

Getting Started with the nRF8001

Bluefruit LE Breakout

Created by Kevin Townsend

https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-breakout

Last updated on 2022-12-01 02:09:25 PM EST

©Adafruit Industries Page 1 of 36

5

7

8

12

14

19

22

26

33

34

35

35

Table of Contents

Introduction

• Requirements

Pinouts

Hooking Everything Up

• Prepare the header strip:

• Add the breakout board:

• And Solder!

• Wiring

Software: UART Service

nRF UART In Detail

• Initialization

• Setup

• Polling

• Managing Status

• Reading data

• Writing data

• uint16_t write (uint8_t singlebyte)

• uint16_t write (uint8_t * buffer, uint8_t len)

• uint16_t print("text here")

• uint16_t println("text here")

Software: nRF UART App

• Android: nRFUART 2.0

• iOS: nRF UART

Software: BlueFruit UART App

• UART Echo Demo

Software: BlueFruit Pin I/O

• BLE StandardFirmata

• Wiring up for Firmata demo

• Input Mode

• Output Mode

• PWM Mode

Adding App Support

• The UART Service

Related Links

• Adafruit Resources

• General Resources

F.A.Q.

Downloads

• Datasheets & Files

• Schematic

©Adafruit Industries Page 2 of 36

• Fabrication Print

©Adafruit Industries Page 3 of 36

©Adafruit Industries Page 4 of 36

Introduction

Our nRF8001 Breakout allows you to establish an easy to use wireless link between

your Arduino and any compatible iOS or Android (4.3+) device. It works by simulating

a UART device beneath the surface, sending ASCII data back and forth between the

devices, letting you decide what data to send and what to do with it on either end of

the connection.

Unlike classic Bluetooth, BLE has no big contracts to sign and no major hoops that

you have to jump through to create iOS peripherals that you can legally design and

distribute in the App Store, which makes it a great choice compared to classic

Bluetooth which had (and still has) a lot of restrictions around it on the iOS platform.

And now that Android also officially supports Bluetooth Low Energy (as of Android

4.3), it's also -- finally! -- a universal communication channel covering the main mobile

operating systems people are using today.

We can get you started super fast with this BLE module which can act like an 'every

day' UART data link. Send and receive data up to 10 meters away, from your Arduino

to an iOS device. We've even made it easy to get started with our very own BLE

connect app that has a "serial console" for sending/receiving data and also an

'arduino pin i/o control station" () to let you set pins on your Arduino to inputs or

outputs, high or low logic or even PWM output, as well as read button presses and

analog inputs. You can start prototyping your accessory and then use our open

source Objective C code to base your new app on! ()

©Adafruit Industries Page 5 of 36

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect

Please note: At this time, we don't have an Android version of the Adafruit Bluefruit LE

App available (our native BLE application), but you can use Nordic's Android nRF

UART application with the nRF8001 Breakout on BLE capable Android devices (Nexus

4, Nexus 5, Nexus 7, etc.)

This guide will help you setup your nRF8001 Bluetooth Low Energy breakout, and

start using some of the sample sketches we provide with it to connect to an iOS or

Android device. If you're new to Bluetooth Low Energy, be sure to check out our Intro

duction to Bluetooth Low Energy () learning guide as well!

Requirements

Adafruit nRF8001 Breakout

A BLE enabled Android or iOS device to test with for nRF UART demos

The nRF8001 library is not compatible with the Arduino Due at this time

At this time, we don't have an Android version of the Adafruit Bluefruit LE App

available (our native BLE application), but you can use Nordic's Android nRF

UART application on BLE capable Android devices (Nexus 4, Nexus 5, Nexus 7,

etc.), or have a look at this Android project by Tony Dicola: https://github.com/

tdicola/BTLETest

•

•

©Adafruit Industries Page 6 of 36

http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://github.com/tdicola/BTLETest
https://github.com/tdicola/BTLETest

An iOS device running iOS 7 with Bluefruit () installed for the BlueFruit LE

Firmata demos

Pinouts

The nRF8001 is nice because it handles all the BLE radio and low level work, and

does it all over SPI which makes it easy to use with any kind of microcontroller. All

pins you need are broken out on the bottom of the PCB and all are 5V compliant so

you can use with 3V or 5V micros!

Starting from the left:

SCK - this is the SPI data clock pin, connect to your SPI master clock out

MISO - this the SPI data out pin, data is sent from the module on this pin. Data

level is 3V but that is fine for 5V microcontrollers.

MOSI - this is the SPI data in pin, data is sent to the module on this pin.

REQ - this is basically what the nRF8001 considers the 'SPI Chip Select' pin, its

an input

RDY (ready) - this is the data-ready pin, an interrupt output from the breakout to

the microcontroller letting it know that data is ready to read

ACT (active) - this is an output from the module, it lets the host know when the

nRF8001 is busy

RST (reset) - this is the reset pin input.

3Vo - this is the output from the onboard 3.3V regulator, you can grab up to

100mA from this pin.

GND - common ground for data and power

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 36

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8

VIN - 3-5 VDC input to power the breakout

Hooking Everything Up

The nRF8001 breakout has full level shifting to make it safe to use with 5V logic, and

uses a custom SPI-type bus to talk to the Arduino.

The SPI bus means that this breakout and library will work on any Arduino as long as

you're using the hardware SPI pins.

We'll start by attaching headers. You can also solder wires directly but header makes

it breadboard friendly!

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down.

Add the breakout board:
Place the breakout board over the pins so

that the short pins poke through the

breakout pads

•

©Adafruit Industries Page 8 of 36

https://learn.adafruit.com//assets/15716
https://learn.adafruit.com//assets/15716
https://learn.adafruit.com//assets/15717
https://learn.adafruit.com//assets/15717

And Solder!
Be sure to solder all 10 pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

That's it! you are now ready to wire and

test

Wiring

Now that we have headers attached we can easily wire it up to our Arduino

VIN connects to the Arduino 5V pin•

©Adafruit Industries Page 9 of 36

https://learn.adafruit.com//assets/15718
https://learn.adafruit.com//assets/15718
https://learn.adafruit.com//assets/15719
https://learn.adafruit.com//assets/15719
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/15721
https://learn.adafruit.com//assets/15721

GND connects to Arduino ground

SCK connects to SPI clock.

On Arduino Uno/Duemilanove/328-based, thats Digital 13.

On Mega's, its Digital 52 and on

Leonardo/Micro its ICSP-3 (See SPI Connections for more details ())

MISO connects to SPI MISO.

On Arduino Uno/Duemilanove/328-based, thats Digital 12.

On Mega's, its Digital 50 and on

Leonardo/Micro its ICSP-1 (See SPI Connections for more details ())

MOSI connects to SPI MOSI.

On Arduino Uno/Duemilanove/328-based, thats Digital 11.

On Mega's, its Digital 51 and on

Leonardo/Micro its ICSP-4 (See SPI Connections for more details ())

REQ connects to our SPI Chip Select pin. We'll be using Digital 10 but you can

later change this to any pin

RST connects to Digital 9 - this is for resetting the board when we start up, you

can later change this to any pin

RDY is the interrupt out from the nRF8001, we'll connect to Digital 2 but be

aware that if you want to change it, it must connect to an interrupt capable pin (s

ee this Arduino page for which pins are interrupt-capable (). Digital 2 is OK on

Uno/Leonardo/Micro/Mega/etc.)

Our code does not currently use the ACT pin so you can leave it disconnected

•

•

•

•

•

•

•

©Adafruit Industries Page 10 of 36

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/attachInterrupt
http://arduino.cc/en/Reference/attachInterrupt

The nRF8001 differs from a classic SPI bus since CS is replaced by two pins, REQ

and RDY, but you can still use HW SPI since CS is normally controlled purely in

SW anyway.

©Adafruit Industries Page 11 of 36

By connecting 5.0V on the VIN pin, all of the signals will be level shifted between 5V

for the Arduino and 3.3V for the nRF8001, meaning you don't need to worry about

damaging the IC by providing logic levels that it can't safely handle.

ACT is an optional pin that is not currently used in our sample sketches or low level

drivers, but is broken out for future use if required.

3Vo is the output of the on board 3.3V voltage regulator, and can be used if you need

an additional 3.3V supply rail, but generally won't be required on an Uno.

Software: UART Service

Most people understand the basic concept behind UART (one channel to transmit

data and one to receive it), so this felt like the easiest way to provide flexible, bi-

directional communication between an Arduino and any BLE-enabled mobile platform,

without painting people into the corner. BLE does have the capability to handle more

complicated structured data, but for the vast majority of people doing projects, UART

will get you very very far.

To save everyone the headache of defining and working with custom services, we've

wrapped up all of the low level BLE code into a single, easy to use class called Adafru

it_BLE_UART, available in the nRF8001 / Adafruit_BLE_UART repository on Github ()

To install this library, first, open up the Arduino library manager:

Search for the Adafruit NRF8001 library and install it

If you are using 3.3V logic, simply connect 3.3V from your development board to

the VIN pin on the nRF8001 breakout.

©Adafruit Industries Page 12 of 36

https://github.com/adafruit/Adafruit_nRF8001

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Open the 'uart' example via the 'File > Examples > Adafruit_BLE_UART> echoDemo '

menu item. (The library was renamed from Adafruit_nRF8001 to avoid confusion with

the underlying library so the screenshot above is mismatched)

If you upload the demo to your wired-up Arduino and open the serial monitor you

should see that it starts advertising BLE signal

©Adafruit Industries Page 13 of 36

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Next up we will use our iOS or Android device to make the other side of the

connection!

nRF UART In Detail

To better understand the BLE UART interface, lets take a look at the basic echo demo.

This version is designed to make the BLE breakout be as effortless to use as Serial.

Behind the scenes, the library does much of the heavy lifting of managing the

connection, sending and receiving data as well as buffering incoming data so you can

grab it when the Arduino has time.

The following sketch should allow you to start bi-directional communication on BLE-

enabled Android devices (4.3 or higher) or recent iOS devices. It waits for incoming

data, and then echoes it back to the transmitting device.

// This version uses the internal data queing so you can treat it like Serial

(kinda)!

#include <SPI.h>

#include "Adafruit_BLE_UART.h"

// Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11

#define ADAFRUITBLE_REQ 10

#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2

or #3

#define ADAFRUITBLE_RST 9

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY,

ADAFRUITBLE_RST);

/**/

©Adafruit Industries Page 14 of 36

/*!

 Configure the Arduino and start advertising with the radio

*/

/**/

void setup(void)

{

 Serial.begin(9600);

 Serial.println(F("Adafruit Bluefruit Low Energy nRF8001 Print echo demo"));

 BTLEserial.begin();

}

/**/

/*!

 Constantly checks for new events on the nRF8001

*/

/**/

aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

void loop()

{

 // Tell the nRF8001 to do whatever it should be working on.

 BTLEserial.pollACI();

 // Ask what is our current status

 aci_evt_opcode_t status = BTLEserial.getState();

 // If the status changed....

 if (status != laststatus) {

 // print it out!

 if (status == ACI_EVT_DEVICE_STARTED) {

 Serial.println(F("* Advertising started"));

 }

 if (status == ACI_EVT_CONNECTED) {

 Serial.println(F("* Connected!"));

 }

 if (status == ACI_EVT_DISCONNECTED) {

 Serial.println(F("* Disconnected or advertising timed out"));

 }

 // OK set the last status change to this one

 laststatus = status;

 }

 if (status == ACI_EVT_CONNECTED) {

 // Lets see if there's any data for us!

 if (BTLEserial.available()) {

 Serial.print("* "); Serial.print(BTLEserial.available()); Serial.println(F("

bytes available from BTLE"));

 }

 // OK while we still have something to read, get a character and print it out

 while (BTLEserial.available()) {

 char c = BTLEserial.read();

 Serial.print(c);

 }

 // Next up, see if we have any data to get from the Serial console

 if (Serial.available()) {

 // Read a line from Serial

 Serial.setTimeout(100); // 100 millisecond timeout

 String s = Serial.readString();

 // We need to convert the line to bytes, no more than 20 at this time

 uint8_t sendbuffer[20];

 s.getBytes(sendbuffer, 20);

 char sendbuffersize = min(20, s.length());

 Serial.print(F("\n* Sending -> \"")); Serial.print((char *)sendbuffer);

Serial.println("\"");

©Adafruit Industries Page 15 of 36

 // write the data

 BTLEserial.write(sendbuffer, sendbuffersize);

 }

 }

}

Initialization

Lets look at it section by section. Starting with initialization. You'll need to include the

header files and define the pins used. Since we're using hardware SPI, the CLK/MOSI

and MISO pins are fixed (see the hookup guide)

the RDY pin is the only pin that must be an interrupt pin. We'll use 2, most Arduino's

can use 2 or 3.

Then create the Adafruit_BLE_UART object at the top.

#include <SPI.h>

#include "Adafruit_BLE_UART.h"

// Connect CLK/MISO/MOSI to hardware SPI

// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11

#define ADAFRUITBLE_REQ 10

#define ADAFRUITBLE_RDY 2 // This should be an interrupt pin, on Uno thats #2

or #3

#define ADAFRUITBLE_RST 9

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY,

ADAFRUITBLE_RST);

Setup

Setup is easy, just remember to call begin(); in the setup procedure to begin talking to

the nrf8001

Polling

During your working loop, you have to give some time to the nRF8001 and tell it to

process data. So be sure to call

// Tell the nRF8001 to do whatever it should be working on.

BTLEserial.pollACI();

as often as possible - and if you're having issues where data rates seem slow, try

speeding up your loop

©Adafruit Industries Page 16 of 36

Managing Status

BLE is very asynchronous, it can connect, disconnect, time out. Part of the niceness of

BTLE compared to classic BT is that this is all much more stable. Reconnecting takes

less than half a second instead of up to 20 seconds! Be sure to check in with the

nRF8001 often to see if the see the state has changed. We suggest keeping a global

variable for the last known status so you can see if its changed

aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

and then calling getState() to query the latest state. If something's changed, you can

notify the user:

 // Ask what is our current status

 aci_evt_opcode_t status = BTLEserial.getState();

 // If the status changed....

 if (status != laststatus) {

 // print it out!

 if (status == ACI_EVT_DEVICE_STARTED) {

 Serial.println(F("* Advertising started"));

 }

 if (status == ACI_EVT_CONNECTED) {

 Serial.println(F("* Connected!"));

 }

 if (status == ACI_EVT_DISCONNECTED) {

 Serial.println(F("* Disconnected or advertising timed out"));

 }

 // OK set the last status change to this one

 laststatus = status;

 }

Valid events are:

ACI_EVT_DEVICE_STARTED: The device has started advertising, and can be

detected by other devices in listening range

ACI_EVT_CONNECTED: A connection has been established with another

devices (meaning that advertising will now stop)

ACI_EVT_DISCONNECTED: The connection with the external device was closed

or timed out

By detecting the event type, we can perform an action like enabling an LED when we

are connected, or no longer reading sensor data when we are disconnected, etc.

It's important to constantly call pollACI if you want to efficiently handle data over

BLE. Be sure to include this function at the top of your 'loop' function in your

sketch.

•

•

•

©Adafruit Industries Page 17 of 36

Reading data

If data is available, you can query it with available() which will return the number of

bytes waiting. You can then read one byte at a time with read() just like you would

with Serial

Writing data

The nRF8001 sends out packets of data, 20 bytes at time. Keep this in mind if you

want to send a lot of data it will be packetized into chunks of 20. You can of course

send less than 20 bytes.

Much like Serial you can use the .write and .print functions allow us to send data out

to the connected device:

 () ()uint16_t write (uint8_t singlebyte)

Writes a single byte to the connected device, and returns the number of bytes

successfully written.

 () ()uint16_t write (uint8_t * buffer, uint8_t len)

Writes len bytes from buffer to the connection device, and returns the number of

bytes successfully written.

 () ()uint16_t print("text here")

Prints the supplied string to the connected device, and returns the number of bytes

successfully written. This is simple a helper function that points to .write, but may be

easier to work with since it follows the same naming conventions as the familiar Serial

class on Arduino.

 () ()uint16_t println("text here")

Similar to the print function above, but appends the string with new line characters at

the end of the string, similar to the difference between Serial.print and Serial.println

on Arduino.

Try to keep the buffers and strings under 20 bytes. The library will split up large

messages but often times the app on the other side wants to read the whole packet

at once, and it can make your job a lot easier!

©Adafruit Industries Page 18 of 36

http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-write-uint8-t-buffer
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-write-uint8-t-buffer
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-write-uint8-t-star-buffer-uint8-t-len
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-write-uint8-t-star-buffer-uint8-t-len
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-print-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-print-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-println-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-println-const-char-star-thestr

Software: nRF UART App

In order to test the sketch described on the previous page, you can use a free UART

application from Nordic Semiconductors () that's available in Apple's app store for

recent iOS devices or Android's Play Store for Android 4.3 or higher devices.

Android: nRFUART 2.0

Go to the Play Store and search for nRFUART 2.0 (), then install the application.

If you can't find this application, your Android device probably doesn't support

BLE or isn't running Android 4.3+!

Load the 'callbackEcho' sketch onto your Arduino (File > Examples >

Adafruit_nRF8001 > callbackEcho)

Run the sketch and open the Serial Monitor (Baud Rate = 9600)

Once the device starts advertising, you can open the nRFUART 2.0 application, and

you should be able to connect to the 'UART' device, similar to the screenshot below:

Once you're connected, you can click on the 'send' textbox at the bottom, and any

data you send out should show up in the Serial Monitor, and also get echoed back to

the Android application, as seen below:

•

•

•

Be sure to use the 2.0 version of the app on Android. The earlier (non 2.0)

version is based on a proprietary BLE stack for certain Samsung devices, which

was created before Google added official support for BLE in Android 4.3.

©Adafruit Industries Page 19 of 36

http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-App
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-App
https://play.google.com/store/apps/details?id=com.nordicsemi.nrfUARTv2

You will need an Android device running Android 4.3 or higher with BLE support

to use this application. Nexus 4, Nexus 5 and Nexus 10 devices running the latest

version of Android can all use this application, but other devices will need to be

verified for BLE support.

If you wish to create your own Android BLE UART project, you can have a look at

some Android source code from Tony Dicola that works with our UART service

here: https://github.com/tdicola/BTLETest

©Adafruit Industries Page 20 of 36

https://github.com/tdicola/BTLETest

iOS: nRF UART

If you are using a BLE-enabled iOS device (recent iPhones, iPod Touch models, iPads,

etc.), you can also test this on iOS.

Download nRF UART () application from Apple's App Store.

Load the 'callbackEcho' sketch onto your Arduino (File > Examples >

Adafruit_nRF8001 > callbackEcho)

Once the sketch is running, open up the Serial Monitor at 9600 baud.

You should be able to connect to the board using the 'Connect' button in the iOS

application now, and send and receive text via the textbox at the bottom of the app:

•

•

•

©Adafruit Industries Page 21 of 36

https://itunes.apple.com/us/app/nrf-uart/id614594903?mt=8

Software: BlueFruit UART App

If you're using an iOS based device, we've made your life easy with our BlueFruit

application (), which is available in Apple's App Store.

This free iOS application allows you to send or received UART messages between

©Adafruit Industries Page 22 of 36

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8

your iOS device and the nRF8001 (select UART on the home page), or toggle pins

from the iOS UI setting them to input, output or as PWM (select Pin I/O discussed in

the next page)

UART Echo Demo

This UART is basically the same as nRF's but its a little more like a terminal window

instead of a timestamped log.

The echoDemo example sketch allows you to send and receive simple messages

using Serial-esque style commands, and the data will be displayed on both BlueFruit

on the iOS device and the Serial Monitor on the Uno.

After programming the Uno with the sketch, you can open up the Serial Monitor (make

sure it's set to 9600 baud!), and then open up the BlueFruit application on your iOS

device and select UART on the home screen. It should connect!

©Adafruit Industries Page 23 of 36

Now, any data that you enter on the iOS device or the Uno will be transmitted to the

other device as long as the connection is open:

The corresponding BlueFruit output can be seen below, where the red message is

incoming data and the blue message is outgoing data.

©Adafruit Industries Page 24 of 36

Click the HEX button in the top right to switch over to hex display mode instead of

plain 'ascii' mode

©Adafruit Industries Page 25 of 36

Software: BlueFruit Pin I/O

In addition to the UART functionality in BlueFruit (), you can also use Firmata to control

the pins on your Uno.

Firmata () is a light weight protocol that was designed to make it possible to control an

©Adafruit Industries Page 26 of 36

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
http://firmata.org/wiki/Main_Page

Uno from a variety of external devices, such as you laptop using another

programming language. We've ported Firmata over to BLE using our

Adafruit_BLE_UART as the transport layer, and created an easy to use IDE to help you

get started with it.

BLE StandardFirmata

The first thing you'll need to do is download the Adafruit_BLE_PinIO () repository from

the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit BLEFirmata library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

The Adafruit_PinIO sketches also requires Adafruit_nRF8001 to be present in your

libraries folder but you already installed that so you should be good to go if you went

through the UART echo tests.

At this time, our Firmata sketch/App support is limited to iOS devices. BLE is

relatively new to the Android ecosystem and there are only a handful of devices

that support it today, and the stack itself is still in active development and has

some issues that will no doubt be resolved in future updates. For the moment,

though, we have made the decision to concentrate our limited resources on iOS

since this is the still statistically the most natural target plaform in the BLE world.

©Adafruit Industries Page 27 of 36

https://github.com/adafruit/Adafruit_BLE_PinIO
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Once this library is installed, open up the StandardFirmata sketch (File > Examples >

Adafruit_BLEFirmata > StandardFirmata), compile the sketch, and program the Uno

with your firmware.

Next, open Adafruit Bluefruit LE Connect on your iOS device and select the Pin I/O

option on the home page:

©Adafruit Industries Page 28 of 36

This will establish a connection between the nRF8001 and your iOS device, and you

should see an I/O screen that allows you to select any available pin.

©Adafruit Industries Page 29 of 36

Wiring up for Firmata demo

The Firmata BLE app demo allows you to some basic functionality with your Arduino,

great for testing out ideas or sensors

Digital Input (e.g. switches)

Digital Output (e.g. relays)

Analog Input (e.g. sensors)

PWM Output (e.g. LED dimming)

We'll demo all of these with the following wiring, grab some components from your

parts bin and follow along!

Connect a standard LED (any color) with a inline resistor (220-1K is fine) to Digita

l 7

•

•

•

•

•

©Adafruit Industries Page 30 of 36

Connect an RGB LED (either common cathode or anode) so that the red, green

and blue LED pins tie to Digital 3 5 and 6 with inline resistors. If using common

anode, connect the fourth pin to 5V. If using common cathode, connect it to

GND.

Connect a switch of some sort to Digital 4 so that when pressed, it connects to

ground. No pullup resistor is required

Connect a potentiometer (any value 500 ohm to 1Mohm) so that the two outer

legs connect to 5V and GND and the middle pin connects to Analog 5

Simply click on the pin that you wish to manipulate (pin 3 is selected in the screenshot

below), set one of the three pin modes (Input, Output, PWM or Analog mode), and

adjust the settings accordingly:

•

•

•

©Adafruit Industries Page 31 of 36

Some of the various options can be seen below, such as the ability to change the

PWM rate when you select PWM mode, or whether to set output pins high or low, etc.:

Input Mode

This mode will setup the pin as an input, and the latest pin state will be displayed as

High or Low:

©Adafruit Industries Page 32 of 36

Output Mode

In Output Mode you can set the pin state yourself to High or Low, allowing you to

manually toggle an LED, enable or disable a FET driving a heavy load, etc.:

PWM Mode

PWM Mode allows you to set adjust the PWM output on a pin between 0 and 255

using a convenient slider, as shown below:

Adding App Support

While we don't have a tutorial yet on creating your own custom applications on iOS,

Android or any other BLE-enabled operating system, the following information will be

useful to any application developers, and you're free to look at our open source code

for our own iOS application ().

Tony Dicola has also published some source code for Android around our BLE UART

service, which you can consult on github ().

The UART Service

For reasons that are clearly beyond the comprehension of mere mortals like us, the

Bluetooth SIG has decided not to include a UART-type service in the list of officially

accepted BLE service definitions ().

Without an equivalent to SPP in Bluetooth Classic, we only have one choice ...

©Adafruit Industries Page 33 of 36

https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/tdicola/BTLETest
https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx
https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

defining and implementing a custom UART-esque service ourselves!

The custom UART service uses the following UUIDs, which are the values you need to

know to make your application talk to the appropriate characteristic. There is one

characteristic for TX and another for RX, similar to the way that UART uses two lines

to send and receive data:

UART Service UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E

TX Characteristic UUID: 6E400002-B5A3-F393-E0A9-E50E24DCCA9E

RX Characteristic UUID: 6E400003-B5A3-F393-E0A9-E50E24DCCA9E

Using some sample code for your target OS (the Application Accelerator () code from

Bluetooth is a good start for iOS, Android or Windows), you can connect to the

nRF8001 Breakout, find the UART service via the service UUID above, and then

transfer data back and forth over the two available characteristics.

If you're new to Bluetooth Low Energy and don't know what characteristics and

services are, have a look at our helpful Introduction to Bluetooth Low Energy ()

learning guide as well, which lists some useful development resources at the end!

Related Links

The following links may be useful to you working with the nRF8001 Breakout:

Adafruit Resources

Adafruit_nRF8001 () drivers and samples sketches

Adafruit BlueFruit LE Connect () iOS Application

Adafruit's Introduction to Bluetooth Low Energy () learning guide

General Resources

Bluetooth Core Specification () (BLE was introduced as part of the 4.0 core spec)

Bluetooth Development Portal ()

Nordic Semiconductor's nRF8001 () product page

If you have any specific problems with the Adafruit nRF8001 breakout, fee free to visit

our actively moderated support forums (), though be sure to check for the latest code

•

•

•

These are the same UUID values used by Nordic Semiconductors in their test

applications to stay compatible with their iOS and Android utilities

•

•

•

•

•

•

©Adafruit Industries Page 34 of 36

https://developer.bluetooth.org/Pages/bluetooth-smart-developers.aspx
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://github.com/adafruit/Adafruit_nRF8001
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://developer.bluetooth.org/Pages/default.aspx
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
http://forums.adafruit.com/
https://github.com/adafruit/Adafruit_nRF8001

on github () first since that's the first place new features and bug fixes will be

introduced!

F.A.Q.

I'm having connection dropouts in Android, whats up with

that?

Android devices have some incompatibilities with 5GHz wifi on at the same time as

BTLE, try disabling 5GHz wifi!

See for more details: https://code.google.com/p/android/issues/detail?id=63056 ()

Downloads

Datasheets & Files

Nordic Semiconductor's nRF8001 () product page

Fritzing object in Adafruit Fritzing library ()

EagleCAD PCB files in GitHub ()

Schematic

•

•

•

©Adafruit Industries Page 35 of 36

https://github.com/adafruit/Adafruit_nRF8001
https://code.google.com/p/android/issues/detail?id=63056
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Bluefruit-LE-nRF8001-PCB

Fabrication Print

©Adafruit Industries Page 36 of 36

	Getting Started with the nRF8001 Bluefruit LE Breakout
	Table of Contents
	Introduction
	Pinouts
	Hooking Everything Up
	Software: UART Service
	nRF UART In Detail
	Software: nRF UART App
	Software: BlueFruit UART App
	Software: BlueFruit Pin I/O
	Adding App Support
	Related Links
	F.A.Q.
	Downloads

	Introduction
	Requirements
	Pinouts
	Hooking Everything Up
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Wiring
	Software: UART Service
	nRF UART In Detail
	Initialization
	Setup
	Polling
	Managing Status
	Reading data
	Writing data
	() ()uint16_t write (uint8_t singlebyte)
	() ()uint16_t write (uint8_t * buffer, uint8_t len)
	() ()uint16_t print("text here")
	() ()uint16_t println("text here")

	Software: nRF UART App
	Android: nRFUART 2.0
	iOS: nRF UART
	Software: BlueFruit UART App
	UART Echo Demo
	Software: BlueFruit Pin I/O
	BLE StandardFirmata
	Wiring up for Firmata demo
	Input Mode
	Output Mode
	PWM Mode

	Adding App Support
	The UART Service
	Related Links
	Adafruit Resources
	General Resources
	F.A.Q.
	I'm having connection dropouts in Android, whats up with that?

	Downloads
	Datasheets & Files
	Schematic
	Fabrication Print

