MC3488A

Dual EIA-423/EIA-232D Line Driver

The MC3488A dual is single-ended line driver has been designed to satisfy the requirements of EIA standards EIA-423 and EIA-232D, as well as CCITT X.26, X. 28 and Federal Standard FIDS1030. It is suitable for use where signal wave shaping is desired and the output load resistance is greater than 450Ω. Output slew rates are adjustable from $1.0 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$ by a single external resistor. Output level and slew rate are insensitive to power supply variations. Input undershoot diodes limit transients below ground and output current limiting is provided in both output states.

The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility.

Features

- PNP Buffered Inputs to Minimize Input Loading
- Short Circuit Protection
- Adjustable Slew Rate Limiting
- MC3488A Equivalent to 9636A
- Output Levels and Slew Rates are Insensitive to Power Supply Voltages
- No External Blocking Diode Required for V_{EE} Supply
- Second Source μ A9636A
- Pb -Free Packages are Available

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAMS

PDIP-8 P1 SUFFIX CASE 626

A $\quad=$ Assembly Location
$\mathrm{L}, \mathrm{WL}=$ Wafer Lot
Y, YY = Year
$W, W W=$ Work Week

- or G = Pb-Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Figure 1. Simplified Application

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltages	V_{CC}	+15	V
	$\mathrm{~V}_{\mathrm{EE}}$	-15	
Output Current	Source	I_{O}	+150
	Sink	$\mathrm{I}_{\mathrm{O}}-$	mA
Operating Ambient Temperature	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Devices should not be operated at these values. The "Electrical Characteristics" provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
Power Supply Voltages	V_{CC}	10.8	12	13.2	V
	$\mathrm{~V}_{\mathrm{EE}}$	-13.2	-12	-10.8	
Operating Temperature Range	T_{A}	0	25	70	${ }^{\circ} \mathrm{C}$
Wave Shaping Resistor	R_{WS}	10	-	1000	$\mathrm{k} \Omega$

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply over recommended operating conditions)

Characteristic	Symbol	Min	Typ	Max	Unit
Input Voltage - Low Logic State	$\mathrm{V}_{\text {IL }}$	-	-	0.8	V
Input Voltage - High Logic State	V_{IH}	2.0	-	-	V
Input Current - Low Logic State ($\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$)	ILL	-80	-	-	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Current - High Logic State } \\ & \left(\mathrm{V}_{1 H}=2.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{1 H}=5.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & l_{\mid H 1} \\ & l_{1 H 2} \end{aligned}$			$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
Input Clamp Diode Voltage ($\mathrm{I}_{\mathrm{K}}=-15 \mathrm{~mA}$)	V_{IK}	- 1.5	-	-	V
$\begin{aligned} & \text { Output Voltage - Low Logic State } \\ & \left(R_{L}=\infty\right), \text { EIA-423 } \\ & \left(R_{L}=3.0 \mathrm{k} \Omega\right), \text { EIA-232D } \\ & \left(R_{L}=450 \Omega\right) \text {, EIA-423 } \end{aligned}$	V_{OL}	$\begin{aligned} & -6.0 \\ & -6.0 \\ & -6.0 \end{aligned}$	-	$\begin{aligned} & -5.0 \\ & -5.0 \\ & -4.0 \end{aligned}$	V
$\begin{gathered} \hline \text { Output Voltage - High Logic State } \\ \left(R_{L}=\infty\right), \text { EIA-423 } \\ \left(R_{L}=3.0 \mathrm{k} \Omega\right), \text { EIA-232D } \\ \left(R_{L}=450 \Omega\right), \text { EIA-423 } \end{gathered}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	V
Output Resistance ($\mathrm{R}_{\mathrm{L}} \geqslant 450 \Omega$)	R_{O}	-	25	50	Ω
Output Short-Circuit Current (Note 2) $\left.\begin{array}{l} \left(V_{\text {in }}=V_{\text {out }}=0 \mathrm{~V}\right) \\ \left(V_{\text {in }}=V_{\text {IH }}(\text { Min) }\right. \end{array}, V_{\text {out }}=0 \mathrm{~V}\right) .$	losh losL	$\begin{aligned} & -150 \\ & +15 \end{aligned}$	-	$\begin{array}{r} -15 \\ +150 \end{array}$	mA
Output Leakage Current (Note 3) ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V},-6.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant 6.0 \mathrm{~V}\right)$	$\mathrm{l}_{\text {ox }}$	- 100	-	100	$\mu \mathrm{A}$
Power Supply Currents ($\left.\mathrm{R}_{\mathrm{W}}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{IL}} \leqslant \mathrm{V}_{\text {in }} \leqslant \mathrm{V}_{\mathrm{IH}}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{EE}} \end{aligned}$	$-\overline{18}$	-	$+18$	mA

2. One output shorted at a time.
3. No $V_{E E}$ diode required.

TRANSITION TIMES (Unless otherwise noted, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{EE}}=12.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=450 \Omega$.
Transition times measured 10% to 90% and 90% to 10%)

Characteristic		Symbol	Min	Typ	Max	Unit
Transition Time, Low-to-High State Output		$\mathrm{t}_{\text {the }}$				$\mu \mathrm{s}$
	$(\mathrm{Rw}=10 \mathrm{k} \Omega$)		0.8		1.4	
	($\mathrm{RW}_{\mathrm{W}}=100 \mathrm{k} \Omega$)		8.0		14	
	($\mathrm{R}_{\mathrm{W}}=500 \mathrm{k} \Omega$)		40		70	
	$\left(\mathrm{R}_{\mathrm{W}}=1000 \mathrm{k} \Omega\right)$		80		140	
Transition Time, High-to-Low State Output		${ }_{\text {t }}^{\text {THL }}$				$\mu \mathrm{s}$
	$\begin{aligned} & \left(R_{W}=100 \mathrm{k} \Omega\right) \\ & \left(\mathrm{R}_{\mathrm{W}}=500 \mathrm{k} \Omega\right) \end{aligned}$		8.0 40		14 70	
	$\left(R_{W}=500 \mathrm{k} \Omega\right)$ $\left(\mathrm{R}_{\mathrm{W}}=1000 \mathrm{k} \Omega\right)$		80		140	

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
MC3488AD	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$	SOIC-8	98 Units / Rail
MC3488ADG		$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC3488ADR2		SOIC-8	1000 / Tape \& Reel
MC3488ADR2G		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	1000 / Tape \& Reel
MC3488AP1		PDIP-8	50 Units / Rail
MC3488AP1G		$\begin{gathered} \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 2. Test Circuit and Waveforms for Transition Times

Figure 3. Output Transition Times versus Wave Shape Resistor Value

Figure 4. Input/Output Characteristics versus Temperature

Figure 5. Output Current versus Output Voltage

Figure 6. Supply Current versus Temperature

Figure 7. Rise/Fall Time versus R $_{\text {Ws }}$

SCALE 1:1

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	\circ	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
2. V2OUT

V1OUT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND

GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE

1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#
4. DRAIN, \#2
5. DRAIN, \#2
6. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DA $\bar{S} I C \bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

