containing the value to saturate.
shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where s is in the range 1 to 31
LSL #s where s is in the range 0 to 31.

11.15.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.
The SSAT instruction applies the specified shift, then saturates to the signed range —2"1 <x < 2"1-1.
The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.

For signed n-bit saturation using SSAT, this means that:
e if the value to be saturated is less than —2", the result returned is —2"*
e if the value to be saturated is greater than 2"1-1, the result returned is 2"1-1
e otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation using USAT, this means that:
e f the value to be saturated is less than 0, the result returned is 0
e if the value to be saturated is greater than 2"-1, the result returned is 2"-1
e otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to O,
you must use the MSR instruction, see “MSR” on page 137.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 136.

11.15.1.3 Restrictions
Do not use SP and do not use PC.

SAMS3N Series [DATASHEET 117
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.15.1.4 Condition flags
These instructions do not affect the condition code flags.
If saturation occurs, these instructions set the Q flag to 1.

11.15.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and
; wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and wite it to RO

118 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.16 Bitfield instructions

Table 11-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 11-22. Packing and unpacking instructions

Mnemonic Brief description See

BFC Bit Field Clear “BFC and BFI” on page 120

BFI Bit Field Insert “BFC and BFI” on page 120

SBFX Signed Bit Field Extract “SBFX and UBFX" on page 121
SXTB Sign extend a byte “SXT and UXT” on page 122

SXTH Sign extend a halfword “SXT and UXT” on page 122

UBFX Unsigned Bit Field Extract “SBFX and UBFX" on page 121
UXTB Zero extend a byte “SXT and UXT” on page 122

UXTH Zero extend a halfword “SXT and UXT” on page 122

/ItmeL SAM3N Series [DATASHEET] 119

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.16.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

11.16.1.1 Syntax

BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

11.16.1.2 Operation

BFC clears a hitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

11.16.1.3 Restrictions
Do not use SP and do not use PC.

11.16.1.4 Condition flags
These instructions do not affect the flags.

11.16.1.5 Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI RO, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
; bit O0to bit 11 fromR2

120 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.16.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

11.16.2.1 Syntax

SBFX{cond} Rd, Rn, #lsb, #width
UBFX{ cond} Rd, Rn, #lsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

11.16.2.2 Operation
SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

11.16.2.3 Restrictions
Do not use SP and do not use PC.

11.16.2.4 Condition flags
These instructions do not affect the flags.

11.16.2.5 Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign
: extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1l and zero
; extend to 32 bits and then wite the result to R8

SAMS3N Series [DATASHEET 121
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.16.3 SXT and UXT
Sign extend and Zero extend.

11.16.3.1 Syntax

SXText end{cond} {Rd,} Rm{, ROR #n}
UXText end{cond} {Rd}, Rm{, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

11.16.3.2 Operation

These instructions do the following:
e Rotate the value from Rmright by 0, 8, 16 or 24 bits.
e Extract bits from the resulting value:

SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

11.16.3.3 Restrictions
Do not use SP and do not use PC.

11.16.3.4 Condition flags
These instructions do not affect the flags.

11.16.3.5 Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; hal fword of the result and then sign extend to
: 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero
; extend it, and wite the result to R3

122 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.17 Branch and control instructions

Table 11-23 shows the branch and control instructions:

Table 11-23. Branch and control instructions

Mnemonic Brief description See

B Branch “B, BL, BX, and BLX” on page 124

BL Branch with Link “B, BL, BX, and BLX" on page 124

BLX Branch indirect with Link “B, BL, BX, and BLX" on page 124

BX Branch indirect “B, BL, BX, and BLX" on page 124

CBNz Compare and Branch if Non Zero “CBZ and CBNZ" on page 126

cBz Compare and Branch if Non Zero “CBZ and CBNZ" on page 126

IT If-Then “IT” on page 127

TBB Table Branch Byte “TBB and TBH” on page 129

TBH Table Branch Halfword “TBB and TBH” on page 129
/ItmeL SAM3N Series [DATASHEET] 123

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.17.1 B, BL, BX, and BLX

Branch instructions.

11.17.1.1 Syntax

B{ cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional execution” on page 81.
label is a PC-relative expression. See “PC-relative expressions” on page 81.
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the

address to branch to is created by changing bit[0] to 0.

11.17.1.2 Operation
All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions cause a UsageFault exception if bit[0] of Rmis 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT” on
page 127.

Table 11-24 shows the ranges for the various branch instructions.

Table 11-24. Branch ranges

Instruction Branch range

B label -16 MB to +16 MB
Beond label (outside IT block) -1 MBto +1 MB
Beond label (inside 1T block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You might have to use the .W suffix to get the maximum branch range. See “Instruction width selection” on page
83.

11.17.1.3 Restrictions

The restrictions are:
e do notuse PC in the BLX instruction
e for BX and BLX, hit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to O
e when any of these instructions is inside an IT block, it must be the last instruction of the IT block.

124 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer
branch range when it is inside an IT block.

11.17.1.4 Condition flags
These instructions do not change the flags.

11.17.1.5 Examples

B | oopA ; Branch to | oopA

BLE ng ; Conditionally branch to |abel ng

B. W target ; Branch to target within 16MB range

BEQ target ; Conditionally branch to target

BEQ W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR
BX LR : Return from function call
BXNE RO ; Conditionally branch to address stored in RO
BLX RO ; Branch with link and exchange (Call) to a address stored
; in RO
/ItmeL SAM3N Series [DATASHEET] 125

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.17.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

11.17.2.1 Syntax

CBZ Rn, | abel
CBNZ Rn, | abel

where:
Rn is the register holding the operand.
label is the branch destination.

11.17.2.2 Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of

instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BEQ | abel

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

11.17.2.3 Restrictions
The restrictions are:
e Rn must be in the range of RO to R7
e the branch destination must be within 4 to 130 bytes after the instruction
e these instructions must not be used inside an IT block.

11.17.2.4 Condition flags
These instructions do not change the flags.

11.17.2.5 Examples

CBz R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

126 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.17.3 1T
If-Then condition instruction.

11.17.3.1 Syntax
I T{x{y{z}}} cond

where:

X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

11.17.3.2 Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that you do not need to write them yourself. See your assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

11.17.3.3 Restrictions

The following instructions are not permitted in an IT block:
o |IT
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e a branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

— ADDPC, PC,Rm

— MOV PC,Rm

— B, BL,BX, BLX

— any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH

SAMS3N Series [DATASHEET 127
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

e do not branch to any instruction inside an IT block, except when returning from an exception handler

e all conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an
IT block but has a larger branch range if it is inside one

e each instruction inside the IT block must specify a condition code suffix that is either the same or logical
inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler
directives within them.

11.17.3.4 Condition flags
This instruction does not change the flags.

11.17.3.5 Example

| TTE NE : Next 3 instructions are conditional

ANDNE RO, RO, R1 ; ANDNE does not update condition flags

ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MWVEQ R2, R3 ; Conditional nove

CWP RO, #9 ; Convert RO hex value (0 to 15) into ASClI
DO, AT

| TE GT ; Next 2 instructions are conditional

ADDGT R1, RO, #55 ; Convert OxA ->'"A

ADDLE R1, RO, #48 ; Convert 0Ox0 -> 'O

T GT ; I T block with only one conditional instruction

ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, R1 ; Conditional nove

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE. W dl oop ; Branch instruction can only be used in the |ast
;instruction of an I T bl ock

T NE ; Next instruction is conditional

ADD RO, RO, R1 ; Syntax error: no condition code used in I T bl ock

128 SAM3N Series [DATASHEET] AtmeL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.17.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

11.17.4.1 Syntax
TBB [Rn, Rnj
TBH [Rn, Rm LSL #1]

where:

Rn is the register containing the address of the table of branch lengths. If Rn is PC, then the address of
the table is the address of the byte immediately following the TBB or TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the
value in Rm to form the right offset into the table.

11.17.4.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword
offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch
offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the
unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

11.17.4.3 Restrictions
The restrictions are:
e Rn must not be SP
e Rm must not be SP and must not be PC
e when any of these instructions is used inside an IT block, it must be the last instruction of the IT block.

11.17.4.4 Condition flags

These instructions do not change the flags.

11.17.4.5 Examples

ADR W RO, BranchTabl e_Byte
TBB [RO, R1] . RL is the index, RO is the base address of the
: branch table

Casel
; an instruction sequence follows
Case2
; an instruction sequence foll ows
Case3

; an instruction sequence foll ows
BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] . RL is the index, PCis used as base of the
: branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

; an instruction sequence follows

CaseB

; an instruction sequence follows

CaseC

; an instruction sequence follows

SAMS3N Series [DATASHEET 129
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18 Miscellaneous instructions

Table 11-25 shows the remaining Cortex-M3 instructions:

Table 11-25. Miscellaneous instructions

Mnemonic Brief description See
BKPT Breakpoint “BKPT” on page 131
CPSID Change Processor State, Disable Interrupts “CPS” on page 132
CPSIE Change Processor State, Enable Interrupts “CPS” on page 132
DMB Data Memory Barrier “DMB” on page 133
DSB Data Synchronization Barrier “DSB” on page 134
ISB Instruction Synchronization Barrier “ISB” on page 135
MRS Move from special register to register “MRS” on page 136
MSR Move from register to special register “MSR” on page 137
NOP No Operation “NOP” on page 138
SEV Send Event “SEV” on page 139
SvC Supervisor Call “SVC” on page 140
WFE Wait For Event “WFE” on page 141
WFI Wait For Interrupt “WFI” on page 142
130 SAM3N Series [DATASHEET] /Itmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.1 BKPT
Breakpoint.
11.18.1.1 Syntax
BKPT #i mm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

11.18.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.
imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

11.18.1.3 Condition flags
This instruction does not change the flags.

11.18.1.4 Examples

BKPT OxXAB ; Breakpoint with i nedi ate value set to OxAB (debugger can
extract the immediate value by locating it using the PC

SAMS3N Series [DATASHEET 131
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.2 CPS

Change Processor State.

11.18.2.1 Syntax
CPSef fect iflags

where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.

11.18.2.2 Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask registers” on page 47
for more information about these registers.

11.18.2.3 Restrictions

The restrictions are:
e use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

11.18.2.4 Condition flags
This instruction does not change the condition flags.

11.18.2.5 Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handl ers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRI MASK)

CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

132 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.3 DMB

Data Memory Barrier.

11.18.3.1 Syntax
DVB{ cond}
where:

cond is an optional condition code, see “Conditional execution” on page 81.
11.18.3.2 Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

11.18.3.3 Condition flags
This instruction does not change the flags.

11.18.3.4 Examples
DMB ; Data Menory Barrier

SAMS3N Series [DATASHEET 133
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.4 DSB
Data Synchronization Barrier.

11.18.4.1 Syntax
DSB{ cond}

where:
cond is an optional condition code, see “Conditional execution” on page 81.
11.18.4.2 Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

11.18.4.3 Condition flags
This instruction does not change the flags.

11.18.4.4 Examples
DSB ; Data Synchronisation Barrier

134 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.5 I1SB

Instruction Synchronization Barrier.

11.18.5.1 Syntax
| SB{ cond}
where:

cond is an optional condition code, see “Conditional execution” on page 81.

11.18.5.2 Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from memory again, after the ISB instruction has been completed.

11.18.5.3 Condition flags
This instruction does not change the flags.

11.18.5.4 Examples
ISB ; Instruction Synchronisation Barrier

SAMS3N Series [DATASHEET 135
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.6 MRS
Move the contents of a special register to a general-purpose register.

11.18.6.1 Syntax
MRS{cond} Rd, spec_reg

where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

11.18.6.2 Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to
clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These
operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” on page 137.

11.18.6.3 Restrictions
Rd must not be SP and must not be PC.

11.18.6.4 Condition flags
This instruction does not change the flags.

11.18.6.5 Examples
MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

136 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.7 MSR

Move the contents of a general-purpose register into the specified special register.

11.18.7.1 Syntax
MSR{ cond} spec_reg, Rn

where:
cond is an optional condition code, see “Conditional execution” on page 81.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

11.18.7.2 Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR, see “Application Program Status Register” on page 44. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
e Rnis non-zero and the current BASEPRI value is O
e Rnis non-zero and less than the current BASEPRI value.

See “"MRS” on page 136.
11.18.7.3 Restrictions
Rn must not be SP and must not be PC.
11.18.7.4 Condition flags
This instruction updates the flags explicitly based on the value in Rn.

11.18.7.5 Examples
MBR CONTROL, Rl ; Read Rl value and wite it to the CONTROL register

SAMS3N Series [DATASHEET 137
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.8 NOP
No Operation.
11.18.8.1 Syntax
NOP{ cond}
where:
cond is an optional condition code, see “Conditional execution” on page 81.

11.18.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
11.18.8.3 Condition flags

This instruction does not change the flags.

11.18.8.4 Examples
NOP ; No operation

138 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.9 SEV
Send Event.
11.18.9.1 Syntax
SEV{ cond}
where:
cond is an optional condition code, see “Conditional execution” on page 81.

11.18.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It
also sets the local event register to 1, see “Power management” on page 70.

11.18.9.3 Condition flags
This instruction does not change the flags.

11.18.9.4 Examples
SEV ; Send Event

SAMS3N Series [DATASHEET 139
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.10SVvC

Supervisor Call.

11.18.10.1 Syntax
SVC{ cond} #i mm

where:
cond is an optional condition code, see “Conditional execution” on page 81.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

11.18.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service
is being requested.

11.18.10.3 Condition flags

This instruction does not change the flags.

11.18.10.4 Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the i medi ate val ue
; by locating it via the stacked PC)

140 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.11WFE
Wait For Event.
11.18.11.1 Syntax
WFE{ cond}
where:
cond is an optional condition code, see “Conditional execution” on page 81.

11.18.11.2 Operation
WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

e an exception, unless masked by the exception mask registers or the current priority level

e an exception enters the Pending state, if SEVONPEND in the System Control Register is set
e a Debug Entry request, if Debug is enabled
[]

an event signaled by a peripheral or another processor in a multiprocessor system using the SEV
instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see “Power management” on page 70.

11.18.11.3 Condition flags
This instruction does not change the flags.

11.18.11.4 Examples
WFE ; Wait for event

SAMS3N Series [DATASHEET 141
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.18.12WFI
Wait for Interrupt.
11.18.12.1 Syntax
WFI { cond}
where:
cond is an optional condition code, see “Conditional execution” on page 81.

11.18.12.2 Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:
e an exception
e a Debug Entry request, regardless of whether Debug is enabled.
11.18.12.3 Condition flags
This instruction does not change the flags.

11.18.12.4 Examples
WFl ; Wait for interrupt

142 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.19 About the Cortex-M3 peripherals
The address map of the Private peripheral bus (PPB) is:

Table 11-26. Core peripheral register regions

Address Core peripheral Description

8§Eggg§gg§ System control block Table 11-30 on page 157

8§Eggg§gig System timer Table 11-33 on page 186

8§5888§4112?: Nested Vectored Interrupt Controller | Table 11-27 on page 144

8§Eggg§ggg System control block Table 11-30 on page 157

8§Eggg§ggg MPU Type Register Reads as zero, indicating no MPU is implemented
8§5888§:§8g Nested Vectored Interrupt Controller | Table 11-27 on page 144

1. Software can read the MPU Type Register at 0xEO00ED90 to test for the presence of a memory protection unit (MPU).

In register descriptions:
e the register type is described as follows:

RW Read and write.
RO Read-only.

WO Write-only.
e the required privilege gives the privilege level required to access the register, as follows:

Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

SAMS3N Series [DATASHEET 143
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC
supports:
e 1to 33interrupts.

e A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so
level O is the highest interrupt priority.

Level and pulse detection of interrupt signals.

Dynamic reprioritization of interrupts.

Grouping of priority values into group priority and subpriority fields.
e Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC

registers is:

Table 11-27. NVIC register summary
Address Name | Type | Required privilege | Reset value | Description
OXEOOOE100 | ISERO | RW Privileged 0x00000000 | “Interrupt Set-enable Registers” on page 146
OxXEOOOE180 | ICERO | RW Privileged 0x00000000 | “Interrupt Clear-enable Registers” on page 147
OxXEOOOE200 | ISPRO | RW Privileged 0x00000000 | “Interrupt Set-pending Registers” on page 148
OxXEOOOE280 | ICPRO | RW Privileged 0x00000000 | “Interrupt Clear-pending Registers” on page 149
OXEOOOE300 | IABRO | RO Privileged 0x00000000 | “Interrupt Active Bit Registers” on page 150
OXEOOOE400- | IPRO-
OXEOOOE41C | IPRS RW Privileged 0x00000000 | “Interrupt Priority Registers” on page 151
OXEOOOEFO0 | STIR WO Configurable @ 0x00000000 | “Software Trigger Interrupt Register” on page 154

1. See the register description for more information.

11.20.1 The CMSIS mapping of the Cortex-M3 NVIC registers

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

e the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:

— the array ISER[0] corresponds to the registers ISERO
— the array ICER[0] corresponds to the registers ICERO
— the array ISPR[0] corresponds to the registers ISPRO
— the array ICPR[0] corresponds to the registers ICPRO
— the array IABR[0] corresponds to the registers IABRO

e the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the array IP[0] to
IP[32] corresponds to the registers IPRO-IPR8, and the array entry IP[n] holds the interrupt priority for
interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. For more
information see the description of the NVIC_SetPriority function in “NVIC programming hints” on page 156. Table
11-28 shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS
variables that have one bit per interrupt.

144 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Table 11-28. Mapping of interrupts to the interrupt variables

CMSIS array elements &

Interrupts Set-enable Clear-enable Set-pending Clear-pending Active Bit
0-32 ISERJ[O0] ICER[O] ISPRI[0] ICPR[O] IABR[O]
1. Each array element corresponds to a single NVIC register, for example the element ICER[0] corresponds to the ICERO
register.
SAM3N Series [DATASHEET 145
Atmel [:

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.2 Interrupt Set-enable Registers

The ISERO register enables interrupts, and show which interrupts are enabled. See:
e the register summary in Table 11-27 on page 144 for the register attributes
e Table 11-28 on page 145 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| SETENA bits |
23 22 21 20 19 18 17 16

| SETENA bits |
15 14 13 12 11 10 9 8

| SETENA bits |
7 6 5 4 3 2 1 0

| SETENA bits |

e SETENA

Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.
Read:

0 = interrupt disabled
1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

146 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.3 Interrupt Clear-enable Registers

The ICERO register disables interrupts, and shows which interrupts are enabled. See:
e the register summary in Table 11-27 on page 144 for the register attributes
e Table 11-28 on page 145 for which interrupts are controlled by each register

The bit assignments are:

31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

« CLRENA

Interrupt clear-enable bits.

Write:

0 = no effect

1 = disable interrupt.
Read:

0 = interrupt disabled
1 = interrupt enabled.

SAMS3N Series [DATASHEET 147
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.4 Interrupt Set-pending Registers

The ISPRO register forces interrupts into the pending state, and shows which interrupts are pending. See:
e the register summary in Table 11-27 on page 144 for the register attributes
e Table 11-28 on page 145 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

« SETPEND

Interrupt set-pending bits.

Write:

0 = no effect.

1 = changes interrupt state to pending.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to the ISPR bit corresponding to:

« an interrupt that is pending has no effect
 a disabled interrupt sets the state of that interrupt to pending

148 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.5 Interrupt Clear-pending Registers

The ICPRO register removes the pending state from interrupts, and show which interrupts are pending. See:
e the register summary in Table 11-27 on page 144 for the register attributes
e Table 11-28 on page 145 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

« CLRPEND

Interrupt clear-pending bits.

Write:

0 = no effect.

1 = removes pending state an interrupt.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

SAMS3N Series [DATASHEET 149
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.6 Interrupt Active Bit Registers

The IABRO register indicates which interrupts are active. See:
e the register summary in Table 11-27 on page 144 for the register attributes
e Table 11-28 on page 145 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

« ACTIVE

Interrupt active flags:
0 = interrupt not active
1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

150 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.7 Interrupt Priority Registers

The IPRO-IPRS registers provide a 4-bit priority field for each interrupt (See the “Peripheral Identifiers” section of
the datasheet for more details). These registers are byte-accessible. See the register summary in Table 11-27 on
page 144 for their attributes. Each register holds four priority fields, that map up to four elements in the CMSIS
interrupt priority array IP[0] to IP[32], as shown:

11.20.7.1 IPRm

31 30 29 28 27 26 25 24

| IP[4m+3] |
23 22 21 20 19 18 17 16

| IP[4m+2] |
15 14 13 12 11 10 9 8

| IP[4m-+1] |
7 6 5 4 3 2 1 0

| IP[4m] |

11.20.7.2 IPR4
31 30 29 28 27 26 25 24

| IP[19] |
23 22 21 20 19 18 17 16

| IP[18] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

11.20.7.3 IPR3
31 30 29 28 27 26 25 24

| IP[15] |
23 22 21 20 19 18 17 16

| IP[14] |
15 14 13 12 11 10 9 8

| IP[13] |
7 6 5 4 3 2 1 0

| IP[12] |

SAM3N Series [DATASHEET 151
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.7.4 IPR2
31 30 29 28 27 26 25 24

| IP[11] |
23 22 21 20 19 18 17 16

| IP[10] |
15 14 13 12 11 10 9 8

| IP[9] |
7 6 5 4 3 2 1 0

I IP[8] |

11.20.7.5 IPR1
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IP[6] |
15 14 13 12 11 10 9 8

| IP[5] |
7 6 5 4 3 2 1 0

| IP[4] |

11.20.7.6 IPRO
31 30 29 28 27 26 25 24

I IP[3] |
23 22 21 20 19 18 17 16

| IP[2] |
15 14 13 12 11 10 9 8

I IP[1] |
7 6 5 4 3 2 1 0

| IP[0] |

 Priority, byte offset 3
 Priority, byte offset 2
 Priority, byte offset 1

 Priority, byte offset 0

Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 144 for more information about the IP[0] to IP[32]
interrupt priority array, that provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt N as follows:
« the corresponding IPR number, M, is given by M = N DIV 4
« the byte offset of the required Priority field in this register is N MOD 4, where:
— byte offset O refers to register bits[7:0]

152 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

— byte offset 1 refers to register bits[15:8]
— byte offset 2 refers to register bits[23:16]
— byte offset 3 refers to register bits[31:24].

SAMS3N Series [DATASHEET 153
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.8 Software Trigger Interrupt Register

Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary in Table 11-27 on

page 144 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the STIR, see “System

Control Register” on page 167.
Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved INTID |
7 6 5 4 3 2 1 0

| INTID |

* INTID

Interrupt ID of the required SGI, in the range 0-239. For example, a value of bO00000011 specifies interrupt IRQ3.

154 SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

11.20.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.
A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens
because the ISR accesses the peripheral, causing it to clear the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see “Hardware
and software control of interrupts” . For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

11.20.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:
e the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
e the NVIC detects a rising edge on the interrupt signal
e software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending Registers”
on page 148, or to the STIR to make an SGI pending, see “Software Trigger Interrupt Register” on page 154.
A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active. Then:
— For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.
— If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from
the ISR the state of the interrupt changes to inactive.
e Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

11.20.10NVIC design hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to
NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the new vector table are
setup for fault handlers and all enabled exception like interrupts. For more information see “Vector Table Offset
Register” on page 163.

SAMS3N Series [DATASHEET 155
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.20.10.1 NVIC programming hints

Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void _ disable_irq(void) // Disable Interrupts

void _ _enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 11-29. CMSIS functions for NVIC control

CMSIS interrupt control function Description

vqid _NVIC_Se_tPriorityGrouping(uint32_t Set the priority grouping
priority_grouping)

void NVIC_EnablelRQ(IRQnN_t IRQnN) Enable IRQn

void NVIC_DisablelRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendinglRQ (IRQn_t IRQnN) Return true if IRQn is pending
void NVIC_SetPendingIlRQ (IRQn_t IRQN) Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQn) Clear IRQn pending status
uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQnN, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

For more information about these functions see the CMSIS documentation.

156 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21 System control block

The System control block (SCB) provides system implementation information, and system control. This includes

configuration, control, and reporting of the system exceptions. The system control block registers are:

Table 11-30. Summary of the system control block registers
Required

Address Name Type privilege Reset value | Description
OxXEOOOEO008 | ACTLR RW Privileged | 0x00000000 | “Auxiliary Control Register” on page 158
OXEOOOEDOO | CPUID RO Privileged | 0x412FC230 | “CPUID Base Register” on page 159
OXEOO0OEDO4 | ICSR Rw® Privileged | 0x00000000 | “Interrupt Control and State Register” on page 160
OxEOOOEDO8 | VTOR RW Privileged | 0x00000000 | “Vector Table Offset Register” on page 163
OXEOOOEDOC | AIRCR RW® Privileged | OXFA050000 “1A63plication Interrupt and Reset Control Register” on page
OXEOOOED10 | SCR RW Privileged | 0x00000000 | “System Control Register” on page 167
OxXEOOOED14 | CCR RW Privileged | 0x00000200 | “Configuration and Control Register” on page 168
OxXEOOOED18 | SHPR1 RW Privileged | 0x00000000 | “System Handler Priority Register 1” on page 171
OXEOOOED1C | SHPR2 RW Privileged | 0x00000000 | “System Handler Priority Register 2" on page 172
OxXEOOOED20 | SHPR3 RW Privileged | 0x00000000 | “System Handler Priority Register 3" on page 173
OxXEOOOED24 | SHCRS RW Privileged | 0x00000000 | “System Handler Control and State Register” on page 174
OxXEOOOED28 | CFSR RW Privileged | 0x00000000 | “Configurable Fault Status Register” on page 176
OXEOOOED28 | MMSR® RW Privileged | 0x00 “Memory Management Fault Address Register” on page 183
OXEOOOED29 | BFSR® RW Privileged | 0x00 “Bus Fault Status Register” on page 178
OXEOOOED2A | UFSR® RW Privileged | 0x0000 “Usage Fault Status Register” on page 180
OxXEOOOED2C | HFSR RW Privileged | 0x00000000 | “Hard Fault Status Register” on page 182
OxEOOOED34 | MMAR RW Privileged | Unknown “Memory Management Fault Address Register” on page 183
OxXEOOOED38 | BFAR RW Privileged | Unknown “Bus Fault Address Register” on page 184

Notes: 1. See the register description for more information.

2. A subregister of the CFSR.

11.21.1 The CMSIS mapping of the Cortex-M3 SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the byte array
SHP[0] to SHP[12] corresponds to the registers SHPR1-SHPR3.

SAM3N Series [DATASHEET] 157

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

11.21.2 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:
e IT folding
e write buffer use for accesses to the default memory map
e interruption of multi-cycle instructions.

See the register summary in Table 11-30 on page 157 for the ACTLR attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | DISFOLD DISDEFWBUF | DISMCYCINT |

e DISFOLD

When set to 1, disables IT folding. see “About IT folding” on page 158 for more information.

* DISDEFWBUF

When set to 1, disables write buffer use during default memory map accesses. This causes all bus faults to be precise bus
faults but decreases performance because any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M3 processor.

* DISMCYCINT

When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor because any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

11.21.2.1 About IT folding

In some situations, the processor can start executing the first instruction in an IT block while it is still executing the
IT instruction. This behavior is called IT folding, and improves performance, However, IT folding can cause jitter in
looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable IT folding.

158 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.3 CPUID Base Register

The CPUID register contains the processor part number, version, and implementation information. See the register
summary in Table 11-30 on page 157 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant | Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo Revision |

* Implementer
Implementer code:
0x41 = ARM

* Variant
Variant number, the r value in the rnpn product revision identifier:
0x2 =r2p0

* Constant
Reads as OxF

* PartNo
Part number of the processor:
0xC23 = Cortex-M3

* Revision
Revision number, the p value in the rnpn product revision identifier:
0x0 =r2p0

SAMS3N Series [DATASHEET 159
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.4 Interrupt Control and State Register

The ICSR:
e provides:
— set-pending and clear-pending bits for the PendSV and SysTick exceptions
e indicates:
— the exception number of the exception being processed
— whether there are preempted active exceptions
— the exception number of the highest priority pending exception
— whether any interrupts are pending.

See the register summary in Table 11-30 on page 157, and the Type descriptions in Table 11-33 on page 186, for
the ICSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved | Reserved | PENDSVSET| PENDSVCLR| PENDSTSET| PENDSTCLR | Reserved
23 22 21 20 19 18 17 16
Reserved for |\ cobeNDING VECTPENDING
Debug
15 14 13 12 11 10 9 8
| VECTPENDING RETTOBASE Reserved VECTACTIVE |
7 6 5 4 3 2 1 0
| VECTACTIVE |

+ PENDSVSET
RW

PendSV set-pending bit.

Write:

0 = no effect

1 = changes PendSV exception state to pending.

Read:

0 = PendSV exception is not pending

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

« PENDSVCLR

WO

PendSV clear-pending bit.
Write:

0 = no effect

1 = removes the pending state from the PendSV exception.

160 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

« PENDSTSET

RW

SysTick exception set-pending bit.

Write:

0 = no effect

1 = changes SysTick exception state to pending.
Read:

0 = SysTick exception is not pending

1 = SysTick exception is pending.

+ PENDSTCLR

WO

SysTick exception clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.

» Reserved for Debug use
RO

This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.

» ISRPENDING

RO

Interrupt pending flag, excluding Faults:
0 = interrupt not pending

1 = interrupt pending.

 VECTPENDING

RO

Indicates the exception number of the highest priority pending enabled exception:
0 = no pending exceptions

Nonzero = the exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

 RETTOBASE

RO

Indicates whether there are preempted active exceptions:
0 = there are preempted active exceptions to execute

1 = there are no active exceptions, or the currently-executing exception is the only active exception.

SAMS3N Series [DATASHEET 161
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

¢ VECTACTIVE

RO

Contains the active exception number:

0 = Thread mode

Nonzero = The exception number) of the currently active exception.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” on page 45.

When you write to the ICSR, the effect is Unpredictable if you:
» write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
e write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Note: 1. Thisis the same value as IPSR bits [8:0] see “Interrupt Program Status Register” on page 45.

162 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address 0x00000000. See the

register summary in Table 11-30 on page 157 for its attributes.
The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

| TBLOFF | Reserved |

 TBLOFF

Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory map.

Bit[29] determines whether the vector table is in the code or SRAM memory region:

0 = code
1 =SRAM.
Bit[29] is sometimes called the TBLBASE bit.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum align-
ment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next
power of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the
required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

Atmel

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

163

11.21.6 Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. See the register summary in Table 11-30 on page 157 and Table 11-33 on page 186 for its
attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor ignores the write.
The bit assignments are:

31 30 29 28 27 26 25 24
| On Read: VECTKEYSTAT, On Write: VECTKEY |

23 22 21 20 19 18 17 16
| On Read: VECTKEYSTAT, On Write: VECTKEY |

15 14 13 12 11 10 9 8
| ENDIANESS Reserved PRIGROUP |
7 6 5 4 3 2 1 0
VECTCLR-
Reserved SYSRESETREQ| 'Z&1vE VECTRESET

* VECTKEYSTAT
Register Key:
Reads as OxFA05

* VECTKEY
Register key:
On writes, write OX5FA to VECTKEY, otherwise the write is ignored.

« ENDIANESS

RO

Data endianness bit:
0 = Little-endian

ENDIANESS is set from the BIGEND configuration signal during reset.

* PRIGROUP
R/W

Interrupt priority grouping field. This field determines the split of group priority from subpriority, see “Binary point” on page
166.

* SYSRESETREQ

WO

System reset request:

0 = no effect

1 = asserts a proc_reset_signal.

This is intended to force a large system reset of all major components except for debug.
This bit reads as 0.

164 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

« VECTCLRACTIVE
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

+ VECTRESET

WO
Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

SAM3N Series [DATASHEET 165
Atmel [:

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.6.1 Binary point

166

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the Interrupt Priority
Registers into separate group priority and subpriority fields. Table 11-31 shows how the PRIGROUP value controls

this spilit.
Table 11-31. Priority grouping
Interrupt priority level value, PRI_N[7:0] Number of
Group priority
PRIGROUP Binary point ® bits Subpriority bits Group priorities Subpriorities
b011 bxxxx.0000 [7:4] None 16 1
b100 bxxx.y0000 [7:5] [4] 8 2
b101 bxx.yy0000 [7:6] [5:4] 4 4
b110 bx.yyy0000 [7 [6:4] 2 8
b111 b.yyyy0000 None [7:4] 1 16
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

Determining preemption of an exception uses only the group priority field, see “Interrupt priority grouping” on page

66.

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

11.21.7 System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary in Table 11-30 on

page 157 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved SEVONPEND Reserved SLEEPDEEP | SLEEONEXIT Reserved |

« SEVONPEND
Send Event on Pending bit:

0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded

1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not

waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an sev instruction or an external event.

» SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:

0 = sleep
1 = deep sleep.

* SLEEPONEXIT

Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 = do not sleep when returning to Thread mode.
1 = enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

Atmel

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

167

11.21.8 Configuration and Control Register

The CCR controls entry to Thread mode and enables:

e the handlers for hard fault and faults escalated by FAULTMASK to ignore bus faults

e trapping of divide by zero and unaligned accesses

e access to the STIR by unprivileged software, see “Software Trigger Interrupt Register” on page 154.
See the register summary in Table 11-30 on page 157 for the CCR attributes.
The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved STKALIGN | BFHENMIGN |
7 6 5 4 3 2 1 0
Reserved DIV 0 TRP |UNALIGN TRP| Reserved [|YSERSETMPE|NONBASETHR
0_ _ ND DENA
« STKALIGN

Indicates stack alignment on exception entry:
0 = 4-byte aligned
1 = 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the excep-
tion it uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0 = data bus faults caused by load and store instructions cause a lock-up
1 = handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

« DIV_O_TRP

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:
0 = do not trap divide by 0

1 = trap divide by 0.

When this bit is set to 0,a divide by zero returns a quotient of 0.

¢ UNALIGN_TRP

Enables unaligned access traps:

0 = do not trap unaligned halfword and word accesses

1 = trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

168 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

¢ USERSETMPEND

Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register” on page 154:
0 = disable

1 = enable.

* NONEBASETHRDENA
Indicates how the processor enters Thread mode:
0 = processor can enter Thread mode only when no exception is active.

1 = processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return”
on page 68.

SAMS3N Series [DATASHEET 169
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.9 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable priority.
SHPR1-SHPR3 are byte accessible. See the register summary in Table 11-30 on page 157 for their attributes.
The system fault handlers and the priority field and register for each handler are:

Table 11-32. System fault handler priority fields

Handler Field Register description
Memory management fault PRI_4
Bus fault PRI_5 “System Handler Priority Register 1" on page 171
Usage fault PRI_6
Svcall PRI_11 “System Handler Priority Register 2” on page 172
PendSV PRI_14 o _

“System Handler Priority Register 3" on page 173
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field, and bits[3:0] read as zero
and ignore writes.

170 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.9.1 System Handler Priority Register 1
The bit assignments are:

31 30 29 28 27 26 25 24
| PRI_7: Reserved |

23 22 21 20 19 18 17 16

| PRI 6 |
15 14 13 12 11 10 9 8

| PRI 5 |
7 6 5 4 3 2 1 0

| PRI 4 |

« PRI7

Reserved

+ PRILG

Priority of system handler 6, usage fault

* PRI_5
Priority of system handler 5, bus fault

* PRI_4
Priority of system handler 4, memory management fault

SAMS3N Series [DATASHEET 171
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.9.2 System Handler Priority Register 2
The bit assignments are:

31 30 29 28 27 26 25 24
| PRI_11 |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |
7 6 5 4 3 2 1 0
| Reserved |
e PRI_11

Priority of system handler 11, SVCall

172 SAMB3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.9.3 System Handler Priority Register 3
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

+ PRI_15

Priority of system handler 15, SysTick exception

* PRI_14
Priority of system handler 14, PendSV

SAMS3N Series [DATASHEET 173
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.10System Handler Control and State Register

The SHCSR enables the system handlers, and indicates:
e the pending status of the bus fault, memory management fault, and SVC exceptions
e the active status of the system handlers.

See the register summary in Table 11-30 on page 157 for the SHCSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved USGFAULTENA|BUSFAULTENA MEMFAULTENAl
15 14 13 12 11 10 9 8

SVCALLPENDE|BUSFAULTPEN [MEMFAULTPEN|JUSGFAULTPEN SYSTICKACT | PENDSVACT Reserved MONITORACT
D DED DED DED
7 6 5 4 3 2 1 0

| SVCALLAVCT | Reserved USGFAULTACT Reserved BUSFAULTACT |[MEMFAULTACT

e USGFAULTENA
Usage fault enable bit, set to 1 to enable @

 BUSFAULTENA
Bus fault enable bit, set to 1 to enable®

 MEMFAULTENA
Memory management fault enable bit, set to 1 to enable ®)

e SVCALLPENDED
SVC call pending bit, reads as 1 if exception is pending @

« BUSFAULTPENDED
Bus fault exception pending bit, reads as 1 if exception is pending)

* MEMFAULTPENDED
Memory management fault exception pending bit, reads as 1 if exception is pending®

+ USGFAULTPENDED
Usage fault exception pending bit, reads as 1 if exception is pending®

e SYSTICKACT
SysTick exception active bit, reads as 1 if exception is active

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending
status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of

the exceptions, but see the Caution in this section.

174 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

« PENDSVACT
PendSV exception active bit, reads as 1 if exception is active

* MONITORACT
Debug monitor active bit, reads as 1 if Debug monitor is active

e SVCALLACT
SVC call active bit, reads as 1 if SVC call is active

e USGFAULTACT
Usage fault exception active bit, reads as 1 if exception is active

* BUSFAULTACT
Bus fault exception active bit, reads as 1 if exception is active

* MEMFAULTACT
Memory management fault exception active bit, reads as 1 if exception is active

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

» Software that changes the value of an active bit in this register without correct adjustment to the stacked content can
cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

« After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a
read-modify-write procedure to ensure that you change only the required bit.

SAMS3N Series [DATASHEET 175
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.11Configurable Fault Status Register

The CFSR indicates the cause of a memory management fault, bus fault, or usage fault. See the register summary
in Table 11-30 on page 157 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Usage Fault Status Register: UFSR |

23 22 21 20 19 18 17 16
| Usage Fault Status Register: UFSR |

15 14 13 12 11 10 9 8
| Bus Fault Status Register: BFSR |

7 6 5 4 3 2 1 0
| Memory Management Fault Status Register: MMFSR |

The following subsections describe the subregisters that make up the CFSR:
e “Memory Management Fault Status Register” on page 177
e “Bus Fault Status Register” on page 178
e ‘“Usage Fault Status Register” on page 180.
The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:
e access the complete CFSR with a word access to 0OXEOOOED28

e access the MMFSR with a byte access to OxEOOOED28
e access the MMFSR and BFSR with a halfword access to OXEOOOED28
e access the BFSR with a byte access to OXEOOOED29
e access the UFSR with a halfword access to OXEOOOED2A.
176 SAM3N Series [DATASHEET] /Itmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.11.1 Memory Management Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

7 6 5 4 3 2 1 0
[MMARVALID | Reserved | MSTKERR [MUNSTKERR | Reserved | DACCVIOL IACCVIOL

¢ MMARVALID

Memory Management Fault Address Register (MMAR) valid flag:
0 = value in MMAR is not a valid fault address

1 = MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value
has been overwritten.

* MSTKERR

Memory manager fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to the MMAR.

+ MUNSTKERR

Memory manager fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the MMAR.

« DACCVIOL

Data access violation flag:

0 = no data access violation fault

1 = the processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the MMAR with the address of the attempted access.

« |ACCVIOL

Instruction access violation flag:

0 = no instruction access violation fault

1 = the processor attempted an instruction fetch from a location that does not permit execution.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the MMAR.

SAMS3N Series [DATASHEET 177
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.11.2 Bus Fault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

7 6 5 4 3 2 1 0
[BFRVALID | Reserved | STKERR [UNSTKERR [IMPRECISERR| PRECISERR | IBUSERR
« BFARVALID

Bus Fault Address Register (BFAR) valid flag:
0 = value in BFAR is not a valid fault address
1 = BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active bus fault handler whose BFAR value has been overwritten.

« STKERR

Bus fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the BFAR.

¢ UNSTKERR

Bus fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

* IMPRECISERR
Imprecise data bus error:
0 = no imprecise data bus error

1 = a data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.

+ PRECISERR
Precise data bus error:
0 = no precise data bus error

1 = a data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

178 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

* IBUSERR

Instruction bus error:

0 = no instruction bus error
1 = instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

SAMS3N Series [DATASHEET 179
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.11.3 Usage Fault Status Register
The UFSR indicates the cause of a usage fault. The bit assignments are:

15 14 13 12 11 10 9 8
| Reserved | DIVBYZERO | UNALIGNED |
7 6 5 4 3 2 1 0
| Reserved NOCP INVPC | INVSTATE | UNDEFINSTR |
« DIVBYZERO

Divide by zero usage fault:
0 = no divide by zero fault, or divide by zero trapping not enabled
1 = the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see “Configuration and Control Register”
on page 168.

* UNALIGNED

Unaligned access usage fault:

0 = no unaligned access fault, or unaligned access trapping not enabled
1 = the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see “Configuration and Control
Register” on page 168.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

*+ NOCP

No coprocessor usage fault. The processor does not support coprocessor instructions:
0 = no usage fault caused by attempting to access a coprocessor

1 = the processor has attempted to access a coprocessor.

¢ INVPC
Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:
0 =no invalid PC load usage fault

1 = the processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

e INVSTATE

Invalid state usage fault:

0 = no invalid state usage fault

1 = the processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal
use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

180 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

¢ UNDEFINSTR

Undefined instruction usage fault:

0 = no undefined instruction usage fault

1 = the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.
An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

SAMS3N Series [DATASHEET 181
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.12Hard Fault Status Register

The HFSR gives information about events that activate the hard fault handler. See the register summary in Table
11-30 on page 157 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0. The bit assignments are:

31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | VECTTBL | Reserved |

+ DEBUGEVT

Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.

» FORCED

Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0 = no forced hard fault
1 = forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

+ VECTTBL

Indicates a bus fault on a vector table read during exception processing:
0 = no bus fault on vector table read

1 = bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to O only by writing 1 to that bit, or by a reset.

182 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.13Memory Management Fault Address Register

The MMFAR contains the address of the location that generated a memory management fault. See the register
summary in Table 11-30 on page 157 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory
management fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See “Memory Manage-
ment Fault Status Register” on page 177.

SAMS3N Series [DATASHEET 183
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.21.14Bus Fault Address Register

The BFAR contains the address of the location that generated a bus fault. See the register summary in Table 11-

30 on page 157 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the
address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See “Bus Fault Status Regis-
ter” on page 178.

184

SAM3N Series [DATASHEET]

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Atmel

11.21.15System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control block registers:
e except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses
e for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to system control block registers.
In a fault handler. to determine the true faulting address:
e Read and save the MMFAR or BFAR value.
e Readthe MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or BFAR address
is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the MMFAR or BFAR
value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the
MMFAR or BFAR value.

SAMS3N Series [DATASHEET 185
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps
to) the value in the LOAD register on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.
The system timer registers are:

Table 11-33. System timer registers summary

Required
Address Name | Type | privilege Reset value Description
OXEOOOE010 | CTRL | RW Privileged 0x00000004 “SysTick Control and Status Register” on page 187
OxXEOOOEO014 | LOAD | RW Privileged 0x00000000 “SysTick Reload Value Register” on page 188
OxEOOOEO018 | VAL RW Privileged 0x00000000 “SysTick Current Value Register” on page 190
OxXEOOOEO1C | CALIB | RO Privileged 0x0002904 M | “SysTick Calibration Value Register” on page 191
1. SysTick calibration value.
186 SAM3N Series [DATASHEET
[] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22.1 SysTick Control and Status Register

The SysTick CTRL register enables the SysTick features. See the register summary in Table 11-33 on page 186
for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved COUNTFLAG |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved CLKSOURCE [TICKINT ENABLE |

« COUNTFLAG
Returns 1 if timer counted to O since last time this was read.

» CLKSOURCE
Indicates the clock source:

0= MCK/8
1=MCK
* TICKINT

Enables SysTick exception request:

0 = counting down to zero does not assert the SysTick exception request

1 = counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.

« ENABLE

Enables the counter:
0 = counter disabled
1 = counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the LOAD register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

SAMS3N Series [DATASHEET 187
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22.2 SysTick Reload Value Register

The LOAD register specifies the start value to load into the VAL register. See the register summary in Table 11-33
on page 186 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| RELOAD |
15 14 13 12 11 10 9 8
| RELOAD |
7 6 5 4 3 2 1 0
| -RELOAD |

e RELOAD
Value to load into the VAL register when the counter is enabled and when it reaches 0, see “Calculating the RELOAD
value” .
188 SAM3N Series [DATASHEET
[] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22.2.1 Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but
has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.
The RELOAD value is calculated according to its use:

e To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For
example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

e Todeliver a single SysTick interrupt after a delay of N processor clock cycles, use a RELOAD of value N. For
example, if a SysTick interrupt is required after 400 clock pulses, set RELOAD to 400.

SAMS3N Series [DATASHEET 189
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22.3 SysTick Current Value Register

The VAL register contains the current value of the SysTick counter. See the register summary in Table 11-33 on
page 186 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

e CURRENT

Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SysTick CTRL.COUNTFLAG bit to 0.

190 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22.4 SysTick Calibration Value Register

The CALIB register indicates the SysTick calibration properties. See the register summary in Table 11-33 on page
186 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

[Norer | skew | Reserved |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

« NOREF

Reads as zero.

« SKEW
Reads as zero

* TENMS

Read as 0x0002904. The SysTick calibration value is fixed at 0x0002904 (10500), which allows the generation of a time
base of 1 ms with SysTick clock at 6 MHz (48/8 = 6 MHz)

SAMS3N Series [DATASHEET 191
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.22.5 SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick
counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

192 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

11.23 Glossary
This glossary describes some of the terms used in technical documents from ARM.
Abort

A mechanism that indicates to a processor that the value associated with a memory access is invalid. An abort can
be caused by the external or internal memory system as a result of attempting to access invalid instruction or data
memory.

Aligned

A data item stored at an address that is divisible by the number of bytes that defines the data size is said to be
aligned. Aligned words and halfwords have addresses that are divisible by four and two respectively. The terms
word-aligned and halfword-aligned therefore stipulate addresses that are divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which copy is used. The
Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation. Depending on the instruction and its addressing mode, an offset can be
added to or subtracted from the base register value to form the address that is sent to memory.

See also “Index register”
“Little-endian (LE)” See also “Little-endian memory” .Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program execution is to be
halted. Breakpoints are inserted by the programmer to enable inspection of register contents, memory locations,
variable values at fixed points in the program execution to test that the program is operating correctly. Breakpoints
are removed after the program is successfully tested.

Condition field
A four-bit field in an instruction that specifies a condition under which the instruction can execute.
Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction starts executing, it
executes normally. Otherwise, the instruction does nothing.

Context

The environment that each process operates in for a multitasking operating system. In ARM processors, this is
limited to mean the physical address range that it can access in memory and the associated memory access
permissions.

Coprocessor
A processor that supplements the main processor. Cortex-M3 does not support any coprocessors.
Debugger

A debugging system that includes a program, used to detect, locate, and correct software faults, together with
custom hardware that supports software debugging.

Direct Memory Access (DMA)

An operation that accesses main memory directly, without the processor performing any accesses to the data
concerned.

SAMS3N Series [DATASHEET 193
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Doubleword

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.
Doubleword-aligned

A data item having a memory address that is divisible by eight.

Endianness

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored in memory.
An aspect of the system’s memory mapping.

See also “Little-endian (LE)”
Exception

An event that interrupts program execution. When an exception occurs, the processor suspends the normal
program flow and starts execution at the address indicated by the corresponding exception vector. The indicated
address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults include
attempting an invalid memory access, attempting to execute an instruction in an invalid processor state, and
attempting to execute an undefined instruction.

Exception service routine
See “Interrupt handler” .
Exception vector

See “Interrupt vector” .
Flat address mapping

A system of organizing memory in which each physical address in the memory space is the same as the
corresponding virtual address.

Halfword

A 16-bit data item.

lllegal instruction

An instruction that is architecturally Undefined.

Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual implementations.
Implementation-specific

The behavior is not architecturally defined, and does not have to be documented by individual implementations.
Used when there are a number of implementation options available and the option chosen does not affect software
compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to be added to or
subtracted from the base register value to form the address that is sent to memory. Some addressing modes
optionally enable the index register value to be shifted prior to the addition or subtraction.

See also “Base register”

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.
Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.

194 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured, that contains
the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing addresses
in memory.

See also ““Little-endian (LE)” See also “Little-endian memory” .Breakpoint” , “.” , “Endianness” .

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at that address

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents, not directly on
memory contents.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before the
preceding instructions have finished executing. Prefetching an instruction does not mean that the instruction has to
be executed.

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb instructions
LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region
A partition of memory space.
Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the implementation, or
produces Unpredictable results if the contents of the field are not zero. These fields are reserved for use in future
extensions of the architecture or are implementation-specific. All reserved bits not used by the implementation
must be written as 0 and read as 0.

Should Be One (SBO)

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.
Should Be Zero (SBZz)

Write as 0, or all Os for bit fields, by software. Writing as 1 produces Unpredictable results.
Should Be Zero or Preserved (SBZP)

Write as 0, or all Os for bit fields, by software, or preserved by writing the same value back that has been previously
read from the same field on the same processor.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing shared
resources, to ensure correct operation without the risk of shared access conflicts.

SAMS3N Series [DATASHEET 195
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be halfword-
aligned.

Unaligned

A data item stored at an address that is not divisible by the number of bytes that defines the data size is said to be
unaligned. For example, a word stored at an address that is not divisible by four.

Undefined
Indicates an instruction that generates an Undefined instruction exception.
Unpredictable (UNP)

You cannot rely on the behavior. Unpredictable behavior must not represent security holes. Unpredictable
behavior must not halt or hang the processor, or any parts of the system.

Warm reset

Also known as a core reset. Initializes the majority of the processor excluding the debug controller and debug
logic. This type of reset is useful if you are using the debugging features of a processor.

Word
A 32-bit data item.
Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb instructions STM,
STR, STRH, STRB, and PUSH.

196 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

12. Debug and Test Features

12.1 Description

The SAM3 Series Microcontrollers feature a number of complementary debug and test capabilities. The Serial
Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port
is used for standard debugging functions, such as downloading code and single-stepping through programs. It also
embeds a serial wire trace.

12.2 Embedded Characteristics

e Debug access to all memory and registers in the system, including Cortex-M3 register bank when the core is
running, halted, or held in reset.

Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access

Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
Instrumentation Trace Macrocell (ITM) for support of printf style debugging

IEEE1149.1 JTAG Boundary-scan on All Digital Pins

Figure 12-1. Debug and Test Block Diagram

™S

L) 1

TCK/SWCLK

[]| o

Boundary SWJ-DP ¢ I:l JTAGSEL
TAP O
I / |:| TDO/TRACESWO
Reset POR
and

Test I:l TST

SAMS3N Series [DATASHEET 197
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

12.3 Application Examples

12.3.1 Debug Environment

Figure 12-2 shows a complete debug environment example. The SWJ-DP interface is used for standard

debugging functions, such as downloading code and single-stepping through the program and viewing core and
peripheral registers.

Figure 12-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM3

SAM3-based Application Board

12.3.2 Test Environment

Figure 12-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These
devices can be connected to form a single scan chain.

198 SAM3N Series [DATASHEET]
Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15 /I t m e L

Figure 12-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG . .
Connector [| Chip == Chip 2
I
SAM3-based Application Board In Test
12.4 Debug and Test Pin Description
Table 12-1. Debug and Test Signal List

Signal Name Function Type Active Level

Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input

SWD/JITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output @
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input
JTAGSEL JTAG Selection Input High

1. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding

to this PIO line must be enabled to avoid current consumption due to floating input.

SAMS3N Series [DATASHEET 199
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

12.5 Functional Description

12.5.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-
up, the device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST
pin integrates a permanent pull-down resistor of about 15 kQ,so that it can be left unconnected for normal
operation. Note that when setting the TST pin to low or high level at power up, it must remain in the same state
during the duration of the whole operation.

12.5.2 Debug Architecture
Figure 12-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds five functional units for
debug:
e SWJ-DP (Serial Wire/JTAG Debug Port)
e FPB (Flash Patch Breakpoint)
e DWT (Data Watchpoint and Trace)
e ITM (Instrumentation Trace Macrocell)
e TPIU (Trace Port Interface Unit)
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes

and debugging tool vendors for Cortex M3-based microcontrollers. For further details on SWJ-DP see the Cortex
M3 technical reference manual.

Figure 12-4. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP

6 breakpoints

data address sampler
SWD/JTAG
data sampler ™
software trace SWO trace
32 channels
interrupt trace TPIU

time stamping

CPU statistics

12.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It combines Serial
Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and
enables SW-DP.

200 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE
output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not

JTAG-DP.

Table 12-2. SWJ-DP Pin List
Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK
TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

12.5.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
e Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

12.5.4 FPB (Flash Patch Breakpoint)

The FPB:
e Implements hardware breakpoints
e Patches code and data from code space to system space.

The FPB unit contains:

e Two literal comparators for matching against literal loads from Code space, and remapping to a
corresponding area in System space.

e Six instruction comparators for matching against instruction fetches from Code space and remapping to a
corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core
on a match.

12.5.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals
e PC or Data watchpoint packets
e Watchpoint event to halt core

SAMS3N Series [DATASHEET 201
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

The DWT contains counters for the following items:
e Clock cycle (CYCCNT)
Folded instructions
Load Store Unit (LSU) operations
Sleep Cycles
CPI (all instruction cycles except for the first cycle)
Interrupt overhead

12.5.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS)
and application events, and emits diagnostic system information. The ITM emits trace information as packets
which can be generated by three different sources with several priority levels:
e Software trace: Software can write directly to ITM stimulus registers. This can be done thanks to the “printf
function. For more information, refer to Section 12.5.6.1 “How to Configure the ITM”.
e Hardware trace: The ITM emits packets generated by the DWT.
e Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate
the timestamp.

12.5.6.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.

e Configure the TPIU for asynchronous trace mode (refer to Section 12.5.6.3 “5.4.3. How to Configure the
TPIU")

e Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the Lock Access Register
(Address: 0xEOOOOFBO)

e Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATBID to 1
e Write Ox1 into the Trace Enable Register:
— Enable the Stimulus port 0
e Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode.)

e Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).
The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

12.5.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG
debug mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

e NRZ_based UART byte structure

202 SAMS3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

12.5.6.35.4.3. How to Configure the TPIU

This example only concerns the asynchronous trace mode.

e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of
trace and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register

— Select the Serial Wire Output — NRZ

Write 0x100 into the Formatter and Flush Control Register

e Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

12.5.7 IEEE® 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST, is tied to low while JTAG SEL is high during power-up
and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS
functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID
that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed. A Boundary-scan Descriptor Language (BSDL) file to set up the
test is provided on www.atmel.com.

12.5.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated
control signals.

Each SAM3 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.

For more information, please refer to BDSL files available for the SAM3 Series.

SAMS3N Series [DATASHEET 203
Atmel []

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

http://www.atmel.com

12.5.8 ID Code Register

Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER

23 22 21 20 19 18 17 16
| PART NUMBER

15 14 13 12 11 10 9 8
| PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0
| MANUFACTURER IDENTITY 1
* VERSION[31:28]: Product Version Number
Set to 0x0.
* PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID
SAM3N 0x05B2E
« MANUFACTURER IDENTITY[11:1]
Set to OxO1F.
» Bit[0] Required by IEEE Std. 1149.1.
Set to Ox1.
Chip Name JTAG ID Code
SAM3N 0x05B2EOQO3F
204 SAMB3N Series [DATASHEET] /lt m eL

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

13. Reset Controller (RSTC)

13.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any
external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the peripheral and
processor resets.

13.2 Embedded Characteristics
The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a
wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to
shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST
pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

13.3 Block Diagram

Figure 13-1. Reset Controller Block Diagram

Reset Controller
core_backup_reset
» rstc_irq
vddcore_nreset >
Reset > proc_nreset
user_reset State
NRST Manager
I:I_ NRST > periph_nreset
Manager
nrst_out
— exter_nreset
WDRPROC
wd_fault >
SLCK
SAM3N Series [DATASHEET] 205
Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

13.4 Functional Description

13.4.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and
generates the following reset signals:
e proc_nreset: Processor reset line. It also resets the Watchdog Timer.
e periph_nreset: Affects the whole set of embedded peripherals.
e nrst_out: Drives the NRST pin.
These reset signals are asserted by the Reset Controller, either on external events or on software action. The

Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an
assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device
resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered
with VDDIO, so that its configuration is saved as long as VDDIO is on.

13.4.2 NRST Manager

After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR. When ERSTL has
elapsed, the pin behaves as an input and all the system is held in reset if NRST is tied to GND by an external
signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State
Manager. Figure 13-2 shows the block diagram of the NRST Manager.

Figure 13-2. NRST Manager

RSTC_MR

RSTC SR URSTIEN

URSTS
ﬁ)—» rstc_irq
NRSTL | rsTC_MR Other [2

URSTEN interrupt
sources
I > user_reset

NRST | RSTC_MR
T
| nrst_out

I External Reset Timer fje«———— exter_nreset

13.4.2.1NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is
reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs.
Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin
NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the
bit URSTIEN in RSTC_MR must be written at 1.

206 SAM3N Series [DATASHEET] Atmel

Atmel-11011C-ATARM-SAM3N-Series-Datasheet_16-Apr-15

13.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST Manager for a time programmed by the field ERSTL in RSTC_MR. This assertion
duration, named EXTERNAL_RESET_LENGTH, lasts 2ERSTH+1) glow Clock cycles. This gives the approximate
duration of an assertion between 60 us and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the
NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is
driven low for a time compliant with potential external devices connected on the system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the system power-up
reset for devices requiring a longer startup time than the Slow Clock Oscillator.

13.4.3 Brownout Manager
The Brownout manager is embedded within the Supply Controller, please refer to the product Supply Controller
section for a detailed description.

13.4.4 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports
the reset status in the field RSTTYP of the Status Register (RSTC_SR). The update of the field RSTTYP is
performed when the processor reset is released.

13.4.4.1 General Reset

A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation loss is detected by
the Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR
is res