- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process - ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) - Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17 - Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Typical V_{OHV} (Output V_{OH} Undershoot) 2 V at V_{CC} = 3.3 V, T_A = 25°C - Inputs Accept Voltages to 5.5 V - Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages ### description This 3-line to 8-line decoder/demultiplexer is designed for 2.7-V to 3.6-V V_{CC} operation. The SN74LVC138 is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder minimizes the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible. The conditions at the binary-select inputs and the three enable inputs select one of eight input lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. The SN74LVC138 is characterized for operation from −40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments Incorporated ### **FUNCTION TABLE** | ENABLE INPUTS | | SELECT INPUTS | | | | OUTPUTS | | | | | | | | |---------------|-----|---------------|---|---|---|---------|----|----|----|----|----|----|----| | G1 | G2A | G2B | С | В | Α | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | | Х | Н | Χ | Х | Χ | Χ | Н | Н | Н | Н | Н | Н | Н | Н | | Х | X | Н | Х | Χ | Χ | Н | Н | Н | Н | Н | Н | Н | Н | | L | X | X | Х | Χ | Χ | Н | Н | Н | Н | Н | Н | Н | Н | | Н | L | L | L | L | L | L | Н | Н | Н | Н | Н | Н | Н | | Н | L | L | L | L | Н | Н | L | Н | Н | Н | Н | Н | Н | | Н | L | L | L | Н | L | Н | Н | L | Н | Н | Н | Н | Н | | Н | L | L | L | Н | Н | Н | Н | Н | L | Н | Н | Н | Н | | Н | L | L | Н | L | L | Н | Н | Н | Н | L | Н | Н | Н | | Н | L | L | Н | L | Н | Н | Н | Н | Н | Н | L | Н | Н | | Н | L | L | Н | Н | L | Н | Н | Н | Н | Н | Н | L | Н | | Н | L | L | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | L | # logic symbols (alternatives)† [†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. ## logic diagram (positive logic) ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | –0.5 V to 6.5 V | |--|-------------|--| | Input voltage range, V _I (see Note 1) | | $\dots \dots -0.5 \text{ V to } 6.5 \text{ V}$ | | Output voltage range, V _O (see Notes 1 and 2) | | $-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$ | | Input clamp current, I _{IK} (V _I < 0) | | –50 mA | | Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) | | ±50 mA | | Continuous output current, I_O ($V_O = 0$ to V_{CC}) | | ±50 mA | | Continuous current through V _{CC} or GND | | ±100 mA | | Maximum power dissipation at $T_A = 55^{\circ}$ C (in still air): (see Note 3) | D package . | 1.3 W | | | DB package | 0.55 W | | | PW package | 0.5 W | | Storage temperature range, T _{stg} | | −65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. This value is limited to 4.6 V maximum. - 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B. ## recommended operating conditions (see Note 4) | | | | MIN | MAX | UNIT | |-----------------|--|----------------------------------|-----|-----|------| | V-00 | Operating | | 2 | 3.6 | V | | Vcc | Supply voltage | Data retention only | 1.5 | | v | | VIH | High-level input voltage | V _{CC} = 2.7 V to 3.6 V | 2 | | V | | V _{IL} | Low-level input voltage | V _{CC} = 2.7 V to 3.6 V | | 0.8 | V | | VI | Input voltage | | 0 | 5.5 | V | | VO | Output voltage | | 0 | VCC | V | | la | High level output ourrent | V _{CC} = 2.7 V | | -12 | mA | | ЮН | High-level output current $V_{CC} = 3 \text{ V}$ | V _{CC} = 3 V | | -24 | IIIA | | lo. | Low lovel output ourrent | V _{CC} = 2.7 V | | 12 | mA | | IOL | Low-level output current | V _{CC} = 3 V | | 24 | IIIA | | Δt/Δν | Input transition rise or fall rate | | 0 | 10 | ns/V | | TA | Operating free-air temperature | | -40 | 85 | °C | NOTE 4: Unused inputs must be held high or low to prevent them from floating. # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | v _{cc} † | MIN TYP‡ | MAX | UNIT | | | |-----------------|--|-------------------|----------------------|------|------|--|--| | | $I_{OH} = -100 \mu\text{A}$ | MIN to MAX | V _{CC} −0.2 | | | | | | \/a | Jan 12 mA | 2.7 V | 2.2 | | ٧ | | | | VOH | IOH = - 12 mA | 3 V | 2.4 | | | | | | | $I_{OH} = -24 \text{ mA}$ | 3 V | 2.2 | | | | | | | I _{OL} = 100 μA | MIN to MAX | | 0.2 | 2 | | | | V _{OL} | I _{OL} = 12 mA | 2.7 V | | 0.4 | V | | | | | I _{OL} = 24 mA | 3 V | | 0.55 | | | | | lį | V _I = 5.5 V or GND | 3.6 V | | ±5 | μΑ | | | | ICC | $V_I = V_{CC}$ or GND, $I_O = 0$ | 3.6 V | | 10 | μΑ | | | | ∆lcc | One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND | 2.7 V to 3.6 V | | 500 | μΑ | | | | Co | $V_O = V_{CC}$ or GND | 3.3 V | 5 | | pF | | | For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions. # switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 2.7 V | | UNIT | |----------------------|-----------------|----------------|------------------------------------|-----|-------------------------|-----|------| | | (INFOT) | (001F01) | MIN | MAX | MIN | MAX | | | | A or B or C | Y | 1 | 6.7 | | 7.9 | ns | | ^t pd | G2A or G2B | | 1 | 6.5 | | 7.4 | | | | G1 | | 1 | 5.8 | | 6.4 | | | t _{sk(o)} § | | | | 1 | | | ns | Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested. ## operating characteristics, V_{CC} = 3.3 V, T_A = 25°C | | PARAMETER | TEST CON | TYP | UNIT | | |-----------------|-------------------------------|------------------------|------------|------|----| | C _{pd} | Power dissipation capacitance | $C_L = 50 \text{ pF},$ | f = 10 MHz | 27 | pF | [‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5$ ns. $t_f \leq 2.5$ ns. - D. The outputs are measured one at a time with one transition per measurement. - E. tpLZ and tpHZ are the same as tdis. - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. tpLH and tpHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated