LSM1208472V Series 1208 SMD LED Package 3.0x2.0x1.3 mm SMD Chip LED LSM1208472V Yellow SMD LED. Low Profile Surface Mount LED # **Application** - · Automotive Dashboards - Backlighting - · Wearable and Portable Devices - Tail Lights - Status Indicators - Navigation Systems - · Medical Devices - Home and Smart Appliance - Status Indicator # **Key Features** - 3.0 x 2.0 mm (1208 package/3020 metric) Chip SMD LED - 1.3 mm in thickness - Wide viewing angle (120°) - · Cost-efficient solution for low-power and compact electronic equipment designs - · Ideal for special configurations for automated PC board assembly and space-sensitive applications - · Water clear lens - Compatible with infrared and vapor phase reflow solder process - · Compatible with automatic placement equipment - Moisture sensitivity level: MSL 5A - · Package 2,000 pieces per reel - · Compliant with RoHS # **Product Dimensions** ## Notes: - 1. All dimensions are in millimeters (inches) - 2. Tolerance is ± 0.1 mm [.004 in] unless otherwise noted - 3. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice. # **Product Specifications** #### Absolute Maximum Ratings (Ta=25°C) | Parameter | Symbol | Rating | Unit | |-------------------------|-----------------|------------|------| | Power Dissipation | Pd | 75 | mW | | Forward Current | I _F | 30 | mA | | Peak Forward Current *1 | I _{FP} | 100 | mA | | Operating Temperature | Topr | -40°℃~85°℃ | - | | Storage Temperature | Tstg | -40℃~100℃ | - | | Soldering Temperature | Tsol | See Page 5 | - | *1 Condition for I_{FP} is pulse of 1/10 duty and 3 msec width. # **Product Specifications** ## Electrical and optical characteristics(Ta=25°C) | Parameter | Symbol | Condition | Min. | Тур. | Max. | Unit | |--------------------------|-------------------|----------------------|------|------|------|------| | Forward Voltage | Vf | I _F =20mA | 1 | 2.1 | 2.6 | V | | Luminous Intensity | lv | I _F =20mA | ı | 18 | - | mcd | | Peak Wave Length | λр | I _F =20mA | - | 590 | - | nm | | Dominant Wave Length | λd | I _F =20mA | 586 | - | 594 | nm | | Spectral Line Half-width | Δλ | I _F =20mA | - | 15 | - | nm | | Reverse Current | I_R | V _R =5V | - | - | 10 | μΑ | | Veiwing Angle | 2θ _{1/2} | I _F =20mA | - | 120 | - | deg | # **Typical Electro-Optical Characteristics Curves** # Reliability Data #### **Reliability Test** | Classification | Test Item | Reference Standard | Test Conditions | Result | |-----------------------|---|---|--|--------| | Endurance
Test | Operation Life | MIL-STD-750:1026
MIL-STD-883:1005
JIS-C-7021 :B-1 | Connect with a power If=20mA Ta=Under room temperature Test time=1,000hrs | 0/20 | | | High
Temperature
High Humidity
Storage | MIL-STD-202:103B
JIS-C-7021 :B-11 | Ta=+65°C±5°C
RH=90%-95%
Test time=240hrs | 0/20 | | | High
Temperature
Storage | MIL-STD-883:1008
JIS-C-7021 :B-10 | High Ta=+85℃±5℃
Test time=1,000hrs | 0/20 | | | Low
Temperature
Storage | JIS-C-7021 :B-12 | Low Ta=-35°C±5°C
Test time=1,000hrs | 0/20 | | | Temperature
Cycling | MIL-STD-202:107D
MIL-STD-750:1051
MIL-STD-883:1010
JIS-C-7021 :A-4 | -35°C ~ $+25$ °C ~ $+85$ °C ~ $+25$ °C 60min 20min 60min 20min Test Time=5cycle | 0/20 | | Environmental
Test | Thermal Shock | MIL-STD-202:107D
MIL-STD-750:1051
MIL-STD-883:1011 | -35°C±5°C ~+85°C±5°C
20min 20min
Test Time=10cycle | 0/20 | | | Solder
Resistance | MIL-STD-202:201A
MIL-STD-750:2031
JIS-C-7021 :A-1 | Preheating: 140℃-160℃, within 2 minutes. Operation heating: 235℃(Max.), within 10seconds. (Max.) | 0/20 | # Judgment criteria of failure for the reliability | Measuring items | Symbol | Measuring conditions | Judgement criteria for failure | |--------------------|------------|----------------------|--------------------------------| | Forward voltage | $V_{F}(V)$ | I _F =20mA | Over Ux1.2 | | Reverse current | $I_R(uA)$ | V _R =5V | Over Ux2 | | Luminous intensity | lv (mcd) | I _F =20mA | Below SX0.5 | #### Notes: - 1. U means the upper limit specified characteristics. S means initial value. - 2. Measurement shall be taken between 2 hours and after the test pieces have been returned to normal ambient conditions after completion of each test. # **Recommended Reflow Soldering Profile** #### **IR-Reflow** - 1. Avoid any external stress applied to the resin while the LEDs are at high temperature, especially during soldering. - 2. Avoid rapid cooling or any excess vibration during temperature ramp-down process - 3. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs #### **Iron Soldering** 350°C within 3 Sec, one time only #### **Precautions** #### **Handling Precautions** Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED. - 1. Handle the component along the side surfaces by using forceps or appropriate tools. (pic.1) - 2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry. (pic.2, pic.3) - 3. Do not stack together assembled PCBs, containing exposed LEDs. The impact may scratch the silicone lens or damage the internal circuitry. (pic.4) - 4. The outer diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible. (pic.5) - 5. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup. (pic.5) - 6. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production. (pic.5) Pic.5 #### **Precautions** #### Notes for designing: Care must be taken to provide the current limiting resistor in the circuit to drive the LEDs within the rated figures. Also, caution should be taken not to overload LEDs with the instantaneous voltage at the turning ON and OFF of the circuit. When using the pulse drive care must be taken to keep the average current within the rated figures. Also, the circuit should be designed to be subjected to reverse voltage when turning off the LEDs. ## Storage: To avoid the absorption of moisture, it is recommended to solder LEDs as soon as possible after unpacking the sealed envelope. If the envelope is still packed, to store it in the environment as follows: - (1) Temperature: 5°C-30°C(41°F) Humidity: RH 60% Max. - (2) After this bag is opened, devices that will be applied to infrared reflow, vapor-phase reflow or equivalent soldering process must be: - a. Completed within 24 hours. - b. Stored at less than 20% RH. - (3) Devices require baking before mounting, if: 2a or 2b is not met. - (4) If baking is required, devices must be baked under below conditions: 48 hours at 60°C±5°C. # Tape and Reel Specifications Package: Products are packed in one bag of 2000pcs (one taping reel) and a label is attached on each bag. #### Tapping and packaging specifications (Units: mm) # **Compliances and Approvals**