

F1-2 PACK SIC MOSFET Module

Product Preview

NXH020P120MNF1PTG, NXH020P120MNF1PG

The NXH020P120MNF1 is a power module containing an 20 m Ω /1200 V SiC MOSFET half bridge and a thermistor in an F1 package.

Features

- 20 mΩ/1200 V SiC MOSFET Half Bridge
- Thermistor
- Options with Pre-applied Thermal Interface Material (TIM) and without Pre-applied TIM
- Press-fit Pins

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

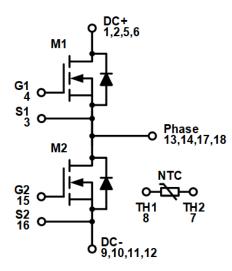
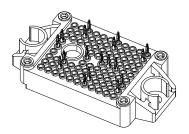
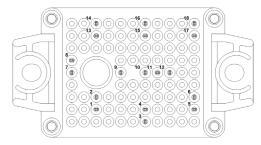



Figure 1. NXH020P120MNF1 Schematic Diagram

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.


PIM18 33.8x42.5 (PRESS FIT) CASE 180BW

MARKING DIAGRAM

NXH020P120MNF1PTG= Specific Device Code
NXH020P120MNF1PG = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

PIN CONNECTIONS

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	DC+	DC Positive Bus connection
2	DC+	DC Positive Bus connection
3	S1	Q1 Kelvin Emitter (High side switch)
4	G1	Q1 Gate (High side switch)
5	DC+	DC Positive Bus connection
6	DC+	DC Positive Bus connection
7	TH2	Thermistor Connection 2
8	TH1	Thermistor Connection 1
9	DC-	DC Negative Bus connection
10	DC-	DC Negative Bus connection
11	DC-	DC Negative Bus connection
12	DC-	DC Negative Bus connection
13	PHASE	Center point of half bridge
14	PHASE	Center point of half bridge
15	G2	Q2 Gate (Low side switch)
16	S2	Q2 Kelvin Emitter (High side switch)
17	PHASE	Center point of half bridge
18	PHASE	Center point of half bridge

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET			
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V_{GS}	+25/-15	V
Continuous Drain Current @ T _C = 80°C (T _J = 175°C)	I _D	51	А
Pulsed Drain Current (T _J = 175°C)	I _{Dpulse}	102	Α
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	119	W
Short Circuit Withstand Time @ V_{GE} = -5V/20 V, V_{CE} = 600 V, T_{J} \leq 150 $^{\circ}C$	T _{sc}	TBD	μs
Minimum Operating Junction Temperature	T_{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 s, 60 Hz	V _{is}	4800	V_{RMS}
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Operating parameters.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS				•		
Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 400 μA	V _{(BR)DSS}	1200	-	-	V
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 1200 V	I _{DSS}	-	_	200	μΑ
Drain-Source On Resistance	V_{GS} = 20 V, I_{D} = 50 A, T_{J} = 25°C	R _{DS(ON)}	=	20	30	mΩ
	V _{GS} = 20 V, I _D = 50 A, T _J = 125°C		=	28	=	
	V _{GS} = 20 V, I _D = 50 A, T _J = 150°C		=	31	=	
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	V _{GS(TH)}	1.8	2.81	4.3	V
Gate Leakage Current	$V_{GS} = -10/20 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	-500	=	500	nA
Internal Gate Resistance		R_{G}		1.1		Ω
Input Capacitance	ance $V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		-	2420	-	pF
Reverse Transfer Capacitance		C _{RSS}	=	19	=	
Output Capacitance		C _{OSS}	=	193	=	
C _{OSS} Stored Energy	V _{DS} = 0 V to 800 V, V _{GS} = 0 V	Eoss	=	124	=	μJ
Total Gate Charge	$V_{DS} = 800 \text{ V}, V_{GS} = 20 \text{ V}, I_D = 50 \text{ A}$	Q _{G(TOTAL)}	=	213.5	=	nC
Gate-Source Charge		Q _{GS}	-	50	_	nC
Gate-Drain Charge		Q_{GD}	=	61.2	=	nC
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	=	51	=	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 50 \text{ A}$	t _r	-	10	-	
Turn-off Delay Time	$V_{GS} = -5 \text{ V/18 V}, R_G = 2.7 \Omega$	t _{d(off)}	_	112	_	1
Fall Time		t _f	-	8.6	_	
Turn-on Switching Loss per Pulse		E _{ON}	_	0.18	_	mJ
Turn off Switching Loss per Pulse		E _{OFF}	_	0.43	_	
Turn-on Delay Time	T _J = 150°C	t _{d(on)}	=	48	=	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 50 \text{ A}$	t _r	=	8.9	=	
Turn-off Delay Time	$V_{GS} = -5 \text{ V/18 V}$, $R_G = 2.7 \Omega$	t _{d(off)}	=	120	-	
Fall Time	1	t _f	=	9.8	=	
Turn-on Switching Loss per Pulse	1	E _{ON}	=	0.21	=	mJ
Turn off Switching Loss per Pulse		E _{OFF}	=	0.46	-	
Diode Forward Voltage	I _D = 50 A, T _J = 25°C	V_{SD}	=	3.93	6	V
	I _D = 50 A, T _J = 150°C		-	3.39	_	
Reverse Recovery Time	T _J = 25°C	t _{rr}	_	19	_	ns
Reverse Recovery Charge	V _{DS} = 600 V, I _D = 50 A	Q _{rr}	_	517	_	nC
Peak Reverse Recovery Current	$V_{GS} = -5 \text{ V}/18 \text{ V}, R_{G} = 2.7 \Omega$	I _{RRM}	-	43	_	Α
Peak Rate of Fall of Recovery Current		di/dt	_	5326	_	A/μs
Reverse Recovery Energy		E _{rr}	=	278	_	μJ
Reverse Recovery Time	T _J = 150°C	t _{rr}	-	24	-	ns
Reverse Recovery Charge	V _{DS} = 600 V, I _D = 50 A	Q _{rr}	_	1312	_	μC
Peak Reverse Recovery Current	$V_{GS} = -5 \text{ V/18 V}$, $R_G = 2.7 \Omega$	I _{RRM}	=	88	=	Α
Peak Rate of Fall of Recovery Current		di/dt	=	10774	=	A/μs
Reverse Recovery Energy	1	E _{rr}	=	718	=	μJ
Thermal Resistance - chip-to-case	M1, M2	R _{thJC}	_	0.4495		°C/W
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2 Mil _2%, A = 2.8 W/mK	R _{thJH}	-	0.7971	_	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
THERMISTOR CHARACTERIST	THERMISTOR CHARACTERISTICS					
Nominal resistance	T = 25°C	R ₂₅	=	5	=	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	=	457	=	Ω
Deviation of R25		ΔR/R	-3	-	3	%
Power dissipation		P_{D}	=	50	=	mW
Power dissipation constant			=	5	=	mW/K
B-value	B(25/50), tolerance ±3%		-	3375	-	K
B-value	B(25/100), tolerance ±3%		-	3455	-	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH020P120MNF1PG	NXH020P120MNF1PG	F1-2PACK: Case 180BW Press-fit Pins (Pb – Free and Halide – Free)	28 Units / Blister Tray
NXH020P120MNF1PTG	NXH020P120MNF1PTG	F1-2PACK: Case 180BW Press-fit Pins with pre – applied thermal interface material (TIM) (Pb – Free and Halide – Free)	28 Units / Blister Tray

TYPICAL CHARACTERISTICS

SiC MOSFET (M1, M2)

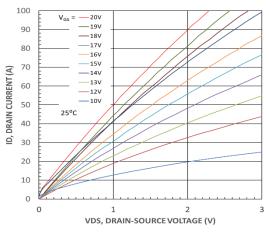


Figure 2. MOSFET Typical Output Characteristics

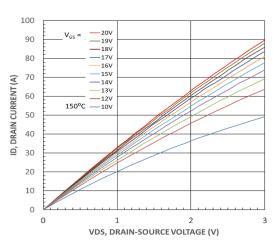


Figure 4. MOSFET Typical Output Characteristics

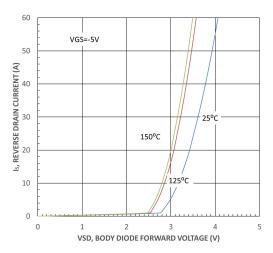


Figure 6. Body Diode Forward Characteristics

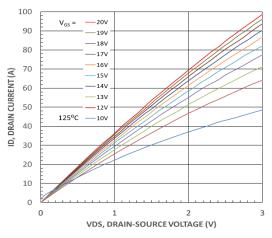


Figure 3. MOSFET Typical Output Characteristics

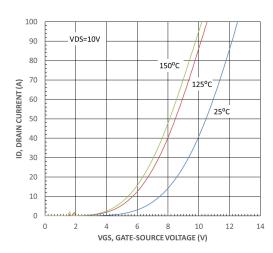


Figure 5. MOSFET Typical Transfer Characteristics

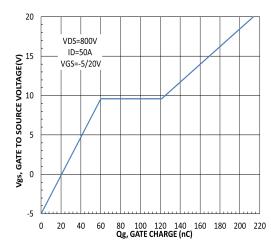


Figure 7. Gate-to-Source Voltage vs. Total Charge

TYPICAL CHARACTERISTICS

SiC MOSFET (M1, M2)

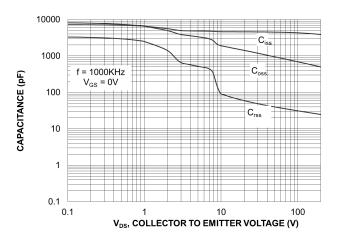


Figure 8. Capacitance vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS

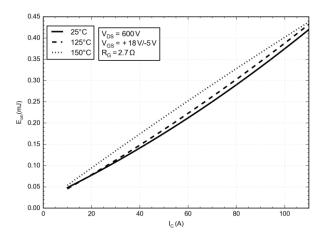


Figure 9. Typical Switching Loss Eon vs. IC

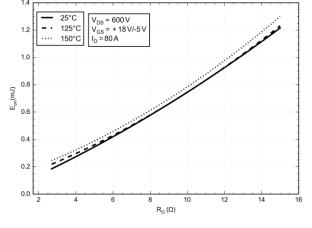


Figure 10. Typical Switching Loss Eon vs. R_G

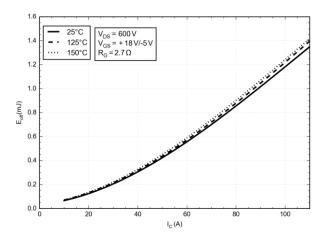


Figure 11. Typical Switching Loss Eoff vs. IC

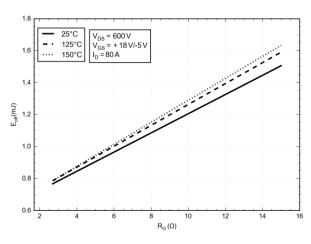


Figure 12. Typical Switching Loss Eoff vs. R_G

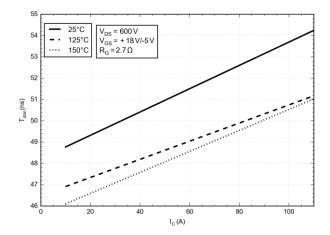


Figure 13. Typical Turn-On Switching Tdon vs. IC

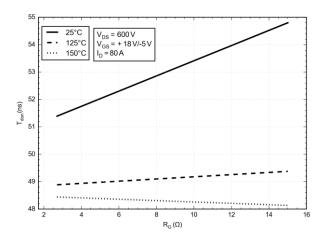


Figure 14. Typical Turn–On Switching Tdon vs. $\rm R_{\rm G}$

TYPICAL CHARACTERISTICS

Figure 15. Typical Turn-Off Switching Tdon vs. IC

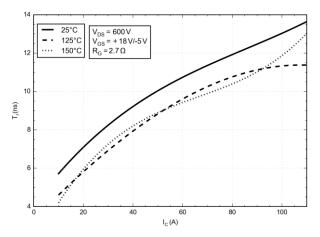


Figure 17. Typical Turn-On Switching Tr vs.

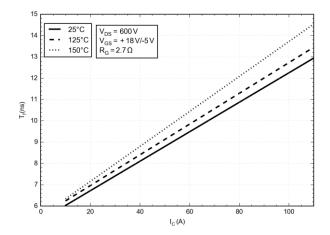


Figure 19. Typical Turn-Off Switching Tf vs. IC

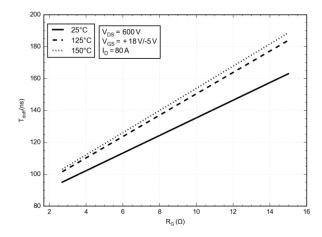


Figure 16. Typical Turn-Off Switching Tdon vs. R_G

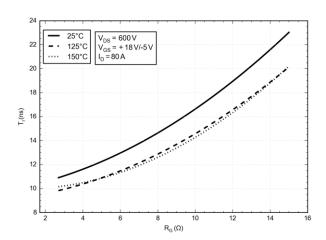


Figure 18. Typical Turn-On Switching Tr vs. R_G

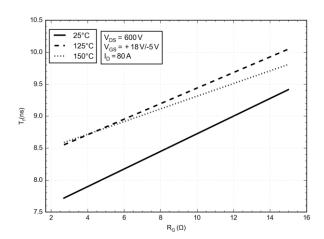


Figure 20. Typical Turn–Off Switching Tf vs. $\rm R_{\rm G}$

TYPICAL CHARACTERISTICS

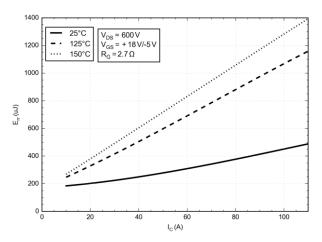


Figure 21. Typical Reverse Recovery Energy

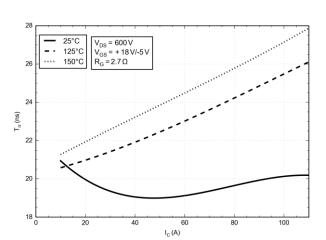


Figure 23. Typical Reverse Recovery Time vs.

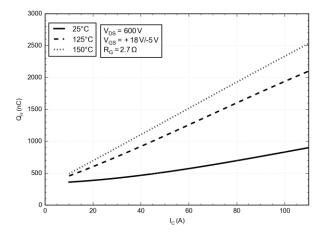


Figure 25. Typical Reverse Recovery Charge vs. IC

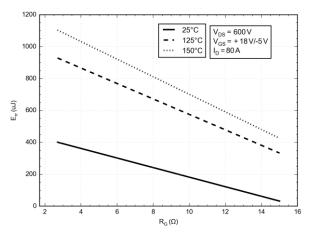


Figure 22. Typical Reverse Recovery Energy vs. R_G

Figure 24. Typical Reverse Recovery Time vs. $R_{\rm G}$

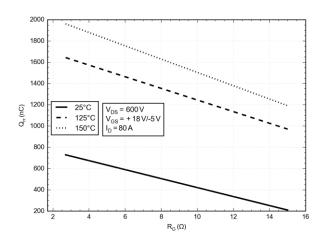


Figure 26. Typical Reverse Recovery Charge vs. $R_{\rm G}$

TYPICAL CHARACTERISTICS

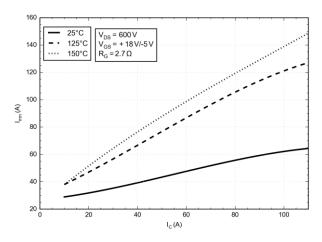
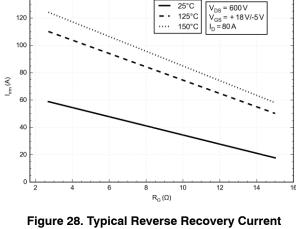



Figure 27. Typical Reverse Recovery Current

vs. R_G

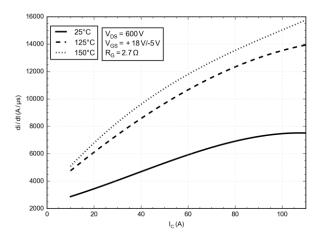


Figure 29. Typical di/dt vs. IC

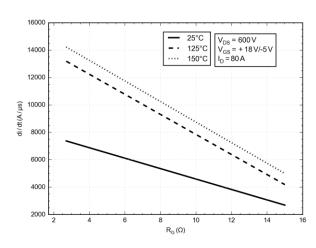


Figure 30. Typical di/dt vs. R_G

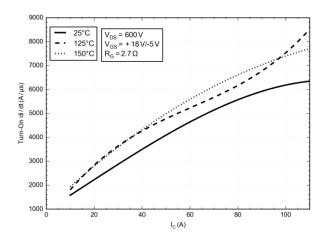


Figure 31. di/dt ON vs. IC

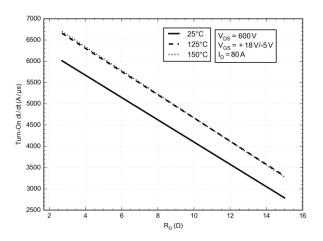


Figure 32. di/dt ON vs. R_G

TYPICAL CHARACTERISTICS

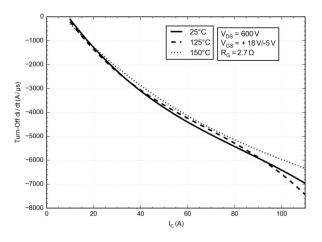


Figure 33. di/dt OFF vs. IC

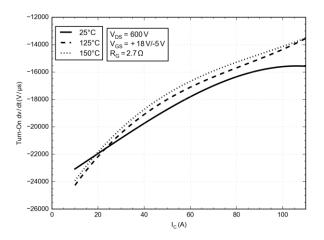


Figure 35. dv/dt ON vs. IC

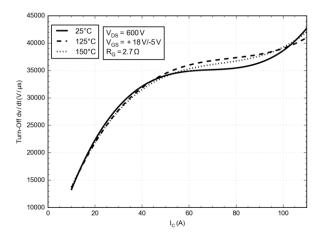


Figure 37. dv/dt OFF vs. IC

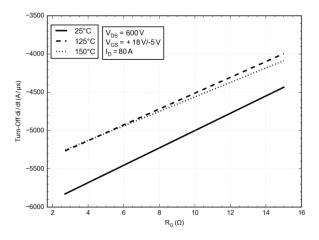


Figure 34. di/dt OFF vs. R_G

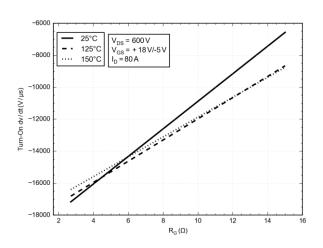


Figure 36. dv/dt ON vs. R_G

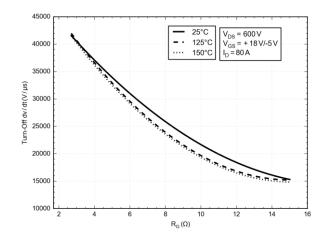
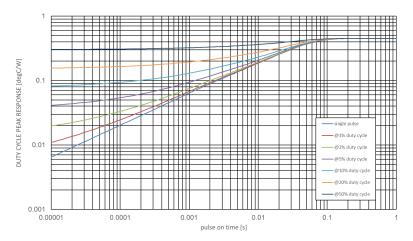


Figure 38. dv/dt OFF vs. R_G

TYPICAL CHARACTERISTICS

SiC MOSFET (M1/M2)



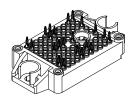
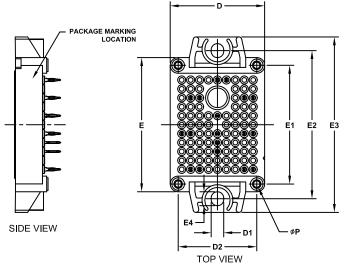

Figure 39. MOSFET Junction-to-Case Transient Thermal Impedance

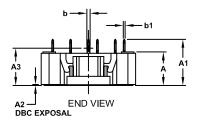
Table 1. FOSTER NETWORKS - M1, M2

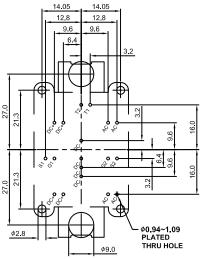
Foster		M1		M2
Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)
1	0.017325	0.008638	0.026614	0.005297
2	0.022329	0.043836	0.014274	0.064284
3	0.016565	0.107000	0.006208	0.315671
4	0.041616	0.125888	0.075096	0.078283
5	0.338223	0.099402	0.338851	0.124492


Table 2. CAUER NETWORKS - M1, M2

Cauer	M1		M2		
Element #	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)	
1	0.034247	0.006027	0.038327	0.004380	
2	0.073342	0.018048	0.072292	0.025045	
3	0.106345	0.041141	0.118744	0.030910	
4	0.100786	0.040901	0.069379	0.066961	
5	0.121340	0.076490	0.162299	0.074739	

PIM18 33.8x42.5 (PRESS FIT) CASE 180BW ISSUE B


DATE 30 APR 2021



NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. PIN POSITION TOLERANCE IS ± 0.4mm

	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
Α	11.65	12.00	12,35	
A1	16.00	16.50	17.00	
A2	0.00	0.35	0.60	
A3	12.85	13.35	13.85	
b	1.15	1.20	1.25	
b1	0.59	0.64	0.69	
D	33.50	33.80	34.10	
D1	4.40	4.50	4.60	
D2	27.95	28.10	28.25	
Е	47.70	48.00	48.30	
E1	42.35	42.50	42.65	
E2	52.90	53.00	53.10	
E3	62.30	62.80	63.30	
E4	4.90	5.00	5.10	
Р	2.20	2.30	2.40	

GENERIC MARKING DIAGRAM*

RECOMMENDED MOUNTING PATTERN

XXXXX = Specific Device Code AT = Assembly & Test Site Code

YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON19723H	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PIM18 33.8x42.5 (PRESS F	PIM18 33.8x42.5 (PRESS FIT)	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative