(Protected by US Patent 10752492B2)
Product Description
The MEMS Ultra-Mini Series Fiber Optical Switch uses a patented thermal activated micromirror, moving-in and-out optical paths, uniquely featuring high extinction, high stability over a wide temperature range, and small size. The thermal MEMS is insensitive to moisture and ESD and has no short and long-term drifts, uniquely providing a highreliability platform for over 25 years of continuous operation. The device also functions as a high-performance variable attenuator in which the output light intensity can be continuously controlled. The ultra-mini series switches are configured in 1x1, Dual 1x1, Quad $1 \times 1,1 \times 2$, Dual 1×2, Full 2×2, and Dual Full 2×2 with single or multimode fibers. The Ultra-Mini switches are Telcordia GR1221 qualified.
Two pin layouts and 5 V are available for retrofit. Agiltron provides driving circuit design and customer integrations. A low-cost and convenient USB driver is also available.

Performance Specifications

[1]. Excluding connectors.
[2]. Multimode IL measured @ Light Source CPR < 14dB.
[3]. Dual band, and Dual 1x2, Full 2x2, Dual Full 2×2.
[4]. PM fiber version only in 1×1 and 1×2 configuration.
[5]. Lower temperature version is available, please call us.

MEMS Ultra-Mini 1x2, 2x2 Fiber Optical Switch

Mechanical Dimension (unit: mm)

Package 1: For $1 \sim 4$ bare fibers and $=2$ fibers with 900 um loose tube.

Package 2: For $=3$ fibers with 900 um loose tube.

Package 3: Add Adapting PCB version, for $1 \sim 4$ bare fibers and $=2$ fibers with 900 um loose tube.

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

MEMS Ultra-Mini 1x2, 2x2 Fiber Optical Switch

Electrical Driving Requirements

Status	Optical Path				Pin No.	
	1x2	Dual 1X2	Full 2×2	Dual Full 2×2	Pin 2	Pin 3
Status I	Port $1 \rightarrow 2$	Port $1 \rightarrow 1$ Port 2 $\rightarrow 2$ '	Port $1 \rightarrow 2$ Port $4 \rightarrow 3$	Port $1 \rightarrow 1^{\prime}$, Port $2 \rightarrow 2^{\prime}$ Port $3 \rightarrow 3^{\prime}$, Port $4 \rightarrow 4^{\prime}$	0	$+\mathrm{V}^{[1]}$
Status II	Port $1 \rightarrow 3$	Port $1 \rightarrow 4$ Port $2 \rightarrow 3$ '	Port $1 \rightarrow 3$ Port $4 \rightarrow 2$	Port $1 \rightarrow 4$ ', Port $2 \rightarrow 3^{\prime}$ Port $3 \rightarrow 2^{\prime}$, Port $4 \rightarrow 1^{\prime}$	0	0

[1]. +V: $3.8 \sim 4.2 \mathrm{VDC} @ \mathrm{~T}<=45^{\circ} \mathrm{C}$ operation; $3.8 \sim 4.0 \mathrm{VDC} @ \mathrm{~T}>45^{\circ} \mathrm{C}$ operation.

Pushbutton/USB Driver

Functional Diagram

1×1

Dual, Quad 1x1

Full 2×2

1×2

MEMS Ultra-Mini 1×2, 2×2
 Fiber Optical Switch

Typical Switching Rise/Fall at $-40^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$

$-40{ }^{\circ} \mathrm{C}$

$+70{ }^{\circ} \mathrm{C}$

Driving Circuit Recommendation

10^{9} Switching Cycle Test

We have tested MEMS 1×2 switch at the resonant frequency $\sim 300 \mathrm{~Hz}$ for more than 40 days, as shown in the attachment, which corresponding over 10^{9} switching cycles. The measurements show little changes in Insertion loss, Cross Talk, Return loss, etc., all parameters are within our specs.

MEMS Ultra-Mini $1 \times 2,2 \times 2$ Fiber Optical Switch

Vibration ($40-1200 \mathrm{~Hz}$) Test Results

Test condition:

1. Acceleration: 1 g from 40 Hz to 100 Hz , and then from 100 Hz to 1200 Hz , from 1 g to 2 g
2. Vibration direction: Z axis of MSOA SN\# U03081
3. Measure fiber optical insertion loss change

Results:

1. Resonation frequency: $\sim 976 \mathrm{~Hz}$, max IL change $\sim 30 \mathrm{~dB}$
2. IL change $<0.1 \mathrm{~dB}$ for frequency $<200 \mathrm{~Hz}, 0.1-0.2 \mathrm{~dB}$ for frequency $200-500 \mathrm{~Hz}$.

MSOA-U03081-Z_0V_40-100Hz_1g-1000Hz-2g_1 oct/min

MEMS Ultra-Mini $1 \times 2,2 \times 2$ Fiber Optical Switch

Ordering Information

	$\square \square$	\square	2	\square	\square	\square	\square	\square
Prefix	Type	Wavelength	Switch	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
MISW- ${ }^{[1]}$ MIDU- MIQU- MIPM- [4]	$\begin{aligned} & 1 \times 1 \mathrm{~N} / \mathrm{T}^{[5]}=1 \mathrm{~T} \\ & 1 \times 1 \mathrm{~N} / \mathrm{O}^{[6]}=10 \\ & 1 \times 2=12 \\ & 2 \times 1=21 \\ & 2 \times 2=22 \\ & \text { Special }=00 \end{aligned}$	$\begin{aligned} & 1260 \sim 1620=B \\ & 1310=3 \\ & 1550=5 \\ & 850 \text { \& } 1310=A \\ & \text { Special=0 } \end{aligned}$	Nonlatching=2	Package $1=1^{[7]}$ Package 2=2 $2^{[8]}$ Package 3=3 ${ }^{[9]}$ Package 4=4 ${ }^{[10]}$ Special=0	$\begin{aligned} & \text { SMF-28=1 } \\ & \text { MM 50/125=5 } \\ & \text { MM 62.5/125=6 } \\ & \text { PM1550=B } \\ & \text { PM1310=D } \\ & \text { PM980=E } \\ & \text { PM850=F } \\ & \text { Special }=0 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Bare fiber=1 } \\ 900 \text { um tube=3 } \\ \text { Special=0 } \end{array}$	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC=7 Duplex LC=8 MTP=9 Special=0

[1]. MISW: MEMS U--MINI $1 \times 1,1 \times 2,2 \times 2$ SWITCH.
[2]. MIDU: MEMS U--MINI DUAL $1 \times 1,1 \times 2,2 \times 2$ Switch.
[3]. MIQU: MEMS U--MINI QUAD 1×1.
[4]. MIPM: MEMS U--MINI $1 \times 1,1 \times 2$ PM Switch.
[5]. N/T: MEMS U--MINI Non-Latching 1x1 Switch, Normally Transparence.
[6]. N/O: MEMS U--MINI Non-Latching 1×1 Switch, Normally Opaque.
[7]. Package 1 (see Drawing) is for $1 \sim 4$ bare fibers and ≤ 2 fibers with 900 um loose tube.
[8]. Package 2 (see Drawing) is for ≥ 3 fibers with 900 um loose tube.
[9]. Package 3 (see Drawing) is for add an Adapting PCB version.
[10]. Package 4 is for add Adapting PCB and 5 VDC control version.
NOTE: Opaque means the light is blocked when no electrical power is present.

