1-to-2 Decoder/ Demultiplexer
 NL7SZ19

The NL7SZ19 is a 1 -to-2 decoder. When the output enable $(\overline{\mathrm{E}})$ is Low, the device passes data at input A to outputs Y0 (true) and Y1 (complement). The NL7SZ19 can also be used as a 1-to-2 demultiplexer. As a demultiplexer, data at input E is routed to either Y0 or Y1 depending on the state of A. The device operates over the voltage range from 1.65 V to 5.5 V .

Features

- Designed for 1.65 V to $5.5 \mathrm{~V}_{\mathrm{CC}}$ Operation
- $2.7 \mathrm{~ns}_{\mathrm{t}}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (Typ)
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I IOFF Supports Partial Power Down Protection
- Source/Sink 32 mA at 5.0 V
- Available in SC-88, SC-74 and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

SC-88
DF SUFFIX SC-74 UDFN6, 1.2x1.0, 0.4P CASE 419B CASE 318F-05 CASE 517AA-01

MARKING DIAGRAMS

(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION
See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

Figure 1. Pinout (Top View)

PIN ASSIGNMENT

Pin	Function
1	A
2	GND
3	E
4	Y_{1}
5	$\mathrm{~V}_{\mathrm{CC}}$
6	Y_{0}

FUNCTION TABLE

\bar{E}	\mathbf{A}	$\mathbf{Y}_{\mathbf{0}}=\mathbf{A}+\overline{\mathbf{E}}$	$\mathbf{Y}_{\mathbf{1}}=\overline{\mathbf{A}}+\overline{\mathbf{E}}$
L	L	L	H
L	H	H	L
H	H	H	H
H	L	H	H

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V_{CC}	DC Supply Voltage NLV	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+6.5 \end{aligned}$	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage NLV	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+6.5 \end{aligned}$	V
$\mathrm{V}_{\text {OUT }}$	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (VCC $=0 \mathrm{~V}$)	$\begin{gathered} -0.5 \text { to } \mathrm{V}_{\mathrm{cc}}+0.5 \\ -0.5 \text { to }+7.0 \\ -0.5 \text { to }+7.0 \end{gathered}$	V
$V_{\text {OUT }}$	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	$\begin{gathered} -0.5 \text { to } V_{\mathrm{Cc}}+0.5 \\ -0.5 \text { to }+6.5 \\ -0.5 \text { to }+6.5 \end{gathered}$	V
$\mathrm{IIK}^{\text {K }}$	DC Input Diode Current $\quad \mathrm{V}_{\text {IN }}<$ GND	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<$ GND	-50	mA
Iout	DC Output Source/Sink Current	± 50	mA
$\mathrm{I}_{\text {CC }}$ or I IGND	DC Supply Current per Supply Pin or Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 secs	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}		$\begin{aligned} & 377 \\ & 320 \\ & 154 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { SC-88 } \\ \text { SC-74 } \\ & \text { UDFN6 }\end{array}$	$\begin{aligned} & 332 \\ & 390 \\ & 812 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	-
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 3) $\begin{array}{r}\text { Human Body Model } \\ \text { Charged Device Model }\end{array}$	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	V
ILatchup	Latchup Performance (Note 4)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 5.5 \\ & 5.5 \end{aligned}$	
T_{A}	Operating Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ 20 \\ 10 \\ 5 \end{gathered}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Units
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage (NLV)	-	1.65 to 1.95	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	V
			2.3 to 5.5	$0.70 \times V_{C C}$	-	-	$0.70 \times \mathrm{V}_{\text {CC }}$	-	
	High-Level Input Voltage	-	1.65 to 1.95	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	V
			2.3 to 5.5	$0.70 \times V_{C C}$	-	-	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage (NLV)	-	1.65 to 1.95	-	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	V
			2.3 to 5.5	-	-	$0.30 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.30 \times \mathrm{V}_{\mathrm{CC}}$	
	Low-Level Input Voltage	-	1.65 to 1.95	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
			2.3 to 5.5	-	-	$0.30 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.30 \times \mathrm{V}_{\mathrm{CC}}$	
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{uA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.65 \text { to } 5.5 \\ 1.65 \\ 2.3 \\ 3 \\ 3 \\ 4.5 \end{gathered}$	$V_{\mathrm{CC}}-0.1$ 1.29 1.9 2.4 2.3 3.8	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ 1.5 \\ 2.1 \\ 2.7 \\ 2.5 \\ 4 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}-0.1 \\ 1.29 \\ 1.9 \\ 2.4 \\ 2.3 \\ 3.8 \end{gathered}$		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \mathrm{~V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=100 \mathrm{\mu A} \\ & \mathrm{I}_{\mathrm{OH}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=32 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.65 \text { to } 5.5 \\ 1.65 \\ 2.3 \\ 3 \\ 3 \\ 4.5 \end{gathered}$		$\begin{aligned} & - \\ & 0.08 \\ & 0.12 \\ & 0.24 \\ & 0.26 \\ & 0.31 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.24 \\ 0.3 \\ 0.4 \\ 0.55 \\ 0.55 \end{gathered}$	V
1 N	Input Leakage Current	$\mathrm{V}_{1 \mathrm{I}}=5.5 \mathrm{~V}$ or GND	1.65 to 5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$	0	-	-	1.0	-	10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5	-	-	1.0	-	10	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Units
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	Propagation Delay, A to Y (Figures 2 and 3)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.65 to 1.95	-	6.2	10.5	-	11.0	ns
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	2.3 to 2.7	-	3.6	6.0	-	6.4	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	3.0 to 3.6	-	2.9	4.1	-	4.5	
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	3.2	5.1	-	5.4	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	4.5 to 5.5	-	2.4	3.2	-	3.5	
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	2.7	4.0	-	4.3	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	2.5	pF
C_{PD}	Power Dissipation Capacitance (Note 3)	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC} $10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	9	pF

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $P_{D}=C_{P D} \bullet \mathrm{~V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

C_{L} includes probe and jig capacitance
R_{T} is $\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
$\mathrm{f}=1 \mathrm{MHz}$
Figure 2. Test Circuit

Figure 3. Switching Waveforms

$\mathbf{V}_{\mathbf{C C}}, \mathbf{v}$	$\mathbf{V}_{\mathbf{m o}}, \mathbf{V}$			
			$\mathbf{t}_{\mathbf{P Z L}}, \mathbf{t}_{\mathbf{P L Z}}, \mathbf{t}_{\mathbf{P Z H}}, \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{v}_{\mathbf{Y},} \mathbf{v}$
	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
2.3 to 2.7	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
3.0 to 3.6	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3
4.5 to 5.5	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3

NL7SZ19

DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping ${ }^{\dagger}$
NL7SZ19DFT2G	SC-88	LE	Q4	$3000 /$ Tape \& Reel
NLV7SZ19DFT2G*	SC-88	LE	Q4	$3000 /$ Tape \& Reel
NL7SZ19DBVT1G	SC-74	AK	Q4	$3000 /$ Tape \& Reel
NL7SZ19MUR2G**	UDFN6, 1.2 $\times 1.0,0.4 P$	U	Q2	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.
** Please refer to NLV specifications for this device.
PIN 1 ORIENTATION IN TAPE AND REEL
Direction of Feed

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

UDFN6, 1.2x1.0, 0.4P
CASE 517AA-01
ISSUE D
DATE 03 SEP 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.127	
REF		
b	0.15	
D	1.20	
BSC		
E	1.00	
BSC		
e	0.40	
BSC		
L	0.30	0.40
L1	0.00	0.15
L2	0.40	0.50

Side View (Optional)

GENERIC
MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

MOUNTING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON22068D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 6 PIN UDFN, 1.2X1.0, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

