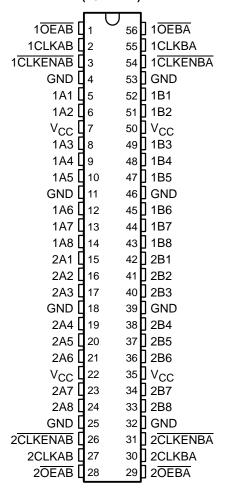
SCES011D - JULY 1995 - REVISED FEBRUARY 1999

- **Member of the Texas Instruments** Widebus™ Family
- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JESD 17**
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown Resistors**
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages

description

This 16-bit registered transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.


The SN74ALVCH16952 contains two sets of D-type flip-flops for temporary storage of data flowing in either direction. This device can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable (OEAB or OEBA) input low accesses the data on either port.

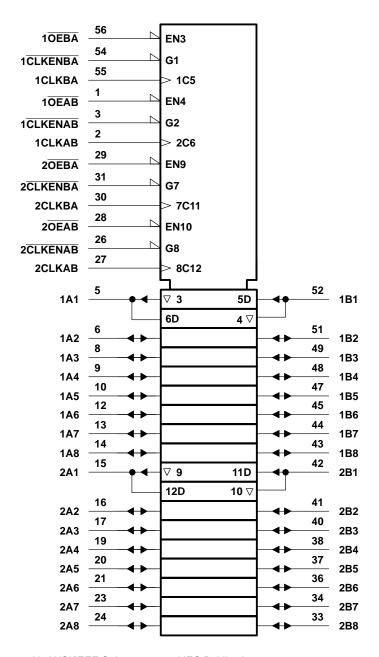
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16952 is characterized for operation from -40°C to 85°C.

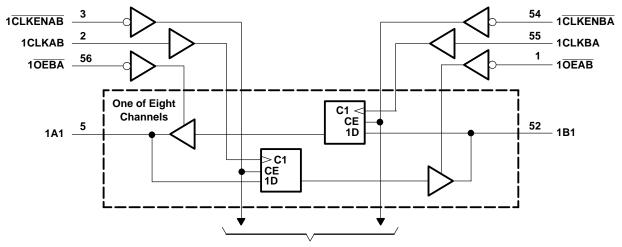
DGG, DGV, OR DL PACKAGE (TOP VIEW)

Widebus and EPIC are trademarks of Texas Instruments Incorporated.

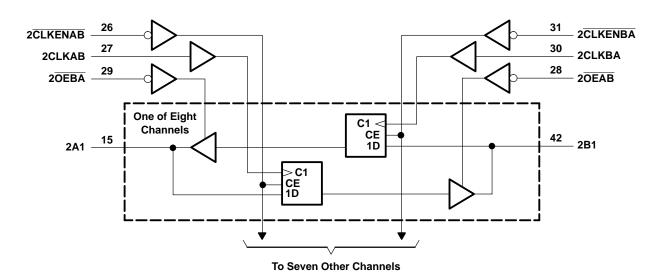

FUNCTION TABLE†

	OUTPUT			
CLKENAB	CLKAB	OEAB	В	
Н	Х	L	Χ	в ₀ ‡
Х	L	L	Χ	в ₀ ‡ в ₀ ‡
L	\uparrow	L	L	L
L	\uparrow	L	Н	Н
Х	X	Н	Χ	Z

[†] A-to-B data flow is shown; B-to-A data flow is similar, but uses CLKENBA, CLKBA, and OEBA.


[‡]Level of B before the indicated steady-state input conditions were established

logic symbol†



 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SN74ALVCH16952 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS

SCES011D - JULY 1995 - REVISED FEBRUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I : Except I/O ports (see Note 1)	0.5 V to 4.6 V
I/O ports (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	81°C/W
DGV package	86°C/W
DL package	
Storage temperature range, T _{sta}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed..
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		1.65	3.6	V	
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}			
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
	H High-level input voltage L Low-level input voltage Input voltage Output voltage High-level output current Low-level output current	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ _I	Input voltage		0	Vcc	V	
٧o	Output voltage		0	VCC	V	
		V _{CC} = 1.65 V		-4		
1		V _{CC} = 2.3 V		-12	mΛ	
ЮН		V _{CC} = 2.7 V		-12	mA	
		1.65 3.6				
		V _{CC} = 1.65 V		4		
l _{OL}	Low-level output current	V _{CC} = 2.3 V		12	mA	
		V _{CC} = 2.7 V		12		
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate	•		10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES011D – JULY 1995 – REVISED FEBRUARY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAI	RAMETER	TEST C	ONDITIONS	vcc	MIN	TYP†	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	2		
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.2			
		I _{OH} = -6 mA		2.3 V	2			
VOH		2.3 V	1.7			V		
	I _{OH} = -12 mA		2.7 V	2.2				
				3 V	2.4			
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
Vol	I _{OL} = 4 mA		1.65 V			0.45		
	$I_{OL} = 6 \text{ mA}$	2.3 V			0.4	V		
VOL		lo 12 mΔ	2.3 V			0.7	V	
	I _{OL} = 12 mA	2.7 V			0.4			
		I _{OL} = 24 mA	3 V			0.55		
Ιį		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V	1.65 V	-25				
		V _I = 0.7 V	2.3 V	45				
I _{I(hold)}		V _I = 1.7 V		2.3 V	-45			μΑ
I(hold)	V _I = 0.8 V		3 V	75				
		V _I = 2 V	3 V	- 75				
		$V_1 = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
l _{OZ} §		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
Icc		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	V _I = V _{CC} or GND		3.3 V		3.5		pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		8.5		pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency			¶		150		150		150	MHz
	Pulse duration	CLKEN high	¶		3.3		3.3		3.3		ns
t _w		CLK high or low	¶		3.3		3.3		3.3		
	Catua tima	Data before CLK	¶		1.7		1.9		1.5		
t _{SU} Setup time	CLKEN before CLK	¶		1.2		1		1		ns	
t _h Hold time	Hold time	Data after CLK	¶		0.6		0.6		0.8		ns
	noid time	CLKEN after CLK	¶		1.1		0.9		1.1		

This information was not available at the time of publication.

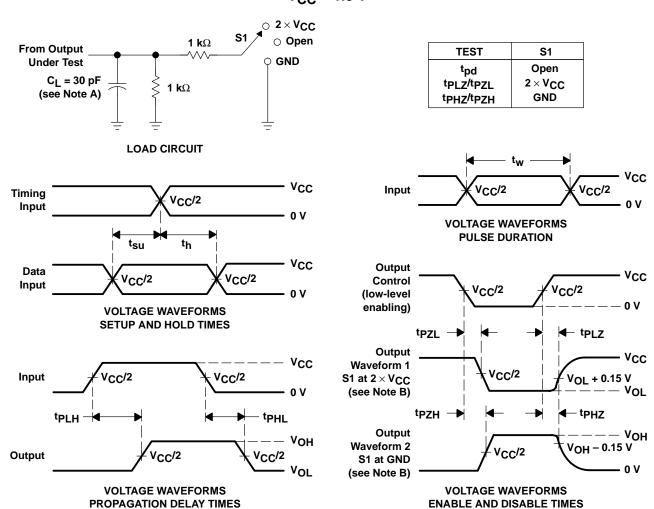
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[§] For I/O ports, the parameter IOZ includes the input leakage current.

SCES011D - JULY 1995 - REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(1141 01)	(001701)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		150		150		150		MHz
^t pd	CLK	A or B		†	1	4.1		4.6	1	3.9	ns
t _{en}	OEBA or OEAB	A or B		†	1	5.4		5.3	1	4.4	ns
^t dis	OEBA or OEAB	A or B		†	1	5.3		4.4	1.1	4	ns

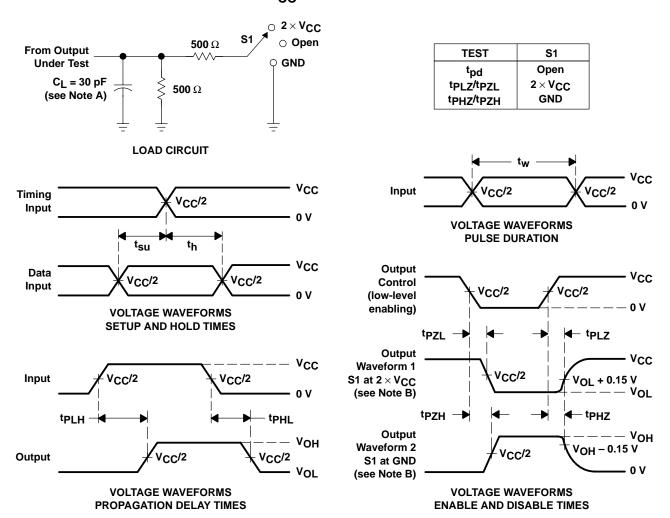

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

DADAMETED			PARAMETER TEST CONDITIONS				V _{CC} = 3.3 V	UNIT
PARAMETER		TEST CONDITIONS		TYP	TYP	TYP	UNIT	
	Power dissipation	Outputs enabled	C _L = 0,	f = 10 MHz	†	53	71	pF
C _{pd} (capacitance	Outputs disabled		I = IU WIHZ	†	34	40	рΓ

[†] This information was not available at the time of publication.

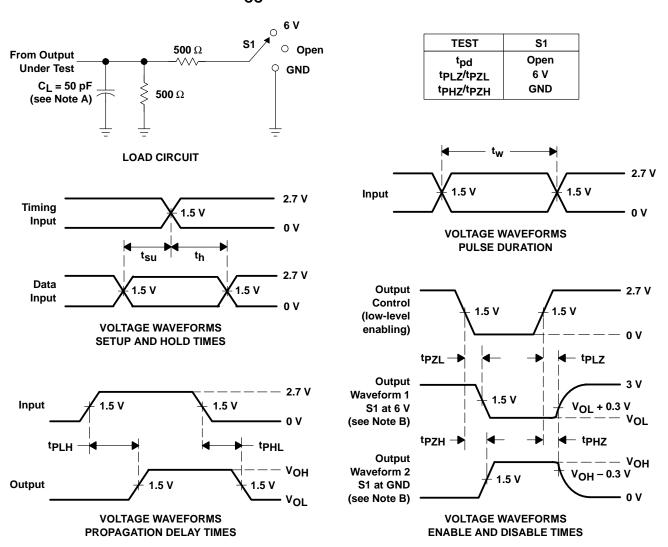
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V$



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpH7 are the same as tdis
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

