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Register 26.17. P2MASK: Port 2 Mask

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0x84

Table 26.20. P2MASK Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Mask Value.

0: P2.7 pin logic value is ignored and will not cause a port mismatch event.
1: P2.7 pin logic value is compared to P2MAT.7.

6 B6 Port 2 Bit 6 Mask Value.

0: P2.6 pin logic value is ignored and will not cause a port mismatch event.
1: P2.6 pin logic value is compared to P2MAT.6.

5 B5 Port 2 Bit 5 Mask Value.

0: P2.5 pin logic value is ignored and will not cause a port mismatch event.
1: P2.5 pin logic value is compared to P2MAT.5.

4 B4 Port 2 Bit 4 Mask Value.

0: P2.4 pin logic value is ignored and will not cause a port mismatch event.
1: P2.4 pin logic value is compared to P2MAT.4.

3 B3 Port 2 Bit 3 Mask Value.

0: P2.3 pin logic value is ignored and will not cause a port mismatch event.
1: P2.3 pin logic value is compared to P2MAT.3.

2 B2 Port 2 Bit 2 Mask Value.

0: P2.2 pin logic value is ignored and will not cause a port mismatch event.
1: P2.2 pin logic value is compared to P2MAT.2.

1 B1 Port 2 Bit 1 Mask Value.

0: P2.1 pin logic value is ignored and will not cause a port mismatch event.
1: P2.1 pin logic value is compared to P2MAT.1.

0 B0 Port 2 Bit 0 Mask Value.

0: P2.0 pin logic value is ignored and will not cause a port mismatch event.
1: P2.0 pin logic value is compared to P2MAT.0.
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Register 26.18. P2MAT: Port 2 Match

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0xF; SFR Address: 0x85

Table 26.21. P2MAT Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Match Value.

0: P2.7 pin logic value is compared with logic LOW.
1: P2.7 pin logic value is compared with logic HIGH.

6 B6 Port 2 Bit 6 Match Value.

0: P2.6 pin logic value is compared with logic LOW.
1: P2.6 pin logic value is compared with logic HIGH.

5 B5 Port 2 Bit 5 Match Value.

0: P2.5 pin logic value is compared with logic LOW.
1: P2.5 pin logic value is compared with logic HIGH.

4 B4 Port 2 Bit 4 Match Value.

0: P2.4 pin logic value is compared with logic LOW.
1: P2.4 pin logic value is compared with logic HIGH.

3 B3 Port 2 Bit 3 Match Value.

0: P2.3 pin logic value is compared with logic LOW.
1: P2.3 pin logic value is compared with logic HIGH.

2 B2 Port 2 Bit 2 Match Value.

0: P2.2 pin logic value is compared with logic LOW.
1: P2.2 pin logic value is compared with logic HIGH.

1 B1 Port 2 Bit 1 Match Value.

0: P2.1 pin logic value is compared with logic LOW.
1: P2.1 pin logic value is compared with logic HIGH.

0 B0 Port 2 Bit 0 Match Value.

0: P2.0 pin logic value is compared with logic LOW.
1: P2.0 pin logic value is compared with logic HIGH.
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Register 26.19. P2: Port 2 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = ALL; SFR Address: 0xA0 (bit-addressable)

Table 26.22. P2 Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Latch.

0: P2.7 is low. Set P2.7 to drive low.
1: P2.7 is high. Set P2.7 to drive or float high.

6 B6 Port 2 Bit 6 Latch.

0: P2.6 is low. Set P2.6 to drive low.
1: P2.6 is high. Set P2.6 to drive or float high.

5 B5 Port 2 Bit 5 Latch.

0: P2.5 is low. Set P2.5 to drive low.
1: P2.5 is high. Set P2.5 to drive or float high.

4 B4 Port 2 Bit 4 Latch.

0: P2.4 is low. Set P2.4 to drive low.
1: P2.4 is high. Set P2.4 to drive or float high.

3 B3 Port 2 Bit 3 Latch.

0: P2.3 is low. Set P2.3 to drive low.
1: P2.3 is high. Set P2.3 to drive or float high.

2 B2 Port 2 Bit 2 Latch.

0: P2.2 is low. Set P2.2 to drive low.
1: P2.2 is high. Set P2.2 to drive or float high.

1 B1 Port 2 Bit 1 Latch.

0: P2.1 is low. Set P2.1 to drive low.
1: P2.1 is high. Set P2.1 to drive or float high.

0 B0 Port 2 Bit 0 Latch.

0: P2.0 is low. Set P2.0 to drive low.
1: P2.0 is high. Set P2.0 to drive or float high.

Notes:
1. Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.
2. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.
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Register 26.20. P2MDIN: Port 2 Input Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0xF; SFR Address: 0xEE

Table 26.23. P2MDIN Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Input Mode.

0: P2.7 pin is configured for analog mode.
1: P2.7 pin is configured for digital mode.

6 B6 Port 2 Bit 6 Input Mode.

0: P2.6 pin is configured for analog mode.
1: P2.6 pin is configured for digital mode.

5 B5 Port 2 Bit 5 Input Mode.

0: P2.5 pin is configured for analog mode.
1: P2.5 pin is configured for digital mode.

4 B4 Port 2 Bit 4 Input Mode.

0: P2.4 pin is configured for analog mode.
1: P2.4 pin is configured for digital mode.

3 B3 Port 2 Bit 3 Input Mode.

0: P2.3 pin is configured for analog mode.
1: P2.3 pin is configured for digital mode.

2 B2 Port 2 Bit 2 Input Mode.

0: P2.2 pin is configured for analog mode.
1: P2.2 pin is configured for digital mode.

1 B1 Port 2 Bit 1 Input Mode.

0: P2.1 pin is configured for analog mode.
1: P2.1 pin is configured for digital mode.

0 B0 Port 2 Bit 0 Input Mode.

0: P2.0 pin is configured for analog mode.
1: P2.0 pin is configured for digital mode.

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
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Register 26.21. P2MDOUT: Port 2 Output Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xDD

Table 26.24. P2MDOUT Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Output Mode.

0: P2.7 output is open-drain.
1: P2.7 output is push-pull.

6 B6 Port 2 Bit 6 Output Mode.

0: P2.6 output is open-drain.
1: P2.6 output is push-pull.

5 B5 Port 2 Bit 5 Output Mode.

0: P2.5 output is open-drain.
1: P2.5 output is push-pull.

4 B4 Port 2 Bit 4 Output Mode.

0: P2.4 output is open-drain.
1: P2.4 output is push-pull.

3 B3 Port 2 Bit 3 Output Mode.

0: P2.3 output is open-drain.
1: P2.3 output is push-pull.

2 B2 Port 2 Bit 2 Output Mode.

0: P2.2 output is open-drain.
1: P2.2 output is push-pull.

1 B1 Port 2 Bit 1 Output Mode.

0: P2.1 output is open-drain.
1: P2.1 output is push-pull.

0 B0 Port 2 Bit 0 Output Mode.

0: P2.0 output is open-drain.
1: P2.0 output is push-pull.
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Register 26.22. P2SKIP: Port 2 Skip

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xC7

Table 26.25. P2SKIP Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Skip.

0: P2.7 pin is not skipped by the crossbar.
1: P2.7 pin is skipped by the crossbar.

6 B6 Port 2 Bit 6 Skip.

0: P2.6 pin is not skipped by the crossbar.
1: P2.6 pin is skipped by the crossbar.

5 B5 Port 2 Bit 5 Skip.

0: P2.5 pin is not skipped by the crossbar.
1: P2.5 pin is skipped by the crossbar.

4 B4 Port 2 Bit 4 Skip.

0: P2.4 pin is not skipped by the crossbar.
1: P2.4 pin is skipped by the crossbar.

3 B3 Port 2 Bit 3 Skip.

0: P2.3 pin is not skipped by the crossbar.
1: P2.3 pin is skipped by the crossbar.

2 B2 Port 2 Bit 2 Skip.

0: P2.2 pin is not skipped by the crossbar.
1: P2.2 pin is skipped by the crossbar.

1 B1 Port 2 Bit 1 Skip.

0: P2.1 pin is not skipped by the crossbar.
1: P2.1 pin is skipped by the crossbar.

0 B0 Port 2 Bit 0 Skip.

0: P2.0 pin is not skipped by the crossbar.
1: P2.0 pin is skipped by the crossbar.
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Register 26.23. P2DRV: Port 2 Drive Strength

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0x9B

Table 26.26. P2DRV Register Bit Descriptions

Bit Name Function

7 B7 Port 2 Bit 7 Drive Strength.

0: P2.7 output has low output drive strength.
1: P2.7 output has high output drive strength.

6 B6 Port 2 Bit 6 Drive Strength.

0: P2.6 output has low output drive strength.
1: P2.6 output has high output drive strength.

5 B5 Port 2 Bit 5 Drive Strength.

0: P2.5 output has low output drive strength.
1: P2.5 output has high output drive strength.

4 B4 Port 2 Bit 4 Drive Strength.

0: P2.4 output has low output drive strength.
1: P2.4 output has high output drive strength.

3 B3 Port 2 Bit 3 Drive Strength.

0: P2.3 output has low output drive strength.
1: P2.3 output has high output drive strength.

2 B2 Port 2 Bit 2 Drive Strength.

0: P2.2 output has low output drive strength.
1: P2.2 output has high output drive strength.

1 B1 Port 2 Bit 1 Drive Strength.

0: P2.1 output has low output drive strength.
1: P2.1 output has high output drive strength.

0 B0 Port 2 Bit 0 Drive Strength.

0: P2.0 output has low output drive strength.
1: P2.0 output has high output drive strength.
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Register 26.24. P3: Port 3 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0x0; SFR Address: 0xE1

Table 26.27. P3 Register Bit Descriptions

Bit Name Function

7 B7 Port 3 Bit 7 Latch.

0: P3.7 is low. Set P3.7 to drive low.
1: P3.7 is high. Set P3.7 to drive or float high.

6 B6 Port 3 Bit 6 Latch.

0: P3.6 is low. Set P3.6 to drive low.
1: P3.6 is high. Set P3.6 to drive or float high.

5 B5 Port 3 Bit 5 Latch.

0: P3.5 is low. Set P3.5 to drive low.
1: P3.5 is high. Set P3.5 to drive or float high.

4 B4 Port 3 Bit 4 Latch.

0: P3.4 is low. Set P3.4 to drive low.
1: P3.4 is high. Set P3.4 to drive or float high.

3 B3 Port 3 Bit 3 Latch.

0: P3.3 is low. Set P3.3 to drive low.
1: P3.3 is high. Set P3.3 to drive or float high.

2 B2 Port 3 Bit 2 Latch.

0: P3.2 is low. Set P3.2 to drive low.
1: P3.2 is high. Set P3.2 to drive or float high.

1 B1 Port 3 Bit 1 Latch.

0: P3.1 is low. Set P3.1 to drive low.
1: P3.1 is high. Set P3.1 to drive or float high.

0 B0 Port 3 Bit 0 Latch.

0: P3.0 is low. Set P3.0 to drive low.
1: P3.0 is high. Set P3.0 to drive or float high.

Notes:
1. Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.
2. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.
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Register 26.25. P3MDIN: Port 3 Input Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0xF; SFR Address: 0xEF

Table 26.28. P3MDIN Register Bit Descriptions

Bit Name Function

7 B7 Port 3 Bit 7 Input Mode.

0: P3.7 pin is configured for analog mode.
1: P3.7 pin is configured for digital mode.

6 B6 Port 3 Bit 6 Input Mode.

0: P3.6 pin is configured for analog mode.
1: P3.6 pin is configured for digital mode.

5 B5 Port 3 Bit 5 Input Mode.

0: P3.5 pin is configured for analog mode.
1: P3.5 pin is configured for digital mode.

4 B4 Port 3 Bit 4 Input Mode.

0: P3.4 pin is configured for analog mode.
1: P3.4 pin is configured for digital mode.

3 B3 Port 3 Bit 3 Input Mode.

0: P3.3 pin is configured for analog mode.
1: P3.3 pin is configured for digital mode.

2 B2 Port 3 Bit 2 Input Mode.

0: P3.2 pin is configured for analog mode.
1: P3.2 pin is configured for digital mode.

1 B1 Port 3 Bit 1 Input Mode.

0: P3.1 pin is configured for analog mode.
1: P3.1 pin is configured for digital mode.

0 B0 Port 3 Bit 0 Input Mode.

0: P3.0 pin is configured for analog mode.
1: P3.0 pin is configured for digital mode.

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
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Register 26.26. P3MDOUT: Port 3 Output Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xDF

Table 26.29. P3MDOUT Register Bit Descriptions

Bit Name Function

7 B7 Port 3 Bit 7 Output Mode.

0: P3.7 output is open-drain.
1: P3.7 output is push-pull.

6 B6 Port 3 Bit 6 Output Mode.

0: P3.6 output is open-drain.
1: P3.6 output is push-pull.

5 B5 Port 3 Bit 5 Output Mode.

0: P3.5 output is open-drain.
1: P3.5 output is push-pull.

4 B4 Port 3 Bit 4 Output Mode.

0: P3.4 output is open-drain.
1: P3.4 output is push-pull.

3 B3 Port 3 Bit 3 Output Mode.

0: P3.3 output is open-drain.
1: P3.3 output is push-pull.

2 B2 Port 3 Bit 2 Output Mode.

0: P3.2 output is open-drain.
1: P3.2 output is push-pull.

1 B1 Port 3 Bit 1 Output Mode.

0: P3.1 output is open-drain.
1: P3.1 output is push-pull.

0 B0 Port 3 Bit 0 Output Mode.

0: P3.0 output is open-drain.
1: P3.0 output is push-pull.
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Register 26.27. P3DRV: Port 3 Drive Strength

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0x9C

Table 26.30. P3DRV Register Bit Descriptions

Bit Name Function

7 B7 Port 3 Bit 7 Drive Strength.

0: P3.7 output has low output drive strength.
1: P3.7 output has high output drive strength.

6 B6 Port 3 Bit 6 Drive Strength.

0: P3.6 output has low output drive strength.
1: P3.6 output has high output drive strength.

5 B5 Port 3 Bit 5 Drive Strength.

0: P3.5 output has low output drive strength.
1: P3.5 output has high output drive strength.

4 B4 Port 3 Bit 4 Drive Strength.

0: P3.4 output has low output drive strength.
1: P3.4 output has high output drive strength.

3 B3 Port 3 Bit 3 Drive Strength.

0: P3.3 output has low output drive strength.
1: P3.3 output has high output drive strength.

2 B2 Port 3 Bit 2 Drive Strength.

0: P3.2 output has low output drive strength.
1: P3.2 output has high output drive strength.

1 B1 Port 3 Bit 1 Drive Strength.

0: P3.1 output has low output drive strength.
1: P3.1 output has high output drive strength.

0 B0 Port 3 Bit 0 Drive Strength.

0: P3.0 output has low output drive strength.
1: P3.0 output has high output drive strength.
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Register 26.28. P4: Port 4 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0x0; SFR Address: 0xE2

Table 26.31. P4 Register Bit Descriptions

Bit Name Function

7 B7 Port 4 Bit 7 Latch.

0: P4.7 is low. Set P4.7 to drive low.
1: P4.7 is high. Set P4.7 to drive or float high.

6 B6 Port 4 Bit 6 Latch.

0: P4.6 is low. Set P4.6 to drive low.
1: P4.6 is high. Set P4.6 to drive or float high.

5 B5 Port 4 Bit 5 Latch.

0: P4.5 is low. Set P4.5 to drive low.
1: P4.5 is high. Set P4.5 to drive or float high.

4 B4 Port 4 Bit 4 Latch.

0: P4.4 is low. Set P4.4 to drive low.
1: P4.4 is high. Set P4.4 to drive or float high.

3 B3 Port 4 Bit 3 Latch.

0: P4.3 is low. Set P4.3 to drive low.
1: P4.3 is high. Set P4.3 to drive or float high.

2 B2 Port 4 Bit 2 Latch.

0: P4.2 is low. Set P4.2 to drive low.
1: P4.2 is high. Set P4.2 to drive or float high.

1 B1 Port 4 Bit 1 Latch.

0: P4.1 is low. Set P4.1 to drive low.
1: P4.1 is high. Set P4.1 to drive or float high.

0 B0 Port 4 Bit 0 Latch.

0: P4.0 is low. Set P4.0 to drive low.
1: P4.0 is high. Set P4.0 to drive or float high.

Notes:
1. Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.
2. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.
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Register 26.29. P4MDIN: Port 4 Input Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0xF; SFR Address: 0xF1

Table 26.32. P4MDIN Register Bit Descriptions

Bit Name Function

7 B7 Port 4 Bit 7 Input Mode.

0: P4.7 pin is configured for analog mode.
1: P4.7 pin is configured for digital mode.

6 B6 Port 4 Bit 6 Input Mode.

0: P4.6 pin is configured for analog mode.
1: P4.6 pin is configured for digital mode.

5 B5 Port 4 Bit 5 Input Mode.

0: P4.5 pin is configured for analog mode.
1: P4.5 pin is configured for digital mode.

4 B4 Port 4 Bit 4 Input Mode.

0: P4.4 pin is configured for analog mode.
1: P4.4 pin is configured for digital mode.

3 B3 Port 4 Bit 3 Input Mode.

0: P4.3 pin is configured for analog mode.
1: P4.3 pin is configured for digital mode.

2 B2 Port 4 Bit 2 Input Mode.

0: P4.2 pin is configured for analog mode.
1: P4.2 pin is configured for digital mode.

1 B1 Port 4 Bit 1 Input Mode.

0: P4.1 pin is configured for analog mode.
1: P4.1 pin is configured for digital mode.

0 B0 Port 4 Bit 0 Input Mode.

0: P4.0 pin is configured for analog mode.
1: P4.0 pin is configured for digital mode.

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.



314 Rev 1.1

Register 26.30. P4MDOUT: Port 4 Output Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xC3

Table 26.33. P4MDOUT Register Bit Descriptions

Bit Name Function

7 B7 Port 4 Bit 7 Output Mode.

0: P4.7 output is open-drain.
1: P4.7 output is push-pull.

6 B6 Port 4 Bit 6 Output Mode.

0: P4.6 output is open-drain.
1: P4.6 output is push-pull.

5 B5 Port 4 Bit 5 Output Mode.

0: P4.5 output is open-drain.
1: P4.5 output is push-pull.

4 B4 Port 4 Bit 4 Output Mode.

0: P4.4 output is open-drain.
1: P4.4 output is push-pull.

3 B3 Port 4 Bit 3 Output Mode.

0: P4.3 output is open-drain.
1: P4.3 output is push-pull.

2 B2 Port 4 Bit 2 Output Mode.

0: P4.2 output is open-drain.
1: P4.2 output is push-pull.

1 B1 Port 4 Bit 1 Output Mode.

0: P4.1 output is open-drain.
1: P4.1 output is push-pull.

0 B0 Port 4 Bit 0 Output Mode.

0: P4.0 output is open-drain.
1: P4.0 output is push-pull.
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Register 26.31. P4DRV: Port 4 Drive Strength

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xB9

Table 26.34. P4DRV Register Bit Descriptions

Bit Name Function

7 B7 Port 4 Bit 7 Drive Strength.

0: P4.7 output has low output drive strength.
1: P4.7 output has high output drive strength.

6 B6 Port 4 Bit 6 Drive Strength.

0: P4.6 output has low output drive strength.
1: P4.6 output has high output drive strength.

5 B5 Port 4 Bit 5 Drive Strength.

0: P4.5 output has low output drive strength.
1: P4.5 output has high output drive strength.

4 B4 Port 4 Bit 4 Drive Strength.

0: P4.4 output has low output drive strength.
1: P4.4 output has high output drive strength.

3 B3 Port 4 Bit 3 Drive Strength.

0: P4.3 output has low output drive strength.
1: P4.3 output has high output drive strength.

2 B2 Port 4 Bit 2 Drive Strength.

0: P4.2 output has low output drive strength.
1: P4.2 output has high output drive strength.

1 B1 Port 4 Bit 1 Drive Strength.

0: P4.1 output has low output drive strength.
1: P4.1 output has high output drive strength.

0 B0 Port 4 Bit 0 Drive Strength.

0: P4.0 output has low output drive strength.
1: P4.0 output has high output drive strength.
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Register 26.32. P5: Port 5 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name Reserved B2 B1 B0

Type RW RW RW RW

Reset 0 0 0 0 0 1 1 1

SFR Page = 0x0; SFR Address: 0xE3

Table 26.35. P5 Register Bit Descriptions

Bit Name Function

7:3 Reserved Must write reset value.

2 B2 Port 5 Bit 2 Latch.

0: P5.2 is low. Set P5.2 to drive low.
1: P5.2 is high. Set P5.2 to drive or float high.

1 B1 Port 5 Bit 1 Latch.

0: P5.1 is low. Set P5.1 to drive low.
1: P5.1 is high. Set P5.1 to drive or float high.

0 B0 Port 5 Bit 0 Latch.

0: P5.0 is low. Set P5.0 to drive low.
1: P5.0 is high. Set P5.0 to drive or float high.

Notes:
1. Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.
2. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.
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Register 26.33. P5MDIN: Port 5 Input Mode

Bit 7 6 5 4 3 2 1 0

Name Reserved B2 B1 B0

Type RW RW RW RW

Reset 0 0 0 0 0 1 1 1

SFR Page = 0xF; SFR Address: 0xF2

Table 26.36. P5MDIN Register Bit Descriptions

Bit Name Function

7:3 Reserved Must write reset value.

2 B2 Port 5 Bit 2 Input Mode.

0: P5.2 pin is configured for analog mode.
1: P5.2 pin is configured for digital mode.

1 B1 Port 5 Bit 1 Input Mode.

0: P5.1 pin is configured for analog mode.
1: P5.1 pin is configured for digital mode.

0 B0 Port 5 Bit 0 Input Mode.

0: P5.0 pin is configured for analog mode.
1: P5.0 pin is configured for digital mode.

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
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Register 26.34. P5MDOUT: Port 5 Output Mode

Bit 7 6 5 4 3 2 1 0

Name Reserved B2 B1 B0

Type RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xFF

Table 26.37. P5MDOUT Register Bit Descriptions

Bit Name Function

7:3 Reserved Must write reset value.

2 B2 Port 5 Bit 2 Output Mode.

0: P5.2 output is open-drain.
1: P5.2 output is push-pull.

1 B1 Port 5 Bit 1 Output Mode.

0: P5.1 output is open-drain.
1: P5.1 output is push-pull.

0 B0 Port 5 Bit 0 Output Mode.

0: P5.0 output is open-drain.
1: P5.0 output is push-pull.
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Register 26.35. P5DRV: Port 5 Drive Strength

Bit 7 6 5 4 3 2 1 0

Name Reserved B2 B1 B0

Type RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0x9D

Table 26.38. P5DRV Register Bit Descriptions

Bit Name Function

7:3 Reserved Must write reset value.

2 B2 Port 5 Bit 2 Drive Strength.

0: P5.2 output has low output drive strength.
1: P5.2 output has high output drive strength.

1 B1 Port 5 Bit 1 Drive Strength.

0: P5.1 output has low output drive strength.
1: P5.1 output has high output drive strength.

0 B0 Port 5 Bit 0 Drive Strength.

0: P5.0 output has low output drive strength.
1: P5.0 output has high output drive strength.
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Register 26.36. P6: Port 6 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name Reserved B1 B0

Type RW RW RW

Reset 0 0 0 0 0 0 1 1

SFR Page = 0x0; SFR Address: 0xE4

Table 26.39. P6 Register Bit Descriptions

Bit Name Function

7:2 Reserved Must write reset value.

1 B1 Port 6 Bit 1 Latch.

0: P6.1 is low. Set P6.1 to drive low.
1: P6.1 is high. Set P6.1 to drive or float high.

0 B0 Port 6 Bit 0 Latch.

0: P6.0 is low. Set P6.0 to drive low.
1: P6.0 is high. Set P6.0 to drive or float high.

Notes:
1. Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.
2. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.

Register 26.37. P6MDIN: Port 6 Input Mode

Bit 7 6 5 4 3 2 1 0

Name Reserved B1 B0

Type RW RW RW

Reset 0 0 0 0 0 0 1 1

SFR Page = 0xF; SFR Address: 0x97

Table 26.40. P6MDIN Register Bit Descriptions

Bit Name Function

7:2 Reserved Must write reset value.

1 B1 Port 6 Bit 1 Input Mode.

0: P6.1 pin is configured for analog mode.
1: P6.1 pin is configured for digital mode.

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
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0 B0 Port 6 Bit 0 Input Mode.

0: P6.0 pin is configured for analog mode.
1: P6.0 pin is configured for digital mode.

Table 26.40. P6MDIN Register Bit Descriptions

Bit Name Function

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
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27.  Reset Sources and Supply Monitor

Reset circuitry allows the controller to be easily placed in a predefined default condition. Upon entering this reset 
state, the following events occur:

CIP-51 halts program execution

Special Function Registers (SFRs) are initialized to their defined reset values

External port pins are placed in a known state

Interrupts and timers are disabled. 

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data 
memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer 
SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain, low-drive mode. Weak pullups are enabled 
during and after the reset. For VDD Monitor and power-on resets, the RST pin is driven low until the device exits the 
reset state. Note that during a power-on event, there may be a short delay before the POR circuitry fires and the 
RST pin is driven low. During that time, the RST pin will be weakly pulled to the VDD supply pin.

On exit from the reset state, the program counter (PC) is reset, the Watchdog Timer is enabled and the system 
clock defaults to the internal oscillator. Program execution begins at location 0x0000.

Figure 27.1. Reset Sources
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27.1.  Power-On Reset
During power-up, the POR circuit will fire. When POR fires, the device is held in a reset state and the RST pin is 
driven low until VDD settles above VRST. Two delays are present during the supply ramp time. First, a delay will 
occur before the POR circuitry fires and pulls the RST pin low. A second delay occurs before the device is released 
from reset; the delay decreases as the VDD ramp time increases (VDD ramp time is defined as how fast VDD ramps 
from 0 V to VRST). Figure 27.2. plots the power-on reset timing. For ramp times less than 1 ms, the power-on reset 
time (TPOR) is typically less than 0.3 ms. Additionally, the power supply must reach VRST before the POR circuit will 
release the device from reset.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all 
of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all 
resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to 
determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be 
undefined after a power-on reset. The VDD monitor is enabled following a power-on reset.

Figure 27.2. Power-on Reset Timing

Power-On Reset

RST

t

vo
lts

Logic HIGH

Logic LOW
TPOR

VD
D



Rev 1.1 324

27.2.  Power-Fail Reset / Supply Monitor
C8051F97x devices have a supply monitor that is enabled and selected as a reset source after each power-on or 
power fail reset.

When enabled and selected as a reset source, any power down transition or power irregularity that causes VDD to 
drop below VRST will cause the RST pin to be driven low and the CIP-51 will be held in a reset state (see 
Figure 27.3). When VDD returns to a level above VRST, the CIP-51 will be released from the reset state. 

After a power-fail reset, the PORSF flag reads 1, the contents of RAM invalid, and the VDD supply monitor is 
enabled and selected as a reset source. The enable state of the VDD supply monitor and its selection as a reset 
source is only altered by power-on and power-fail resets. For example, if the VDD supply monitor is deselected as a 
reset source and disabled by software, then a software reset is performed, the VDD supply monitor will remain 
disabled and deselected after the reset. 

In battery-operated systems, the contents of RAM can be preserved near the end of the battery’s usable life if the 
device is placed in Sleep Mode prior to a power-fail reset occurring. When the device is in Sleep Mode, the power-
fail reset is automatically disabled and the contents of RAM are preserved as long as VDD does not fall below 
VPOR. A large capacitor can be used to hold the power supply voltage above VPOR while the user is replacing the 
battery. Upon waking from Sleep mode, the enable and reset source select state of the VDD supply monitor are 
restored to the value last set by the user.

To allow software early notification that a power failure is about to occur, the VDDOK bit is cleared when the VDD
supply falls below the VWARN threshold. The VDDOK bit can be configured to generate an interrupt. See Section 
“13. Interrupts” on page 79 for more details. 

Important Note: To protect the integrity of Flash contents, the VDD supply monitor must be enabled and 
selected as a reset source if software contains routines which erase or write Flash memory. If the VDD
supply monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device 
reset. memory. If the VDD supply monitor is not enabled, any erase or write performed on flash memory will be 
ignored.

Figure 27.3. VDD Supply Monitor Threshold
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27.3.  Enabling the VDD Monitor
The VDD supply monitor is enabled by default. However, in systems which disable the supply monitor, it must be 
enabled before selecting it as a reset source. Selecting the VDD supply monitor as a reset source before it has 
stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be 
introduced between enabling the VDD supply monitor and selecting it as a reset source. No delay should be 
introduced in systems where software contains routines that erase or write flash memory. The procedure for 
enabling the VDD supply monitor and selecting it as a reset source is:

1.  Enable the VDD supply monitor (VMONEN = 1).

2.  Wait for the VDD supply monitor to stabilize (optional).

3.  Enable the VDD monitor as a reset source in the RSTSRC register.

27.4.  External Reset
The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an 
active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be 
necessary to avoid erroneous noise-induced resets. The PINRSF flag is set on exit from an external reset.

27.5.  Missing Clock Detector Reset
The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock 
remains high or low for more than the MCD time window, the one-shot will time out and generate a reset. After a 
MCD reset, the MCDRSF flag will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. 
Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin 
is unaffected by this reset. 

27.6.  PCA Watchdog Timer Reset
The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to 
prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled 
or disabled by software as described in the PCA watchdog timer section. If a system malfunction prevents user 
software from updating the WDT, a reset is generated and the WDTRSF bit is set to ‘1’. The state of the RST pin is 
unaffected by this reset.

27.7.  Flash Error Reset
If a flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur 
due to any of the following:

A flash write or erase is attempted above user code space.

A flash read is attempted above user code space.

A program read is attempted above user code space (i.e. a branch instruction to the reserved area).

A flash read, write or erase attempt is restricted due to a flash security setting.

The FERROR bit is set following a flash error reset. The state of the RST pin is unaffected by this reset.

27.8. SmaRTClock Reset

The SmaRTClock can generate a system reset on two events: SmaRTClock Oscillator Fail or SmaRTClock Alarm. 
The SmaRTClock Oscillator Fail event occurs when the SmaRTClock Missing Clock Detector is enabled and the 
SmaRTClock clock is below approximately 20 kHz. A SmaRTClock alarm event occurs when the SmaRTClock 
Alarm is enabled and the SmaRTClock timer value matches the ALARMn registers. The SmaRTClock can be 
configured as a reset source by writing a 1 to the RTC0RE flag (RSTSRC.7). The SmaRTClock reset remains 
functional even when the device is in the low power Suspend or Sleep mode. The state of the RST pin is 
unaffected by this reset.

27.9.  Software Reset
Software may force a reset by writing a 1 to the SWRSF bit. The SWRSF bit will read 1 following a software forced 
reset. The state of the RST pin is unaffected by this reset.
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27.10.  Reset Sources Control Registers

Register 27.1. RSTSRC: Reset Source

Bit 7 6 5 4 3 2 1 0

Name RTC0RE FERROR Reserved SWRSF WDTRSF MCDRSF PORSF PINRSF

Type RW RW RW RW RW RW RW RW

Reset X X X X X X X X

SFR Page = 0x0; SFR Address: 0xEF

Table 27.1. RSTSRC Register Bit Descriptions

Bit Name Function

7 RTC0RE RTC Reset Enable and Flag.

Read: This bit reads 1 if a RTC alarm or oscillator fail caused the last reset.
Write: Writing a 1 to this bit enables the RTC as a reset source.

6 FERROR Flash Error Reset Flag.

This read-only bit is set to '1' if a flash read/write/erase error caused the last reset.

5 Reserved Must write reset value.

4 SWRSF Software Reset Force and Flag.

Read: This bit reads 1 if last reset was caused by a write to SWRSF.
Write: Writing a 1 to this bit forces a system reset.

3 WDTRSF Watchdog Timer Reset Flag.

This read-only bit is set to '1' if a watchdog timer overflow caused the last reset.

2 MCDRSF Missing Clock Detector Enable and Flag.

Read: This bit reads 1 if a missing clock detector timeout caused the last reset.
Write: Writing a 1 to this bit enables the missing clock detector. The MCD triggers a reset 
if a missing clock condition is detected.

1 PORSF Power-On / Supply Monitor Reset Flag, and Supply Monitor Reset Enable.

Read: This bit reads 1 anytime a power-on or supply monitor reset has occurred.
Write: Writing a 1 to this bit enables the supply monitor as a reset source.

0 PINRSF HW Pin Reset Flag.

This read-only bit is set to '1' if the RST pin caused the last reset.

Notes:
1. Reads and writes of the RSTSRC register access different logic in the device. Reading the register always returns 

status information to indicate the source of the most recent reset. Writing to the register activates certain options as 
reset sources. It is recommended to not use any kind of read-modify-write operation on this register.

2. When the PORSF bit reads back '1' all other RSTSRC flags are indeterminate.
3. Writing '1' to the PORSF bit when the supply monitor is not enabled and stabilized may cause a system reset. 
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27.11.  Supply Monitor Control Registers

Register 27.2. VDM0CN: VDD Supply Monitor Control

Bit 7 6 5 4 3 2 1 0

Name VDMEN VDDSTAT VDDOK Reserved VDDOKIE Reserved

Type RW R R R RW R

Reset 1 X X 0 1 0 0 0

SFR Page = 0x0; SFR Address: 0xFF

Table 27.2. VDM0CN Register Bit Descriptions

Bit Name Function

7 VDMEN VDD Supply Monitor Enable.

This bit turns the VDD supply monitor circuit on/off. The VDD Supply Monitor cannot gen-
erate system resets until it is also selected as a reset source in register RSTSRC.
0: Disable the VDD supply monitor.
1: Enable the VDD supply monitor.

6 VDDSTAT VDD Supply Status.

This bit indicates the current power supply status.
0: VDD is at or below the VRST threshold.
1: VDD is above the VRST threshold.

5 VDDOK VDD Supply Status (Early Warning).

This bit indicates the current VDD power supply status.
0: VDD is at or below the VDDWARN threshold.
1: VDD is above the VDDWARN threshold.

4 Reserved Must write reset value.

3 VDDOKIE VDD Early Warning Interrupt Enable.

Enables the VDD Early Warning interrupt.
0: Disable the VDD Early Warning interrupt.
1: Enable the VDD Early Warning interrupt.

2:0 Reserved Must write reset value.
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28.  Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can 
operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a 
single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to 
disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than 
one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master 
mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple 
slave devices in master mode.

Figure 28.1. SPI0 Block Diagram
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28.1.  Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below. 

28.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used 
to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master 
and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a 
master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

28.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is 
used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a 
master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin 
is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as 
a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift 
register.

28.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to 
synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this 
signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected 
(NSS = 1) in 4-wire slave mode.

28.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the 
SPI0CN register. There are three possible modes that can be selected with these bits:

1.  NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is 
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal 
is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point 
communication between a master and one slave.

2.  NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled 
as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-
0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be 
used on the same SPI bus.

3.  NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output. 
The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only 
be used when operating SPI0 as a master device.

See Figure 28.2, Figure 28.3, and Figure 28.4 for typical connection diagrams of the various operational modes. 
Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or 3-wire slave 
mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin 
on the device.
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28.2.  SPI0 Master Mode Operation
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master 
Enable flag (MSTEN, SPI0CFG.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode 
writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift 
register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while 
providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts 
are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a 
slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to 
the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-
complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the 
master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be 
read by the processor by reading SPI0DAT. 

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-
master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSSMD1 
(SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable 
the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN 
(SPI0CFG.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated 
(MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in 
software under these circumstances. In multi-master systems, devices will typically default to being slave devices 
while they are not acting as the system master device. In multi-master mode, slave devices can be addressed 
individually (if needed) using general-purpose I/O pins. Figure 28.2 shows a connection diagram between two 
master devices and a single slave in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, 
NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be 
addressed in this mode should be selected using general-purpose I/O pins. Figure 28.3 shows a connection 
diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output 
pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is 
controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using 
general-purpose I/O pins. Figure 28.4 shows a connection diagram for a master device and a slave device in 4-
wire mode.
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Figure 28.2. Multiple-Master Mode Connection Diagram

Figure 28.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

Figure 28.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

Master Device 1

MISO

MOSI

SCK

NSS

Slave Device

MISO

MOSI

SCK

NSS

Master Device 2

MISO

MOSI

SCK

NSS

port pin

port pin

Slave DeviceMaster Device

MISO

MOSI

SCK

MISO

MOSI

SCK

Slave DeviceMaster Device

MISO

MOSI

SCK

MISO

MOSI

SCK

NSSNSS



Rev 1.1 332

28.3.  SPI0 Slave Mode Operation
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted 
in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter 
in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to 
logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A 
slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift 
register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If 
the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. 
When the shift register already contains data, the SPI will load the shift register with the transmit buffer’s contents 
after the last SCK edge of the next (or current) SPI transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, 
is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to 
a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. 
The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system 
clocks before the first active edge of SCK for each byte transfer. Figure 28.4 shows a connection diagram between 
two slave devices in 4-wire slave mode and a master device.

The 3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in 
this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely 
addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important 
to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full 
byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. 
Figure 28.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

28.4.  SPI0 Interrupt Sources
When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

All of the following bits must be cleared by software.

The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can 
occur in all SPI0 modes.

The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the 
transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will 
be ignored, and the transmit buffer will not be written.This flag can occur in all SPI0 modes.

The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for 
multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN bit in SPI0CFG 
and SPIEN bit in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the 
bus.

The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a 
transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new 
byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data 
byte which caused the overrun is lost.

28.5.  Serial Clock Phase and Polarity
Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 
Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to 
latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and 
slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing 
the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for 
master mode are shown in Figure 28.5. For slave mode, the clock and data relationships are shown in Figure 28.6 
and Figure 28.7. Note that CKPHA should be set to 0 on both the master and slave SPI when communicating 
between two Silicon Labs C8051 devices.
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The SPI0 Clock Rate Register (SPI0CKR) controls the master mode serial clock frequency. This register is ignored 
when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) 
is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, 
the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that 
the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave’s 
system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer 
rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants 
to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI 
slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is 
provided that the master issues SCK, NSS, and the serial input data synchronously with the slave’s system clock.

Figure 28.5. Master Mode Data/Clock Timing

Figure 28.6. Slave Mode Data/Clock Timing (CKPHA = 0)
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Figure 28.7. Slave Mode Data/Clock Timing (CKPHA = 1)

28.6.  SPI Special Function Registers
SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control 
Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four 
special function registers related to the operation of the SPI0 Bus are described in the following figures.

Figure 28.8. SPI Master Timing (CKPHA = 0)
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Figure 28.9. SPI Master Timing (CKPHA = 1)

Figure 28.10. SPI Slave Timing (CKPHA = 0)
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Figure 28.11. SPI Slave Timing (CKPHA = 1)
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Table 28.1. SPI Slave Timing Parameters

Parameter Description Min Max Units

Master Mode Timing (See Figure 28.8 and Figure 28.9)

TMCKH SCK High Time 1 x TSYSCLK — ns

TMCKL SCK Low Time 1 x TSYSCLK — ns

TMIS MISO Valid to SCK Shift Edge 1 x TSYSCLK + 20 — ns

TMIH SCK Shift Edge to MISO Change 0 — ns

Slave Mode Timing (See Figure 28.10 and Figure 28.11)

TSE NSS Falling to First SCK Edge 2 x TSYSCLK — ns

TSD Last SCK Edge to NSS Rising 2 x TSYSCLK — ns

TSEZ NSS Falling to MISO Valid — 4 x TSYSCLK ns

TSDZ NSS Rising to MISO High-Z — 4 x TSYSCLK ns

TCKH SCK High Time 5 x TSYSCLK — ns

TCKL SCK Low Time 5 x TSYSCLK — ns

TSIS MOSI Valid to SCK Sample Edge 2 x TSYSCLK — ns

TSIH SCK Sample Edge to MOSI Change 2 x TSYSCLK — ns

TSOH SCK Shift Edge to MISO Change — 4 x TSYSCLK ns

TSLH Last SCK Edge to MISO Change 
(CKPHA = 1 ONLY)

6 x TSYSCLK 8 x TSYSCLK ns

Note: TSYSCLK is equal to one period of the device system clock (SYSCLK).
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28.7.  SPI Control Registers

Register 28.1. SPI0CFG: SPI0 Configuration

Bit 7 6 5 4 3 2 1 0

Name SPIBSY MSTEN CKPHA CKPOL SLVSEL NSSIN SRMT RXBMT

Type R RW RW RW R R R R

Reset 0 0 0 0 0 1 1 1

SFR Page = 0x0; SFR Address: 0xA1

Table 28.2. SPI0CFG Register Bit Descriptions

Bit Name Function

7 SPIBSY SPI Busy.

This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).

6 MSTEN Master Mode Enable.

0: Disable master mode. Operate in slave mode.
1: Enable master mode. Operate as a master.

5 CKPHA SPI0 Clock Phase.

0: Data centered on first edge of SCK period.
1: Data centered on second edge of SCK period.

4 CKPOL SPI0 Clock Polarity.

0: SCK line low in idle state.
1: SCK line high in idle state.

3 SLVSEL Slave Selected Flag.

This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected 
slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indi-
cate the instantaneous value at the NSS pin, but rather a de-glitched version of the pin 
input.

2 NSSIN NSS Instantaneous Pin Input.

This bit mimics the instantaneous value that is present on the NSS port pin at the time 
that the register is read. This input is not de-glitched.

1 SRMT Shift Register Empty.

This bit is valid in slave mode only and will be set to logic 1 when all data has been trans-
ferred in/out of the shift register, and there is no new information available to read from 
the transmit buffer or write to the receive buffer. It returns to logic 0 when a data byte is 
transferred to the shift register from the transmit buffer or by a transition on SCK. SRMT 
= 1 when in Master Mode.

0 RXBMT Receive Buffer Empty.

This bit is valid in slave mode only and will be set to logic 1 when the receive buffer has 
been read and contains no new information. If there is new information available in the 
receive buffer that has not been read, this bit will return to logic 0. RXBMT = 1 when in 
Master Mode.

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one 
SYSCLK before the end of each data bit, to provide maximum settling time for the slave device.
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Register 28.2. SPI0CN: SPI0 Control

Bit 7 6 5 4 3 2 1 0

Name SPIF WCOL MODF RXOVRN NSSMD TXBMT SPIEN

Type RW RW RW RW RW R RW

Reset 0 0 0 0 0 1 1 0

SFR Page = 0x0; SFR Address: 0xF8 (bit-addressable)

Table 28.3. SPI0CN Register Bit Descriptions

Bit Name Function

7 SPIF SPI0 Interrupt Flag.

This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are 
enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, 
and must be cleared by firmware.

6 WCOL Write Collision Flag.

This bit is set to logic 1 if a write to SPI0DAT is attempted when TXBMT is 0. When this 
occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. If 
SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically 
cleared by hardware, and must be cleared by firmware.

5 MODF Mode Fault Flag.

This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is 
low, MSTEN = 1, and NSSMD = 01). If SPI interrupts are enabled, an interrupt will be 
generated. This bit is not automatically cleared by hardware, and must be cleared by 
firmware.

4 RXOVRN Receive Overrun Flag.

This bit is valid for slave mode only and is set to logic 1 by hardware when the receive 
buffer still holds unread data from a previous transfer and the last bit of the current trans-
fer is shifted into the SPI0 shift register. If SPI interrupts are enabled, an interrupt will be 
generated. This bit is not automatically cleared by hardware, and must be cleared by 
firmware.

3:2 NSSMD Slave Select Mode.

Selects between the following NSS operation modes: 
00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin.
01: 4-Wire Slave or Multi-Master Mode. NSS is an input to the device.
10: 4-Wire Single-Master Mode. NSS is an output and logic low.
11: 4-Wire Single-Master Mode. NSS is an output and logic high.

1 TXBMT Transmit Buffer Empty.

This bit will be set to logic 0 when new data has been written to the transmit buffer. When 
data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 
1, indicating that it is safe to write a new byte to the transmit buffer.

0 SPIEN SPI0 Enable.

0: Disable the SPI module.
1: Enable the SPI module.
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Register 28.3. SPI0CKR: SPI0 Clock Rate

Bit 7 6 5 4 3 2 1 0

Name SPI0CKR

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xA2

Table 28.4. SPI0CKR Register Bit Descriptions

Bit Name Function

7:0 SPI0CKR SPI0 Clock Rate.

These bits determine the frequency of the SCK output when the SPI0 module is config-
ured for master mode operation. The SCK clock frequency is a divided version of the 
system clock, and is given in the following equation, where SYSCLK is the system clock 
frequency and SPI0CKR is the 8-bit value held in the SPI0CKR register.

for 0 <= SPI0CKR <= 255

fSCK
SYSCLK

2 SPI0CKR 1+ 
-----------------------------------------------=
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Register 28.4. SPI0DAT: SPI0 Data

Bit 7 6 5 4 3 2 1 0

Name SPI0DAT

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xA3

Table 28.5. SPI0DAT Register Bit Descriptions

Bit Name Function

7:0 SPI0DAT SPI0 Transmit and Receive Data.

The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0-
DAT places the data into the transmit buffer and initiates a transfer when in master mode. 
A read of SPI0DAT returns the contents of the receive buffer.
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29.  System Management Bus / I2C (SMBus0)

The SMBus I/O interface is a two-wire, bidirectional serial bus. The SMBus is compliant with the System 
Management Bus Specification, version 1.1, and compatible with the I2C serial bus.

Reads and writes to the SMBus by the system controller are byte oriented with the SMBus interface autonomously 
controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or 
slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method 
of extending the clock-low duration is available to accommodate devices with different speed capabilities on the 
same bus.

The SMBus may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus 
provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and 
START/STOP control and generation. The SMBus peripherals can be fully driven by software (i.e., software 
accepts/rejects slave addresses, and generates ACKs), or hardware slave address recognition and automatic ACK 
generation can be enabled to minimize software overhead. A block diagram of the SMBus0 peripheral is shown in 
Figure 29.1.

Figure 29.1. SMBus0 Block Diagram
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29.1.  Supporting Documents
It is assumed the reader is familiar with or has access to the following supporting documents:

1.  The I2C-Bus and How to Use It (including specifications), Philips Semiconductor.

2.  The I2C-Bus Specification—Version 2.0, Philips Semiconductor.

3.  System Management Bus Specification—Version 1.1, SBS Implementers Forum.

29.2.  SMBus Configuration
Figure 29.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 
3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. However, the maximum 
voltage on any port pin must conform to the electrical characteristics specifications. The bi-directional SCL (serial 
clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pullup resistor or 
similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the 
SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of 
devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 
1000 ns, respectively.

Figure 29.2. Typical SMBus Configuration

29.3.  SMBus Operation
Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver 
(WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device 
initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may 
operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more 
masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master 
always winning the arbitration. It is not necessary to specify one device as the Master in a system; any device who 
transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave 
address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Bytes that are received (by a 
master or slave) are acknowledged (ACK) with a low SDA during a high SCL (see Figure 29.3). If the receiving 
device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a 
high SCL.

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 
1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation. 
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All transactions are initiated by a master, with one or more addressed slave devices as the target. The master 
generates the START condition and then transmits the slave address and direction bit. If the transaction is a 
WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK 
from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from 
the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to 
terminate the transaction and free the bus. Figure 29.3 illustrates a typical SMBus transaction.

Figure 29.3. SMBus Transaction

29.3.1. Transmitter vs. Receiver

On the SMBus communications interface, a device is the “transmitter” when it is sending an address or data byte to 
another device on the bus. A device is a “receiver” when an address or data byte is being sent to it from another 
device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of 
address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK 
phase of the transfer, during which time the receiver controls the SDA line.

29.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and 
SDA lines remain high for a specified time (see Section “29.3.5. SCL High (SMBus Free) Timeout” on page 345). In 
the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed 
to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while 
the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the 
HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without 
interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration 
scheme is non-destructive: one device always wins, and no data is lost.

29.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed 
capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave 
devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock 
low period, effectively decreasing the serial clock frequency.

29.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the 
master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol 
specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a 
“timeout” condition. Devices that have detected the timeout condition must reset the communication no later than 
10 ms after detecting the timeout condition. 

For the SMBus0 interface, Timer 3 is used to implement SCL low timeouts. The SCL low timeout feature is enabled 
by setting the SMB0TOE bit in SMB0CF. The associated timer is forced to reload when SCL is high, and allowed to 
count when SCL is low. With the associated timer enabled and configured to overflow after 25 ms (and SMB0TOE 
set), the timer interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an 
SCL low timeout.
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29.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus is 
designated as free. When the SMB0FTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA 
remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock 
source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. A 
clock source is required for free timeout detection, even in a slave-only implementation.

29.4.  Using the SMBus
The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for 
serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following 
application-independent features:

Byte-wise serial data transfers

Clock signal generation on SCL (Master Mode only) and SDA data synchronization

Timeout/bus error recognition, as defined by the SMB0CF configuration register

START/STOP timing, detection, and generation

Bus arbitration

Interrupt generation

Status information

Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware 
acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is 
acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving an ACK), this 
interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data 
(i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software 
may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always 
generated after the ACK cycle. See Section 29.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end 
of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find 
the cause of the SMBus interrupt. Table 29.5 provides a quick SMB0CN decoding reference.

29.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the 
SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is 
enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events 
inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all 
received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be 
inhibited following the next START (interrupts will continue for the duration of the current transfer).

Table 29.1. SMBus Clock Source Selection

SMBCS SMBus0 Clock Source

00 Timer 0 Overflow

01 Timer 1 Overflow

10 Timer 2 High Byte Overflow

11 Timer 2 Low Byte Overflow
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The SMBCS bit field selects the SMBus clock source, which is used only when operating as a master or when the 
Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the 
absolute minimum SCL low and high times as defined in Equation 29.1.The selected clock source may be shared 
by other peripherals so long as the timer is left running at all times.

Equation 29.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per 
Equation 29.1. When the interface is operating as a master (and SCL is not driven or extended by any other 
devices on the bus), the typical SMBus bit rate is approximated by Equation 29.2.

Equation 29.2. Typical SMBus Bit Rate

Figure 29.4 shows the typical SCL generation described by Equation 29.2. Notice that THIGH is typically twice as 
large as TLOW. The actual SCL output may vary due to other devices on the bus (SCL may be extended low by 
slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will 
never exceed the limits defined by equation Equation 29.1.

Figure 29.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup 
time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum 
SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions 
from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus 
Specification requirements of 250 ns and 300 ns, respectively. Table 29.2 shows the minimum setup and hold 
times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary for SMBus 
compliance when SYSCLK is above 10 MHz.

Table 29.2. Minimum SDA Setup and Hold Times
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With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts 
(see Section “29.3.4. SCL Low Timeout” on page 344). The SMBus interface will force the associated timer to 
reload while SCL is high, and allow the timer to count when SCL is low. The timer interrupt service routine should 
be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be 
considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 29.4).

29.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information. The higher four bits of SMB0CN 
(MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER 
indicates whether a device is the master or slave during the current transfer. TXMODE indicates whether the 
device is transmitting or receiving data for the current byte. 

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. 
STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to 
STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free 
(STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause 
the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both 
set (while in Master Mode), a STOP followed by a START will be generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is 
transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. 
ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when 
an arbitration is lost; see Table 29.3 for more details. 

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus 
is stalled until software clears SI. 

29.4.2.1.  Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect incoming slave 
addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing the ACK bit defines 
the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK 
cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ 
is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated 
if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately 
following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not 
acknowledged, further slave events will be ignored until the next START is detected.

29.4.2.2.  Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK generation is 
enabled. More detail about automatic slave address recognition can be found in Section 29.4.3. As a receiver, the 
value currently specified by the ACK bit will be automatically sent on the bus during the ACK cycle of an incoming 
data byte. As a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. The ACKRQ bit 
is not used when hardware ACK generation is enabled. If a received slave address is NACKed by hardware, 
further slave events will be ignored until the next START is detected, and no interrupt will be generated.

Table 29.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 29.5 for SMBus status 
decoding using the SMB0CN register. 

Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgment, the s/
w delay occurs between the time SMB0DAT or ACK is written and when SI0 is cleared. Note that if SI is cleared in the 
same write that defines the outgoing ACK value, s/w delay is zero.

Table 29.2. Minimum SDA Setup and Hold Times

EXTHOLD Minimum SDA Setup Time Minimum SDA Hold Time
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29.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an ACK 
without software intervention. Automatic slave address recognition is enabled by setting the EHACK bit in register 
SMB0ADM to 1. This will enable both automatic slave address recognition and automatic hardware ACK 
generation for received bytes (as a master or slave). More detail on automatic hardware ACK generation can be 
found in Section 29.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave Address 
register and the SMBus Slave Address Mask register. A single address or range of addresses (including the 
General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two 
registers are used to define which addresses will be ACKed. A 1 in a bit of the slave address mask SLVM enables 
a comparison between the received slave address and the hardware’s slave address SLV for that bit. A 0 in a bit of 

Table 29.3. Sources for Hardware Changes to SMB0CN

Bit Set by Hardware When: Cleared by Hardware When:

MASTER
A START is generated. A STOP is generated.

Arbitration is lost.

TXMODE

START is generated.

SMB0DAT is written before the start of an 
SMBus frame.

A START is detected.

Arbitration is lost.

SMB0DAT is not written before the 
start of an SMBus frame.

STA
A START followed by an address byte is 

received.
Must be cleared by software.

STO
A STOP is detected while addressed as a 

slave.

Arbitration is lost due to a detected STOP.

A pending STOP is generated.

ACKRQ
A byte has been received and an ACK 

response value is needed (only when 
hardware ACK is not enabled).

After each ACK cycle.

ARBLOST

A repeated START is detected as a 
MASTER when STA is low (unwanted 
repeated START).

SCL is sensed low while attempting to 
generate a STOP or repeated START 
condition.

SDA is sensed low while transmitting a 1 
(excluding ACK bits).

Each time SIn is cleared.

ACK
The incoming ACK value is low 

(ACKNOWLEDGE).
The incoming ACK value is high 

(NOT ACKNOWLEDGE).

SI

A START has been generated.

Lost arbitration.

A byte has been transmitted and an ACK/
NACK received.

A byte has been received.

A START or repeated START followed by a 
slave address + R/W has been received. 

A STOP has been received. 

Must be cleared by software.
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the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this case, either 
a 1 or a 0 value are acceptable on the incoming slave address. Additionally, if the GC bit in register SMB0ADR is 
set to 1, hardware will recognize the General Call Address (0x00). Table 29.4 shows some example parameter 
settings and the slave addresses that will be recognized by hardware under those conditions.

29.4.4. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been 
received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt 
to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface 
may be in the process of shifting a byte of data into or out of the register. 

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is 
located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. 
SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from 
master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

Table 29.4. Hardware Address Recognition Examples (EHACK = 1)

Hardware Slave Address

SLV

Slave Address Mask

SLVM

GC bit Slave Addresses Recognized by 
Hardware

0x34 0x7F 0 0x34

0x34 0x7F 1 0x34, 0x00 (General Call)

0x34 0x7E 0 0x34, 0x35

0x34 0x7E 1 0x34, 0x35, 0x00 (General Call)

0x70 0x73 0 0x70, 0x74, 0x78, 0x7C
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29.5.  SMBus Transfer Modes
The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be 
operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave 
Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode 
until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte 
frames. The position of the ACK interrupt when operating as a receiver depends on whether hardware ACK 
generation is enabled. As a receiver, the interrupt for an ACK occurs before the ACK with hardware ACK 
generation disabled, and after the ACK when hardware ACK generation is enabled. As a transmitter, interrupts 
occur after the ACK, regardless of whether hardware ACK generation is enabled or not.

29.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a 
transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the 
START condition and transmits the first byte containing the address of the target slave and the data direction bit. In 
this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial 
data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the 
STO bit is set and a STOP is generated. The interface will switch to Master Receiver Mode if SMB0DAT is not 
written following a Master Transmitter interrupt. Figure 29.5 shows a typical master write sequence. Two transmit 
data bytes are shown, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” 
interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 29.5. Typical Master Write Sequence

A AAS W PData Byte Data ByteSLA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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29.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a 
transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the 
START condition and transmits the first byte containing the address of the target slave and the data direction bit. In 
this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA 
while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. 

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received 
byte. Software must write the ACK bit at that time to ACK or NACK the received byte. 

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and 
then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by 
the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK 
bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set 
and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an 
active Master Receiver. Figure 29.6 shows a typical master read sequence. Two received data bytes are shown, 
though any number of bytes may be received. Notice that the ‘data byte transferred’ interrupts occur at different 
places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs before
the ACK with hardware ACK generation disabled, and after the ACK when hardware ACK generation is enabled.

Figure 29.6. Typical Master Read Sequence

Data ByteData Byte A NAS R PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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29.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a 
receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), 
the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in 
this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is 
generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or 
ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply 
the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will 
occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next 
START is detected. If the received slave address is acknowledged, zero or more data bytes are received. 

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received 
byte. Software must write the ACK bit at that time to ACK or NACK the received byte. 

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and 
then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by 
the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. The interface will switch to Slave Transmitter 
Mode if SMB0DAT is written while an active Slave Receiver. Figure 29.7 shows a typical slave write sequence. Two 
received data bytes are shown, though any number of bytes may be received. Notice that the ‘data byte 
transferred’ interrupts occur at different places in the sequence, depending on whether hardware ACK generation 
is enabled. The interrupt occurs before the ACK with hardware ACK generation disabled, and after the ACK when 
hardware ACK generation is enabled.

Figure 29.7. Typical Slave Write Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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29.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a 
receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), 
the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave 
address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering 
Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the 
received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK 
generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by 
SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next 
START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the 
received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface 
enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master 
sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If 
the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (an error condition may be 
generated if SMB0DAT is written following a received NACK while in slave transmitter mode). The interface exits 
slave transmitter mode after receiving a STOP. The interface will switch to slave receiver mode if SMB0DAT is not 
written following a Slave Transmitter interrupt. Figure 29.8 shows a typical slave read sequence. Two transmitted 
data bytes are shown, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” 
interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 29.8. Typical Slave Read Sequence

29.6.  SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in 
response to an SMBus event depend on whether hardware slave address recognition and ACK generation is 
enabled or disabled. Table 29.5 describes the typical actions when hardware slave address recognition and ACK 
generation is disabled. Table 29.6 describes the typical actions when hardware slave address recognition and ACK 
generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, 
TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific 
procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by 
hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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Table 29.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)  
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Values Read

Current SMbus State Typical Response Options

Values to 
Write
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1110 0 0 X A master START was generated.
Load slave address + R/W into 
SMB0DAT.

0 0 X 1100

1100

0 0 0
A master data or address byte was 
transmitted; NACK received.

Set STA to restart transfer. 1 0 X 1110

Abort transfer. 0 1 X —

0 0 1
A master data or address byte was 
transmitted; ACK received.

Load next data byte into SMB0-
DAT.

0 0 X 1100

End transfer with STOP. 0 1 X —

End transfer with STOP and start 
another transfer.

1 1 X —

Send repeated START. 1 0 X 1110

Switch to Master Receiver Mode 
(clear SI without writing new data 
to SMB0DAT).

0 0 X 1000

M
as
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r 

R
e
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1000 1 0 X
A master data byte was received; ACK 
requested.

Acknowledge received byte; 
Read SMB0DAT.

0 0 1 1000

Send NACK to indicate last byte, 
and send STOP.

0 1 0 —

Send NACK to indicate last byte, 
and send STOP followed by 
START.

1 1 0 1110

Send ACK followed by repeated 
START.

1 0 1 1110

Send NACK to indicate last byte, 
and send repeated START.

1 0 0 1110

Send ACK and switch to Master 
Transmitter Mode (write to 
SMB0DAT before clearing SI).

0 0 1 1100

Send NACK and switch to Mas-
ter Transmitter Mode (write to 
SMB0DAT before clearing SI).

0 0 0 1100
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0100

0 0 0
A slave byte was transmitted; NACK 
received.

No action required (expecting 
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted; ACK 
received.

Load SMB0DAT with next data 
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted; error 
detected.

No action required (expecting 
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error was 
detected while a Slave Transmission 
was in progress.

Clear STO.
0 0 X —

S
la
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0010

1 0 X
A slave address + R/W was received; 
ACK requested.

If Write, Acknowledge received 
address

0 0 1 0000

If Read, Load SMB0DAT with 
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

1 1 X
Lost arbitration as master; slave 
address + R/W received; ACK 
requested.

If Write, Acknowledge received 
address

0 0 1 0000

If Read, Load SMB0DAT with 
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

Reschedule failed transfer; 
NACK received address.

1 0 0 1110

0001

0 0 X
A STOP was detected while addressed 
as a Slave Transmitter or Slave 
Receiver.

Clear STO.
0 0 X —

1 1 X
Lost arbitration while attempting a 
STOP.

No action required (transfer 
complete/aborted).

0 0 0 —

0000 1 0 X
A slave byte was received; ACK 
requested.

Acknowledge received byte; 
Read SMB0DAT.

0 0 1 0000

NACK received byte. 0 0 0 —
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0010 0 1 X
Lost arbitration while attempting a 
repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a detected 
STOP. 

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 1 1 X
Lost arbitration while transmitting a 
data byte as master.

Abort failed transfer. 0 0 0 —

Reschedule failed transfer. 1 0 0 1110

Table 29.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)  (Continued)
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Table 29.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1)  
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e

Values Read

Current SMbus State Typical Response Options

Values to 
Write
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1110 0 0 X A master START was generated.
Load slave address + R/W into 
SMB0DAT.

0 0 X 1100

1100

0 0 0
A master data or address byte was 
transmitted; NACK received.

Set STA to restart transfer. 1 0 X 1110

Abort transfer. 0 1 X —

0 0 1
A master data or address byte was 
transmitted; ACK received.

Load next data byte into SMB0-
DAT.

0 0 X 1100

End transfer with STOP. 0 1 X —

End transfer with STOP and start 
another transfer.

1 1 X —

Send repeated START. 1 0 X 1110

Switch to Master Receiver Mode 
(clear SI without writing new data 
to SMB0DAT). Set ACK for initial 
data byte.

0 0 1 1000

M
as
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r 

R
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r

1000

0 0 1
A master data byte was received; ACK 
sent.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 1000

Set NACK to indicate next data 
byte as the last data byte;
Read SMB0DAT.

0 0 0 1000

Initiate repeated START. 1 0 0 1110

Switch to Master Transmitter 
Mode (write to SMB0DAT before 
clearing SI).

0 0 X 1100

0 0 0
A master data byte was received; 
NACK sent (last byte).

Read SMB0DAT; send STOP. 0 1 0 —

Read SMB0DAT; Send STOP 
followed by START.

1 1 0 1110

Initiate repeated START. 1 0 0 1110

Switch to Master Transmitter 
Mode (write to SMB0DAT before 
clearing SI).

0 0 X 1100
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0100

0 0 0
A slave byte was transmitted; NACK 
received.

No action required (expecting 
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted; ACK 
received.

Load SMB0DAT with next data 
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted; error 
detected.

No action required (expecting 
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error was 
detected while a Slave Transmission 
was in progress.

Clear STO.
0 0 X —

S
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0010

0 0 X
A slave address + R/W was received; 
ACK sent.

If Write, Set ACK for first data 
byte.

0 0 1 0000

If Read, Load SMB0DAT with 
data byte

0 0 X 0100

0 1 X
Lost arbitration as master; slave 
address + R/W received; ACK sent.

If Write, Set ACK for first data 
byte.

0 0 1 0000

If Read, Load SMB0DAT with 
data byte

0 0 X 0100

Reschedule failed transfer 1 0 X 1110

0001

0 0 X
A STOP was detected while 
addressed as a Slave Transmitter or 
Slave Receiver.

Clear STO.
0 0 X —

0 1 X
Lost arbitration while attempting a 
STOP.

No action required (transfer 
complete/aborted).

0 0 0 —

0000 0 0 X A slave byte was received.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 0000

Set NACK for next data byte;
Read SMB0DAT.

0 0 0 0000
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n 0010 0 1 X

Lost arbitration while attempting a 
repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a detected 
STOP. 

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 0 1 X
Lost arbitration while transmitting a 
data byte as master.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

Table 29.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1)  (Continued)
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29.7.  I2C / SMBus Control Registers

Register 29.1. SMB0CF: SMBus 0 Configuration

Bit 7 6 5 4 3 2 1 0

Name ENSMB INH BUSY EXTHOLD SMBTOE SMBFTE SMBCS

Type RW RW R RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xC1

Table 29.7. SMB0CF Register Bit Descriptions

Bit Name Function

7 ENSMB SMBus Enable.

This bit enables the SMBus interface when set to 1. When enabled, the interface con-
stantly monitors the SDA and SCL pins.

6 INH SMBus Slave Inhibit.

When this bit is set to logic 1, the SMBus does not generate an interrupt when slave 
events occur. This effectively removes the SMBus slave from the bus. Master Mode 
interrupts are not affected.

5 BUSY SMBus Busy Indicator.

This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 
when a STOP or free-timeout is sensed.

4 EXTHOLD SMBus Setup and Hold Time Extension Enable.

This bit controls the SDA setup and hold times.
0: Disable SDA extended setup and hold times.
1: Enable SDA extended setup and hold times.

3 SMBTOE SMBus SCL Timeout Detection Enable.

This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 3 to 
reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is 
configured to Split Mode, only the High Byte of the timer is held in reload while SCL is 
high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3 
interrupt service routine should reset SMBus communication.

2 SMBFTE SMBus Free Timeout Detection Enable.

When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high 
for more than 10 SMBus clock source periods.

1:0 SMBCS SMBus Clock Source Selection.

This field selects the SMBus clock source, which is used to generate the SMBus bit rate. 
See the SMBus clock timing section for additional details.
00: Timer 0 Overflow.
01: Timer 1 Overflow.
10: Timer 2 High Byte Overflow.
11: Timer 2 Low Byte Overflow.
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Register 29.2. SMB0CN: SMBus 0 Control

Bit 7 6 5 4 3 2 1 0

Name MASTER TXMODE STA STO ACKRQ ARBLOST ACK SI

Type R R RW RW R R RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xC0 (bit-addressable)

Table 29.8. SMB0CN Register Bit Descriptions

Bit Name Function

7 MASTER SMBus Master/Slave Indicator.

This read-only bit indicates when the SMBus is operating as a master.
0: SMBus operating in slave mode.
1: SMBus operating in master mode.

6 TXMODE SMBus Transmit Mode Indicator.

This read-only bit indicates when the SMBus is operating as a transmitter.
0: SMBus in Receiver Mode.
1: SMBus in Transmitter Mode.

5 STA SMBus Start Flag.

When reading STA, a '1' indicates that a start or repeated start condition was detected on 
the bus.
Writing a '1' to the STA bit initiates a start or repeated start on the bus.

4 STO SMBus Stop Flag.

When reading STO, a '1' indicates that a stop condition was detected on the bus (in slave 
mode) or is pending (in master mode).
When acting as a master, writing a '1' to the STO bit initiates a stop condition on the bus. 
This bit is cleared by hardware.

3 ACKRQ SMBus Acknowledge Request.

0: No ACK requested.
1: ACK requested.

2 ARBLOST SMBus Arbitration Lost Indicator.

0: No arbitration error.
1: Arbitration error occurred.

1 ACK SMBus Acknowledge.

When read as a master, the ACK bit indicates whether an ACK (1) or NACK (0) is 
received during the most recent byte transfer.
As a slave, this bit should be written to send an ACK (1) or NACK (0) to a master 
request. Note that the logic level of the ACK bit on the SMBus interface is inverted from 
the logic of the register ACK bit.
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0 SI SMBus Interrupt Flag.

This bit is set by hardware to indicate that the current SMBus state machine operation 
(such as writing a data or address byte) is complete. While SI is set, SCL is held low and 
SMBus is stalled. SI must be cleared by firmware. Clearing SI initiates the next SMBus 
state machine operation.

Table 29.8. SMB0CN Register Bit Descriptions

Bit Name Function
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Register 29.3. SMB0ADR: SMBus 0 Slave Address

Bit 7 6 5 4 3 2 1 0

Name SLV GC

Type RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xF4

Table 29.9. SMB0ADR Register Bit Descriptions

Bit Name Function

7:1 SLV SMBus Hardware Slave Address.

Defines the SMBus Slave Address(es) for automatic hardware acknowledgement. Only 
address bits which have a 1 in the corresponding bit position in SLVM are checked 
against the incoming address. This allows multiple addresses to be recognized.

0 GC General Call Address Enable.

When hardware address recognition is enabled (EHACK = 1), this bit will determine 
whether the General Call Address (0x00) is also recognized by hardware.
0: General Call Address is ignored.
1: General Call Address is recognized.
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Register 29.4. SMB0ADM: SMBus 0 Slave Address Mask

Bit 7 6 5 4 3 2 1 0

Name SLVM EHACK

Type RW RW

Reset 1 1 1 1 1 1 1 0

SFR Page = 0x0; SFR Address: 0xF5

Table 29.10. SMB0ADM Register Bit Descriptions

Bit Name Function

7:1 SLVM SMBus Slave Address Mask.

Defines which bits of register SMB0ADR are compared with an incoming address byte, 
and which bits are ignored. Any bit set to 1 in SLVM enables comparisons with the corre-
sponding bit in SLV. Bits set to 0 are ignored (can be either 0 or 1 in the incoming 
address).

0 EHACK Hardware Acknowledge Enable.

Enables hardware acknowledgement of slave address and received data bytes.
0: Firmware must manually acknowledge all incoming address and data bytes.
1: Automatic slave address recognition and hardware acknowledge is enabled.
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Register 29.5. SMB0DAT: SMBus 0 Data

Bit 7 6 5 4 3 2 1 0

Name SMB0DAT

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xC2

Table 29.11. SMB0DAT Register Bit Descriptions

Bit Name Function

7:0 SMB0DAT SMBus 0 Data.

The SMB0DAT register contains a byte of data to be transmitted on the SMBus serial 
interface or a byte that has just been received on the SMBus serial interface. The CPU 
can safely read from or write to this register whenever the SI serial interrupt flag is set to 
logic 1. The serial data in the register remains stable as long as the SI flag is set. When 
the SI flag is not set, the system may be in the process of shifting data in/out and the 
CPU should not attempt to access this register.
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30.  I2C Slave

The I2CSLAVE0 interface is a 2-wire, bidirectional serial bus that is compatible with the I2C Bus Specification 3.0. It 
is capable of transferring in high-speed mode (HS-mode) at speeds of up to 3.4 Mbps. Either the CPU or the DMA 
can write to the I2C interface, and the I2C interface can autonomously control the serial transfer of data. The 
interface also supports clock stretching for cases where the CPU may be temporarily prohibited from transmitting a 
byte or processing a received byte during an I2C transaction. It can also operate in sleep mode without an active 
system clock and wake the CPU when a matching slave address is received.

It operates only as an I2C slave device. The I2CSLAVE0 peripheral provides control of the SCL (serial clock) 
synchronization, SDA (serial data), SCL Clock stretching, I2C arbitration logic, and low power mode operation. The 
block diagram of the I2CSLAVE0 peripheral and the associated SFRs is shown in Figure 30.1.

Figure 30.1. I2CSLAVE0 Block Diagram
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30.1.  Supporting Documents
It is assumed that the reader is familiar or has access to the following supporting documents:

The I2C-bus specification and the user manual Rev. 0.3.

30.2.  The I2C Configuration
Figure 30.2 shows a typical I2C configuration. The I2C specification allows any recessive voltage between 3.0 and 
5.0 V; different devices on the bus may operate at different voltage levels.

Note: The port pins on the C8051F97x devices are not 5 V tolerant, therefore, the device may only be used in I2C networks 
where the supply voltage does not exceed VDD.

The bidirectional SCL and SDA lines must be connected to a positive power supply voltage through a pull-up 
resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for 
both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum 
number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 
the specifications defined in the I2C standard.

Figure 30.2. Typical I2C Configuration

30.3.  I2CSLAVE0 Operation
The I2CSLAVE0 peripheral supports two types of data transfers: I2C Read data transfers where data is transferred 
from the C8051F97x’s I2C slave peripheral to an I2C master, and I2C Write data transfers where data is transferred 
from an I2C master to the C8051F97x’s I2C slave peripheral. The I2C master initiates both types of data transfers 
and provides the serial clock pulses that the I2C slave peripheral detects on the SCL pin.

A typical I2C transaction consists of a START condition followed by an address byte (Bits7-1: 7-bit slave address; 
Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Bytes that are received are 
acknowledged (ACK) with a low SDA during a high SCL (refer to Figure 30.3).

Figure 30.3. I2C Transaction

VDD = 3 V
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Slave Address + R/W Data ByteSTART ACK NACK STOP
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The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 
1 to indicate a “READ” operation and cleared to logic 0 to indicate a “WRITE” operation.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master 
generates the START condition and then transmits the slave address and direction bit. If the transaction is a 
WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK 
from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from 
the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to 
terminate the transaction and free the bus. Figure 30.3 illustrates a typical I2C transaction.

30.3.1. Transmitter vs. Receiver

On the I2C communications interface, a device is the “transmitter” when it is sending an address or data byte to 
another device on the bus. A device is a “receiver” when an address or data byte is being sent to it from another 
device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of 
address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK 
phase of the transfer, during which time the receiver controls the SDA line.

30.3.2. Clock Stretching

The I2C bus specification provides transaction pause mechanism, which allows the slave device to force the 
master into a wait state until the slave device is ready for the next byte transaction. This is performed by the I2C 
slave holding the SCL line low. Hence, it is important that the master I2C device must not drive the SCL line using a 
push-pull output.

In the C8051F97x I2CSLAVE0 peripheral, clock stretching is only performed on the SCL falling edge associated 
with the ACK or NACK bit. Clock stretching is always performed on every byte transaction that is addressed to the 
I2CSLAVE0 peripheral. Clock stretching is completed by the I2CSLAVE0 peripheral when it releases the SCL line 
from the low state. The I2CSLAVE0 peripheral releases the SCL line when any one of the following conditions are 
met:

Software writes a 0 to the I2C0INT bit in I2C0STAT,

DMA completes a data transfer to or from the I2CSLAVE0 peripheral in response to a DMA request from 
the I2CSLAVE0 peripheral.
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30.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the 
master cannot force the SCL line high to correct the error condition. To solve this problem, the I2CSLAVE0 
peripheral supports a timeout feature to allow the firmware to detect and handle this condition.

This feature is enabled when the TOUTEN bit in I2C0CNTL is set, and Timer 3 is configured to run in 16-bit auto-
reload mode (T3SPLIT set to 0 in TMR3CN). When this feature is enabled, Timer 3 is forced to reload when SCL is 
high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after a system-
defined time (and TOUTEN bit set), the Timer 3 interrupt service routine can be used to detect and handle this error 
condition.

30.3.4. HS-mode

The I2C Specification supports High-speed mode (HS-mode) transfer which allows devices to transfer data at rates 
of up to 3.4 Mbps and yet remain fully downward compatible with slower speed devices. This allows HS-mode 
devices to operate in a mixed-speed bus system. Refer to the I2C Specification for details on the electrical and 
timing requirements for HS-mode operation. The I2CSLAVE0 peripheral is compatible with the I2C HS-mode 
operation without any software intervention other than requiring that firmware enable the I2CSLAVE0 peripheral.

By default, the I2C bus operates at speeds of up to Fast-mode (F/S mode) only, where the maximum transfer rate 
is 400 kbps. The I2C bus switches to from F/S mode to HS-mode only after the following sequence of bits appear 
on the I2C bus:

1.  START bit (S)

2.  8-bit master code (0000 1XXX)

3.  NACK bit (N)

The HS-mode master codes are reserved 8-bit codes which are not used for slave addressing or other purposes. 
An HS-mode compatible I2C master device will switch the I2C bus to HS-mode by transmitting the above sequence 
of bits on the I2C bus at a transfer rate of not more than 400 kbps. After that, the master can switch to HS-mode to 
transfer data at a rate of up to 3.4 Mbps. The I2C bus switches back to F/S mode when the I2C master transmits a 
STOP bit. Figure 30.4 shows this in clearer detail.

Figure 30.4. Data Transfer Switching between F/S Mode and HS-Mode

Master codeS N Sr SLA R/W A DATA+ACKs A/N P

Master codeS N Sr SLA R/W A DATA+ACKs A/N Sr SLA R/W A P

F/S-mode HS-mode

F/S-mode HS-mode
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30.3.5. DMA and CPU Mode Operations

The I2CSLAVE0 peripheral can operate in either CPU or DMA mode. In CPU mode, all data transfers occur 
through software reading from the I2C0DIN register or writing to the I2C0DOUT register. By default, the 
I2CSLAVE0 peripheral operates in CPU mode for all I2C Read and Write requests.

In DMA mode, all data transfers are executed by the DMA peripheral automatically without any CPU intervention. 
However, I2C0INT must still be cleared by firmware after a START+Slave address has been received. When a 
DMA channel has been selected and enabled for data transfer from I2C0DIN to XRAM, the I2CSLAVE0 peripheral 
operates in DMA mode for all I2C Write requests. When a DMA channel has been selected and enabled for data 
transfer from XRAM to I2C0DOUT, the I2CSLAVE0 peripheral operates in DMA mode for all I2C Read requests.

30.4.  Using the I2CSLAVE0 Module
I2CSLAVE0 operates only in Slave mode. The interface provides timing and shifting control for serial transfers; 
higher level protocol is determined by user software. The I2C interface provides the following application-
independent features:

Byte-wise serial data transfers

SDA data synchronization

Timeout recognition, as defined by the I2C0CNTL configuration register

START/STOP detection

Interrupt generation

Status information

Interfacing to the DMA to automate data transfers

High-speed I2C mode detection

Automatic wakeup from Sleep mode when matching slave address is received

Hardware recognition of slave address and automatic acknowledgment of address/data

An I2CSLAVE0 interrupt is generated when the RD, WR or STOP bit is set in the I2C0STAT SFR. It is also 
generated when the ACTIVE bit goes low to indicate the end of an I2C bus transfer. Refer to the I2C0STAT SFR 
definition for complete details on the conditions for the setting and clearing of these bits.

30.4.1. I2C0CNTL Control Register

The I2C0CNTL register is used to control the I2CSLAVE0 interface (see SFR Definition 26.5). The two bits, 
I2C0SEL and I2C0EN, are used to enable and disable the I2CSLAVE0 interface and associated pins. The 
I2CSLAVE0 peripheral must be enabled in the following sequence:

1.  Set I2C0SEL bit in the I2C0CNTL SFR.

2.  Set I2C0EN bit in the I2C0CNTL SFR.

This correct sequence of enabling the I2CSLAVE0 ensures the peripheral processes the initial data transfers 
correctly.

TOUTEN is used to enable the SCL Low Timeout detection. Refer to section SCL Low Timeout for more details.

PRELOADDIS is used to control whether the data byte must be preloaded before the first SCL clock of an I2C 
Read transaction. It should always be set to 1.

BUSY bit controls the automatic hardware acknowledgment of I2C slave address match or I2C Write transactions. 
When cleared to 0, automatic hardware acknowledgment is enabled.

30.4.2. I2C0STAT Status Register

The I2C0STAT register is used to provide status information (see SFR Definition 26.4). The HSMODE bit is used to 
indicate whether the I2C bus is operating in High-Speed mode as defined in the I2C Specification. This bit is set 
after the I2C bus is detected to be operating in HS-mode (refer to section HS-mode for details on how the I2C bus 
switch modes). When the I2C bus switches back to F/S-mode operation, the HSMODE bit is cleared.

The setting and clearing of the status bits are described in detail in section I2C Transfer Modes and the SFR 
Definition 26.4.
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30.4.3. I2C0SLAD Slave Address Register

The I2CSLAVE0 peripheral can be configured to recognize a specific slave address and respond with an ACK 
without any software intervention. This feature is enabled by software in the following sequence writes to the 
I2CSLAVE0 registers;

1.  Clearing BUSY bit in I2C0CNTL to enable automatic ACK response.

2.  Writing the slave address to I2C0SLAD.

3.  Setting I2C0SEL bit in I2C0CNTL to enable the SCL and SDA pads.

4.  Setting I2C0EN bit in I2C0CNTL to enable the I2CSLAVE0 peripheral.

30.4.4. I2C0DIN Received Data Register

The I2C0DIN register holds the serial data that has just been received on the I2C bus and addressed to the local 
device. When the I2CSLAVE0 is operating in CPU mode for I2C Write operations, software may safely read from 
this register when the I2C0INT flag is set. It is not safe to read from this register in any one of the following 
conditions:

The I2C0INT flag is cleared to logic 0.

The I2CSLAVE0 is operating in DMA mode for I2C Write operations.

When the I2CSLAVE0 is operating in DMA mode for I2C Write operations, software should access the received 
data from the XRAM where the DMA has transferred the received data.

30.4.5. I2C0DOUT Transmit Data Register

The I2C0DOUT register holds the serial data that is to be transmitted on the I2C bus. When the I2CSLAVE0 is 
operating in CPU mode for I2C Read operations, software may safely write to this register when the I2C0INT flag is 
set. It is not safe to write to this register in any one of the following conditions:

The I2C0INT flag is cleared to logic 0

The I2CSLAVE0 is operating in DMA mode for I2C Read operations 

When the I2CSLAVE0 is operating in DMA mode for I2C Read operations, software should setup the data to be 
transmitted in XRAM and configure the DMA to transfer the data from XRAM to the I2C0DOUT register.
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30.5.  I2C Transfer Modes
The I2CSLAVE0 interface may be operating in either I2C Write or I2C Read mode. Data transfers can also be 
controlled by DMA, depending on whether a DMA channel has selected I2C Read or Write as a data transfer 
function. The following sub-sections describe in detail the setting and clearing of various status bits in the 
I2C0STAT register during different modes of operations. In all modes, the I2CSLAVE0 peripheral performs clock 
stretching automatically on every SCL falling edge associated with the ACK or NACK bit.

30.5.1. I2C Write Sequence (CPU mode)

Figure 30.5 shows the details of how the I2C0STAT status bits change during an I2C Write data transfer.

Figure 30.5. Typical I2C Write Sequence in CPU Mode

Note that at “f” in the above sequence, it is possible to leave the BUSY bit at 0. In this case, the master will receive 
an ACK instead at “g” and it would still be possible for the I2C master to generate a STOP bit immediately after the 
ACK.
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30.5.2. I2C Read Sequence (CPU mode)

Figure 30.6 shows the details of how the I2C0STAT status bits change during an I2C Read data transfer.

Figure 30.6. Typical I2C Read Sequence in CPU Mode

Note that the I2C Master MUST always generate a NACK before it can generate a repeated START bit or a STOP 
bit. This is because the NACK will cause the I2C Slave to release the SDA line for the I2C Master to generate the 
START or STOP bit.

30.5.3. I2C Write Sequence (DMA mode)

Figure 30.7 shows the details of how the I2C0STAT status bits change during an I2C Write data transfer.
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4
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Figure 30.7. Typical I2C Write Sequence in DMA Mode
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30.5.4. I2C Read Sequence (DMA Mode)

Figure 30.8. Typical I2C Read Sequence in DMA Mode

SLA A

I2C0 module – DMA mode – clock stretch – Read

Sleep Active

S ADB0 ADB1 NDB2 Sr SLA A NDB3 P
In

t

1

2 3

N
o 

In
t

4

N
o 

In
t

In
t

In
t

In
t

In
t

1 SLA+R wakes CPU from sleep mode.
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INT generated.   CPU configures DMA for I2C Read.  CPU performs SW DMA request to transfer DB0 from XRAM to 
I2C0DOUT.  SCL is held until CPU clears I2C0INT.

3 DMA transfers DB1 from XRAM to I2C0DOUT and asserts i2c_dma_ack which releases SCL

4
NACK switches I2C slave into IDLE state. Any following DB are ignored. If RpStart follows NACK, the START sticky bit will 
be set, but no interrupt.

5 STOP generates interrupt.  No Clock Stretch.  CPU clears I2C0INT
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I2C0INT = x1101001; CPU clears START. CPU configures DMA for I2C Read; CPU starts SW DMA to transfer DB0 from 
XRAM to I2CDOUT. CPU clears I2C0INT

b I2C0STAT = x1000000; DMA transfers DB1 from XRAM to I2C0DOUT
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30.6.  I2CSLAVE0 Slave Registers

Register 30.1. I2C0DIN: I2C0 Received Data

Bit 7 6 5 4 3 2 1 0

Name I2C0DIN

Type R

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xA5

Bit Name Function

7:0 I2C0DIN I2C0 Received Data.

This field is the data byte received from the I2C bus during a write operation.
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Register 30.2. I2C0DOUT: I2C0 Transmit Data

Bit 7 6 5 4 3 2 1 0

Name I2C0DOUT

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xA4

Bit Name Function

7:0 I2C0DOUT I2C0 Transmit Data.

This field is the data byte to transmit to the I2C bus during a read operation.
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Register 30.3. I2C0SLAD: I2C0 Slave Address

Bit 7 6 5 4 3 2 1 0

Name Reserved I2C0SLAD

Type RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xAD

Bit Name Function

7 Reserved Must write reset value.

6:0 I2C0SLAD I2C Hardware Slave Address.

This field defines the I2C0 Slave Address for automatic hardware acknowledgement. 
When the received I2C address matches this field, hardware sets the I2C0INT bit in the 
I2C0STAT register.
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Register 30.4. I2C0STAT: I2C0 Status

Bit 7 6 5 4 3 2 1 0

Name HSMODE ACTIVE I2C0INT NACK START STOP WR RD

Type R R RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xF8 (bit-addressable)

Bit Name Function

7 HSMODE High Speed Mode.

This bit is set to 1 by hardware when a High Speed master code is received received and 
automatically clears when a STOP event occurs.

6 ACTIVE Bus Active.

This bit is set to 1 by hardware when an incoming slave address matches and automati-
cally clears when the transfer completes with either a STOP or a NACK event.

5 I2C0INT I2C Interrupt.

This bit is set when a read (RD), write (WR), or a STOP event (STOP) occurs. This bit 
will also set when the ACTIVE bit goes low to indicate the end of a transfer. This bit will 
generate an interrupt, and hardware will automatically clear this bit after the RD and WR 
bits clear.

4 NACK NACK.

This bit is set by hardware when one of the following conditions are met:
- A NACK is transmitted by either a Master or a Slave when the ACTIVE bit is high.
- An I2C slave transmits a NACK to a matching slave address.
Hardware will automatically clear this bit.

3 START Start.

This bit is set  by hardware when a START is received and a matching slave address is 
received. Hardware will automatically clear this bit.

2 STOP Stop.

This bit is set by hardware when a STOP is received and the last slave address received 
matches the value in the I2C0SLAD register. Hardware will automatically clear this bit.

1 WR I2C Write.

This bit is set by hardware on the 9th SCL falling edge when one of the following condi-
tions are met:
- The I2C0 Slave responds with an ACK, and the DMA has not enabled I2C Write as a 
data transfer function.
- The I2C0 Slave responds with a NACK, and the DMA has not enabled I2C Write as a 
data transfer function.
- The current byte transaction has a matching I2C0 Slave address and the 8th bit was a 
WRITE bit (0).
This bit will set the I2C0INT bit and generate an interrupt, if enabled. Hardware will auto-
matically clear this bit.
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0 RD I2C Read.

This bit is set by hardware on the 9th SCL falling edge when one of the following condi-
tions are met:
- The I2C Master responds with an ACK, and the DMA has not enabled I2C0 Slave Read 
as a data transfer function.
- I2C Master responds with a NACK.
- The current byte transaction has a matching I2C slave address and the 8th bit was a 
READ bit (1).
This bit will set the I2C0INT bit and generate an interrupt, if enabled. Hardware will auto-
matically clear this bit.

Bit Name Function
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Register 30.5. I2C0CN: I2C0 Control

Bit 7 6 5 4 3 2 1 0

Name Reserved PUEN PINMD TIMEOUT PRELOAD I2C0EN BUSY

Type R RW RW RW RW RW RW

Reset 0 0 0 0 0 1 0 1

SFR Page = 0xF; SFR Address: 0xAC

Bit Name Function

7:6 Reserved Must write reset value.

5 PUEN I2C Pull-Up Enable.

0: Disable internal pull-up resistors for the I2C0 Slave SCL and SDA pins.
1: Enable internal pull-up resistors for the I2C0 Slave SCL and SDA pins.

4 PINMD Pin Mode Enable.

0: Set the I2C0 Slave pins in GPIO mode.
1: Set the I2C0 Slave pins in I2C mode.

3 TIMEOUT Timeout Enable.

When this bit is set, Timer 3 will start counting only when SCL is low. When SCL is high, 
Timer 3 will auto-reload with the value from the reload registers. Timer 3 must be config-
ured for 16-bit auto-reload mode.
0: Disable I2C SCL timeout detection using Timer 3.
1: Enable I2C SCL timeout detection using Timer 3.

2 PRELOAD Preload Disable.

0: Data bytes must be written into the I2C0DOUT register before the 8th SCL clock of the 
matching slave address byte transfer arrives for an I2C read operation.
1: Data bytes need not be preloaded for I2C read operations. The data byte can be writ-
ten to I2C0DOUT during interrupt servicing or by the DMA.

1 I2C0EN I2C Enable.

This bit enables the I2C0 Slave module. PINMD must be enabled first before this bit is 
enabled.
0: Disable the I2C0 Slave module.
1: Enable the I2C0 Slave module.

0 BUSY Busy.

0: Device will acknowledge an I2C master.
1: Device will not respond to an I2C master. All I2C data sent to the device will be 
NACKed.
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31.  Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced 
baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section 
“31.1. Enhanced Baud Rate Generation” on page 380). Received data buffering allows UART0 to start reception of 
a second incoming data byte before software has finished reading the previous data byte. 

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The 
single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access 
the transmit register. Reads of SBUF0 always access the buffered receive register; it is not possible to 
read data from the transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI is set in SCON0), 
or a data byte has been received (RI is set in SCON0). The UART0 interrupt flags are not cleared by hardware 
when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing soft-
ware to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 31.1. UART0 Block Diagram

31.1.  Enhanced Baud Rate Generation
The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the 
RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 31.2), which is not user-accessible. Both TX 
and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when 
Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START 
condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of 
the TX Timer state.
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Figure 31.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload. The Timer 1 reload value should be set so that 
overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one 
of six sources: SYSCLK, SYSCLK/4, SYSCLK/12, SYSCLK/48, the external oscillator clock/8, or an external input 
T1. For any given Timer 1 overflow rate, the UART0 baud rate is determined by Equation 31.1.

Equation 31.1. UART0 Baud Rate

Timer 1 overflow rate is selected as described in the Timer section. A quick reference for typical baud rates and 
system clock frequencies is given in Table 31.1.
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31.2.  Operational Modes
UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by 
the S0MODE bit in register SCON. 

31.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. 
Data are transmitted LSB first from the TX pin and received at the RX pin. On receive, the eight data bits are stored 
in SBUF0 and the stop bit goes into RB8 in the SCON register. 

Data transmission begins when software writes a data byte to the SBUF0 register. The TI Transmit Interrupt Flag is 
set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the 
REN Receive Enable bit is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 
receive register if the following conditions are met: RI must be logic 0, and if MCE is logic 1, the stop bit must be 
logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register 
and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB8 and the RI flag is 
set. If these conditions are not met, SBUF0 and RB8 will not be loaded and the RI flag will not be set. An interrupt 
will occur if enabled when either TI or RI is set.

Figure 31.3. 8-Bit UART Timing Diagram
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31.2.2. 9-Bit UART 

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth 
data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB8, which is assigned 
by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used 
in multiprocessor communications. On receive, the ninth data bit goes into RB8 and the stop bit is ignored. 

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI Transmit Interrupt 
Flag is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time 
after the REN Receive Enable bit is set to 1. After the stop bit is received, the data byte will be loaded into the 
SBUF0 receive register if the following conditions are met: (1) RI must be logic 0, and (2) if MCE is logic 1, the 9th 
bit must be logic 1 (when MCE is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, 
the eight bits of data are stored in SBUF0, the ninth bit is stored in RB8, and the RI flag is set to 1. If the above 
conditions are not met, SBUF0 and RB8 will not be loaded and the RI flag will not be set to 1. A UART0 interrupt 
will occur if enabled when either TI or RI is set to 1.

Figure 31.4. 9-Bit UART Timing Diagram
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31.3.  Multiprocessor Communications
9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave 
processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, 
it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is 
logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE bit of a slave processor configures its UART such that when a stop bit is received, the UART will 
generate an interrupt only if the ninth bit is logic 1 (RB8 = 1) signifying an address byte has been received. In the 
UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If 
the addresses match, the slave will clear its MCE bit to enable interrupts on the reception of the following data 
byte(s). Slaves that weren't addressed leave their MCE bits set and do not generate interrupts on the reception of 
the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave 
resets its MCE bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, 
thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be 
configured to receive all transmissions or a protocol can be implemented such that the master/slave role is 
temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 31.5. UART Multi-Processor Mode Interconnect Diagram
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Table 31.1. Timer Settings for Standard Baud Rates Using The Internal 24.5 MHz Oscillator

Frequency: 49 MHz

Target 

Baud Rate 
(bps)

Baud Rate 
% Error

Oscillator 
Divide 
Factor

Timer Clock 
Source

SCA1–SCA0

(pre-scale 

select)1

T1M1 Timer 1 
Reload 

Value (hex)

S
Y

S
C

L
K

 f
ro

m
 

In
te

rn
al

 O
sc

.

230400 –0.32% 106 SYSCLK XX2 1 0xCB

115200 –0.32% 212 SYSCLK XX 1 0x96

57600 0.15% 426 SYSCLK XX 1 0x2B

28800 –0.32% 848 SYSCLK/4 01 0 0x96

14400 0.15% 1704 SYSCLK/12 00 0 0xB9

9600 –0.32% 2544 SYSCLK/12 00 0 0x96

2400 –0.32% 10176 SYSCLK/48 10 0 0x96

1200 0.15% 20448 SYSCLK/48 10 0 0x2B

Notes:
1. SCA1–SCA0 and T1M bit definitions can be found in Timer1 chapter.
2. X = Don’t care.
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31.4.  UART Control Registers

Register 31.1. SCON0: UART0 Serial Port Control

Bit 7 6 5 4 3 2 1 0

Name SMODE Reserved MCE REN TB8 RB8 TI RI

Type RW R RW RW RW RW RW RW

Reset 0 1 0 0 0 0 0 0

SFR Page = ALL; SFR Address: 0x98 (bit-addressable)

Table 31.2. SCON0 Register Bit Descriptions

Bit Name Function

7 SMODE Serial Port 0 Operation Mode.

Selects the UART0 Operation Mode.
0: 8-bit UART with Variable Baud Rate (Mode 0).
1: 9-bit UART with Variable Baud Rate (Mode 1).

6 Reserved Must write reset value.

5 MCE Multiprocessor Communication Enable.

This bit enables checking of the stop bit or the 9th bit in multi-drop communication buses. 
The function of this bit is dependent on the UART0 operation mode selected by the 
SMODE bit. In Mode 0 (8-bits), the peripheral will check that the stop bit is logic 1. In 
Mode 1 (9-bits) the peripheral will check for a logic 1 on the 9th bit. 
0: Ignore level of 9th bit / Stop bit.
1: RI is set and an interrupt is generated only when the stop bit is logic 1 (Mode 0) or 
when the 9th bit is logic 1 (Mode 1).

4 REN Receive Enable.

0: UART0 reception disabled.
1: UART0 reception enabled.

3 TB8 Ninth Transmission Bit.

The logic level of this bit will be sent as the ninth transmission bit in 9-bit UART Mode 
(Mode 1). Unused in 8-bit mode (Mode 0).

2 RB8 Ninth Receive Bit.

RB8 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th 
data bit in Mode 1.

1 TI Transmit Interrupt Flag.

Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 
8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the 
UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 inter-
rupt service routine. This bit must be cleared manually by firmware.
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0 RI Receive Interrupt Flag.

Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP 
bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1 causes the 
CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually 
by firmware.

Table 31.2. SCON0 Register Bit Descriptions

Bit Name Function
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Register 31.2. SBUF0: UART0 Serial Port Data Buffer

Bit 7 6 5 4 3 2 1 0

Name SBUF0

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x99

Table 31.3. SBUF0 Register Bit Descriptions

Bit Name Function

7:0 SBUF0 Serial Data Buffer.

This SFR accesses two registers; a transmit shift register and a receive latch register. 
When data is written to SBUF0, it goes to the transmit shift register and is held for serial 
transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 
returns the contents of the receive latch.
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32.  Timers (Timer0, Timer1, Timer2, and Timer3)

Each MCU in the C8051F97x family includes four counter/timers: two are 16-bit counter/timers compatible with 
those found in the standard 8051, and two are 16-bit auto-reload timers for timing peripherals or for general 
purpose use. These timers can be used to measure time intervals, count external events and generate periodic 
interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and 
Timer 3 are also identical and offer both 16-bit and split 8-bit timer functionality with auto-reload capabilities. 
Timer 2 and Timer 3 both offer a capture function, but are different in their system-level connections. Timer 2 is 
capable of performing a capture function on an external signal input routed through the crossbar, while the Timer 3 
capture is dedicated to the low-frequency oscillator output. Table 32.1 summarizes the modes available to each 
timer.

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M–T0M) and 
the Clock Scale bits (SCA1–SCA0). The Clock Scale bits define a prescaled clock from which Timer 0 and/or 
Timer 1 may be clocked.

Timer 0/1 may then be configured to use this prescaled clock signal or the system clock. Timer 2 and Timer 3 may 
be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is 
incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to 
one-fourth the system clock frequency can be counted. The input signal need not be periodic, but it must be held at 
a given level for at least two full system clock cycles to ensure the level is properly sampled.

All four timers are capable of clocking other peripherals and triggering events in the system. The individual 
peripherals select which timer to use for their respective functions. Table 32.2 summarizes the peripheral 
connections for each timer. Note that the Timer 2 and Timer 3 high overflows apply to the full timer when operating 
in 16-bit mode or the high-byte timer when operating in 8-bit split mode.

Table 32.1. Timer Modes

Timer 0 and Timer 1 Modes Timer 2 Modes Timer 3 Modes

13-bit counter/timer 16-bit timer with auto-reload 16-bit timer with auto-reload

16-bit counter/timer Two 8-bit timers with auto-reload Two 8-bit timers with auto-reload

8-bit counter/timer with auto-reload

Two 8-bit counter/timers
(Timer 0 only)

Table 32.2. Timer Peripheral Clocking / Event Triggering

Function T0 
Overflow

T1 
Overflow

T2 High 
Overflow

T2 Low 
Overflow

T3 High 
Overflow

T3 Low 
Overflow

UART0 Baud Rate X

SMBus0 Clock Rate X X X X

SMBus0 SCL Low Timeout X

PCA0 Clock X

ADC0 Conversion Start X X* X* X* X*

*Note:  The high-side overflow is used when the timer is in16-bit mode. The low-side overflow is used in 8-bit mode.
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32.1.  Timer 0 and Timer 1
Timer 0 and Timer 1 are each implemented as a16-bit register accessed as two separate bytes: a low byte (TL0 or 
TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and 
Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register. 
Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register. Both counter/timers operate in one of 
four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register 
(TMOD). Each timer can be configured independently for the operating modes described below.
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32.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and 
operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as 
described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–
TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when 
reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow 
flag TF0 in TCON is set and an interrupt will occur if Timer 0 interrupts are enabled. 

The CT0 bit in the TMOD register selects the counter/timer's clock source. When CT0 is set to logic 1, high-to-low 
transitions at the selected Timer 0 input pin (T0) increment the timer register. Clearing CT selects the clock defined 
by the T0M bit in register CKCON. When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, 
Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON.

Setting the TR0 bit enables the timer when either GATE0 in the TMOD register is logic 0 or the input signal INT0 is 
active as defined by bit IN0PL in register IT01CF. Setting GATE0 to 1 allows the timer to be controlled by the 
external input signal INT0, facilitating pulse width measurements

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value 
before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 
is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT1 is 
used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF.

Figure 32.1. T0 Mode 0 Block Diagram

32.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers 
are enabled and configured in Mode 1 in the same manner as for Mode 0. 
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32.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. 
TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the 
timer overflow flag TF0 in the TCON register is set and the counter in TL0 is reloaded from TH0. If Timer 0 
interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 
must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, 
Timer 1 operates identically to Timer 0. 

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit 
enables the timer when either GATE0 in the TMOD register is logic 0 or when the input signal INT0 is active as 
defined by bit IN0PL in register IT01CF.

Figure 32.2. T0 Mode 2 Block Diagram
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32.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in 
TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, CT0, GATE0 and TF0. TL0 can 
use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer 
function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 
sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, 
but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 
overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While 
Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while 
Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 32.3. T0 Mode 3 Block Diagram
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32.2.  Timer 2
Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate 
in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit in TMR2CN defines the Timer 2 oper-
ation mode. Timer 2 can also be used in Capture Mode to measure the SmaRTClock or the Comparator 0 period 
with respect to another oscillator. The ability to measure the Comparator 0 period with respect to the system clock 
makes using Touch Sense switches very easy.

Timer 2 may be clocked by the system clock, the system clock divided by 12, SmaRTClock divided by 8, or 
Comparator 0 output. Note that the SmaRTClock divided by 8 and Comparator 0 output is synchronized with the 
system clock.

32.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT in the TMR2CN register is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can 
be clocked by SYSCLK, SYSCLK divided by 12, SmaRTClock divided by 8, or Comparator 0 output. As the 16-bit 
timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers 
(TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 32.4, and the Timer 2 High Byte 
Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on 
each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LINT bit is set, an interrupt will be 
generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

Figure 32.4. Timer 2 16-Bit Mode Block Diagram
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32.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-
reload mode as shown in Figure 32.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload 
value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when 
configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, SmaRTClock divided by 8 or 
Comparator 0 output. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the 
clock defined by the Timer 2 External Clock Select bits (T2XCLK[1:0] in TMR2CN), as follows:

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 
0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If 
Timer 2 interrupts are enabled and TF2LINT (TMR2CN.5) is set, an interrupt is generated each time either TMR2L 
or TMR2H overflows. When TF2LINT is enabled, software must check the TF2H and TF2L flags to determine the 
source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be man-
ually cleared by software.

Figure 32.5. Timer 2 8-Bit Mode Block Diagram
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32.2.3. Comparator 0/SmaRTClock Capture Mode

The Capture Mode in Timer 2 allows either Comparator 0 or the SmaRTClock period to be measured against the 
system clock or the system clock divided by 12. Comparator 0 and the SmaRTClock period can also be compared 
against each other. Timer 2 Capture Mode is enabled by setting TF2CINT to 1. Timer 2 should be in 16-bit auto-
reload mode when using Capture Mode.

When Capture Mode is enabled, a capture event will be generated either every Comparator 0 rising edge or every 
8 SmaRTClock clock cycles, depending on the T2XCLK1 setting. When the capture event occurs, the contents of 
Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is 
set (triggering an interrupt if Timer 2 interrupts are enabled). By recording the difference between two successive 
timer capture values, the Comparator 0 or SmaRTClock period can be determined with respect to the Timer 2 
clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. 

For example, if T2ML = 1b, T2XCLK1 = 0b, and TF2CINT = 1b, Timer 2 will clock every SYSCLK and capture 
every SmaRTClock clock divided by 8. If the SYSCLK is 24.5 MHz and the difference between two successive cap-
tures is 5984, then the SmaRTClock clock is as follows:

24.5 MHz/(5984/8) = 0.032754 MHz or 32.754 kHz.

This mode allows software to determine the exact SmaRTClock frequency in self-oscillate mode and the time 
between consecutive Comparator 0 rising edges, which is useful for detecting changes in the capacitance of a 
Touch Sense Switch.

Figure 32.6. Timer 2 Capture Mode Block Diagram
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32.3.  Timer 3
Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate 
in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit in the TMR3CN register defines the 
Timer 3 operation mode. Timer 3 can also be used in Capture Mode to measure the external oscillator source or 
the SmaRTClock oscillator period with respect to another oscillator. 

Timer 3 may be clocked by the system clock, the system clock divided by 12, external oscillator source divided by 
8, or the SmaRTClock oscillator. The external oscillator source divided by 8 and SmaRTClock oscillator is synchro-
nized with the system clock.

32.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT in the TMR3CN register is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be 
clocked by SYSCLK, SYSCLK divided by 12, external oscillator clock source divided by 8, or SmaRTClock oscilla-
tor. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 
reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 32.7, and the 
Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is set), an interrupt 
will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LINT bit is 
set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

Figure 32.7. Timer 3 16-Bit Mode Block Diagram
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32.3.2. 8-Bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-
reload mode as shown in Figure 32.8. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload 
value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when 
configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, the external oscillator clock source 
divided by 8, or the SmaRTClock. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either 
SYSCLK or the clock defined by the Timer 3 External Clock Select bits (T3XCLK[1:0] in TMR3CN), as follows:

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 
0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 
3 interrupts are enabled and TF3LINT (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or 
TMR3H overflows. When TF3LINT is enabled, software must check the TF3H and TF3L flags to determine the 
source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be man-
ually cleared by software.

Figure 32.8. Timer 3 8-Bit Mode Block Diagram
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32.3.3. SmaRTClock/External Oscillator Capture Mode

The Capture Mode in Timer 3 allows either SmaRTClock or the external oscillator period to be measured against 
the system clock or the system clock divided by 12. SmaRTClock and the external oscillator period can also be 
compared against each other. 

Setting TF3CINT to 1 enables the SmaRTClock/External Oscillator Capture Mode for Timer 3. In this mode, 
T3SPLIT should be set to 0, as the full 16-bit timer is used. 

When Capture Mode is enabled, a capture event will be generated either every SmaRTClock rising edge or every 
8 external clock cycles, depending on the T3XCLK1 setting. When the capture event occurs, the contents of Timer 
3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) and the TF3H flag is set 
(triggering an interrupt if Timer 3 interrupts are enabled). By recording the difference between two successive timer 
capture values, the SmaRTClock or external clock period can be determined with respect to the Timer 3 clock. The 
Timer 3 clock should be much faster than the capture clock to achieve an accurate reading. 

For example, if T3ML = 1b, T3XCLK1 = 0b, and TF3CINT = 1b, Timer 3 will clock every SYSCLK and capture 
every SmaRTClock rising edge. If SYSCLK is 24.5 MHz and the difference between two successive captures is 
350 counts, then the SmaRTClock period is as follows:

350 x (1 / 24.5 MHz) = 14.2 µs.

This mode allows software to determine the exact frequency of the external oscillator in C and RC mode or the time 
between consecutive SmaRTClock rising edges, which is useful for determining the SmaRTClock frequency.

Figure 32.9. Timer 3 Capture Mode Block Diagram
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32.4.  Timer Control Registers

Register 32.1. CKCON: Clock Control

Bit 7 6 5 4 3 2 1 0

Name T3MH T3ML T2MH T2ML T1M T0M SCA

Type RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x8E

Table 32.3. CKCON Register Bit Descriptions

Bit Name Function

7 T3MH Timer 3 High Byte Clock Select.

Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only).
0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.
1: Timer 3 high byte uses the system clock.

6 T3ML Timer 3 Low Byte Clock Select.

Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer 
in split 8-bit timer mode.
0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.
1: Timer 3 low byte uses the system clock.

5 T2MH Timer 2 High Byte Clock Select.

Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only).
0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 high byte uses the system clock.

4 T2ML Timer 2 Low Byte Clock Select.

Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode, 
this bit selects the clock supplied to the lower 8-bit timer.
0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 low byte uses the system clock.

3 T1M Timer 1 Clock Select.

Selects the clock source supplied to Timer 1. Ignored when C/T1 is set to 1.
0: Timer 1 uses the clock defined by the prescale field, SCA.
1: Timer 1 uses the system clock.

2 T0M Timer 0 Clock Select.

Selects the clock source supplied to Timer 0. Ignored when C/T0 is set to 1.
0: Counter/Timer 0 uses the clock defined by the prescale field, SCA.
1: Counter/Timer 0 uses the system clock.
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1:0 SCA Timer 0/1 Prescale.

These bits control the Timer 0/1 Clock Prescaler:
00: System clock divided by 12.
01: System clock divided by 4.
10: System clock divided by 48.
11: External oscillator divided by 8 (synchronized with the system clock).

Table 32.3. CKCON Register Bit Descriptions

Bit Name Function
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Register 32.2. TCON: Timer 0/1 Control

Bit 7 6 5 4 3 2 1 0

Name TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x88 (bit-addressable)

Table 32.4. TCON Register Bit Descriptions

Bit Name Function

7 TF1 Timer 1 Overflow Flag.

Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by firmware but is 
automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.

6 TR1 Timer 1 Run Control.

Timer 1 is enabled by setting this bit to 1.

5 TF0 Timer 0 Overflow Flag.

Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by firmware but is 
automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.

4 TR0 Timer 0 Run Control.

Timer 0 is enabled by setting this bit to 1.

3 IE1 External Interrupt 1.

This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can 
be cleared by firmware but is automatically cleared when the CPU vectors to the External 
Interrupt 1 service routine in edge-triggered mode.

2 IT1 Interrupt 1 Type Select.

This bit selects whether the configured INT1 interrupt will be edge or level sensitive. INT1 
is configured active low or high by the IN1PL bit in register IT01CF.
0: INT1 is level triggered.
1: INT1 is edge triggered.

1 IE0 External Interrupt 0.

This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can 
be cleared by firmware but is automatically cleared when the CPU vectors to the External 
Interrupt 0 service routine in edge-triggered mode.

0 IT0 Interrupt 0 Type Select.

This bit selects whether the configured INT0 interrupt will be edge or level sensitive. INT0 
is configured active low or high by the IN0PL bit in register IT01CF.
0: INT0 is level triggered.
1: INT0 is edge triggered.
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Register 32.3. TMOD: Timer 0/1 Mode

Bit 7 6 5 4 3 2 1 0

Name GATE1 CT1 T1M GATE0 CT0 T0M

Type RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x89

Table 32.5. TMOD Register Bit Descriptions

Bit Name Function

7 GATE1 Timer 1 Gate Control.

0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level.
1: Timer 1 enabled only when TR1 = 1 and INT1 is active as defined by bit IN1PL in reg-
ister IT01CF.

6 CT1 Counter/Timer 1 Select.

0: Timer Mode. Timer 1 increments on the clock defined by T1M in the CKCON register.
1: Counter Mode. Timer 1 increments on high-to-low transitions of an external pin (T1).

5:4 T1M Timer 1 Mode Select.

These bits select the Timer 1 operation mode.
00: Mode 0, 13-bit Counter/Timer
01: Mode 1, 16-bit Counter/Timer
10: Mode 2, 8-bit Counter/Timer with Auto-Reload
11: Mode 3, Timer 1 Inactive

3 GATE0 Timer 0 Gate Control.

0: Timer 0 enabled when TR0 = 1 irrespective of INT0 logic level.
1: Timer 0 enabled only when TR0 = 1 and INT0 is active as defined by bit IN0PL in reg-
ister IT01CF.

2 CT0 Counter/Timer 0 Select.

0: Timer Mode. Timer 0 increments on the clock defined by T0M in the CKCON register.
1: Counter Mode. Timer 0 increments on high-to-low transitions of an external pin (T0).

1:0 T0M Timer 0 Mode Select.

These bits select the Timer 0 operation mode.
00: Mode 0, 13-bit Counter/Timer
01: Mode 1, 16-bit Counter/Timer
10: Mode 2, 8-bit Counter/Timer with Auto-Reload
11: Mode 3, Two 8-bit Counter/Timers
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32.5.  Timer 0/1 Registers

Register 32.4. TL0: Timer 0 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TL0

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x8A

Table 32.6. TL0 Register Bit Descriptions

Bit Name Function

7:0 TL0 Timer 0 Low Byte.

The TL0 register is the low byte of the 16-bit Timer 0.
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Register 32.5. TL1: Timer 1 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TL1

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x8B

Table 32.7. TL1 Register Bit Descriptions

Bit Name Function

7:0 TL1 Timer 1 Low Byte.

The TL1 register is the low byte of the 16-bit Timer 1.
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Register 32.6. TH0: Timer 0 High Byte

Bit 7 6 5 4 3 2 1 0

Name TH0

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x8C

Table 32.8. TH0 Register Bit Descriptions

Bit Name Function

7:0 TH0 Timer 0 High Byte.

The TH0 register is the high byte of the 16-bit Timer 0.
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Register 32.7. TH1: Timer 1 High Byte

Bit 7 6 5 4 3 2 1 0

Name TH1

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x8D

Table 32.9. TH1 Register Bit Descriptions

Bit Name Function

7:0 TH1 Timer 1 High Byte.

The TH1 register is the high byte of the 16-bit Timer 1.
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32.6.  Timer 2 Registers

Register 32.8. TMR2CN: Timer 2 Control

Bit 7 6 5 4 3 2 1 0

Name TF2H TF2L TF2LEN TF2CEN T2SPLIT TR2 T2XCLK

Type RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = ALL; SFR Address: 0xC8 (bit-addressable)

Table 32.10. TMR2CN Register Bit Descriptions

Bit Name Function

7 TF2H Timer 2 High Byte Overflow Flag.

Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16-bit 
mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 
interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt ser-
vice routine. This bit must be cleared by firmware.

6 TF2L Timer 2 Low Byte Overflow Flag.

Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be 
set when the low byte overflows regardless of the Timer 2 mode. This bit must be cleared 
by firmware.

5 TF2LEN Timer 2 Low Byte Interrupt Enable.

When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also 
enabled, an interrupt will be generated when the low byte of Timer 2 overflows.

4 TF2CEN Timer 2 Capture Enable.

When set to 1, this bit enables Timer 2 Capture Mode. If TF2CEN is set and Timer 2 
interrupts are enabled, an interrupt will be generated based on the selected input capture 
source, and the current 16-bit timer value in TMR2H:TMR2L will be copied to 
TMR2RLH:TMR2RLL.

3 T2SPLIT Timer 2 Split Mode Enable.

When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.
0: Timer 2 operates in 16-bit auto-reload mode.
1: Timer 2 operates as two 8-bit auto-reload timers.

2 TR2 Timer 2 Run Control.

Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H 
only; TMR2L is always enabled in split mode.
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1:0 T2XCLK Timer 2 External Clock Select.

This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit 
selects the external oscillator clock source for both timer bytes. However, the Timer 2 
Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select 
between the external clock and the system clock for either timer. Note: External clock 
sources are synchronized with the system clock.
00: External Clock is SYSCLK/12. Capture trigger is RTC/8.
01: Capture trigger is RTC/8.
10: External Clock is SYSCLK/12.
11: External Clock is RTC/8.

Table 32.10. TMR2CN Register Bit Descriptions

Bit Name Function
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Register 32.9. TMR2RLL: Timer 2 Reload Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLL

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xCA

Table 32.11. TMR2RLL Register Bit Descriptions

Bit Name Function

7:0 TMR2RLL Timer 2 Reload Low Byte.

When operating in one of the auto-reload modes, TMR2RLL holds the reload value for 
the low byte of Timer 2 (TMR2L). When operating in capture mode, TMR2RLL is the cap-
tured value of TMR2L.



Rev 1.1 411

Register 32.10. TMR2RLH: Timer 2 Reload High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLH

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xCB

Table 32.12. TMR2RLH Register Bit Descriptions

Bit Name Function

7:0 TMR2RLH Timer 2 Reload High Byte.

When operating in one of the auto-reload modes, TMR2RLH holds the reload value for 
the high byte of Timer 2 (TMR2H). When operating in capture mode, TMR2RLH is the 
captured value of TMR2H.
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Register 32.11. TMR2L: Timer 2 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2L

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xCC

Table 32.13. TMR2L Register Bit Descriptions

Bit Name Function

7:0 TMR2L Timer 2 Low Byte.

In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-bit 
mode, TMR2L contains the 8-bit low byte timer value.
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Register 32.12. TMR2H: Timer 2 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2H

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xCD

Table 32.14. TMR2H Register Bit Descriptions

Bit Name Function

7:0 TMR2H Timer 2 High Byte.

In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-bit 
mode, TMR2H contains the 8-bit high byte timer value.
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32.7.  Timer 3 Registers

Register 32.13. TMR3CN: Timer 3 Control

Bit 7 6 5 4 3 2 1 0

Name TF3H TF3L TF3LEN TF3CEN T3SPLIT TR3 T3XCLK

Type RW RW RW RW RW RW R RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x91

Table 32.15. TMR3CN Register Bit Descriptions

Bit Name Function

7 TF3H Timer 3 High Byte Overflow Flag.

Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16-bit 
mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 
interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt ser-
vice routine. This bit must be cleared by firmware.

6 TF3L Timer 3 Low Byte Overflow Flag.

Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will be 
set when the low byte overflows regardless of the Timer 3 mode. This bit must be cleared 
by firmware.

5 TF3LEN Timer 3 Low Byte Interrupt Enable.

When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are also 
enabled, an interrupt will be generated when the low byte of Timer 3 overflows.

4 TF3CEN Timer 3 Capture Enable.

When set to 1, this bit enables Timer 3 Capture Mode. If TF3CEN is set and Timer 3 
interrupts are enabled, an interrupt will be generated based on the selected input capture 
source, and the current 16-bit timer value in TMR3H:TMR3L will be copied to 
TMR3RLH:TMR3RLL.

3 T3SPLIT Timer 3 Split Mode Enable.

When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload.
0: Timer 3 operates in 16-bit auto-reload mode.
1: Timer 3 operates as two 8-bit auto-reload timers.

2 TR3 Timer 3 Run Control.

Timer 3 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR3H 
only; TMR3L is always enabled in split mode.
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1:0 T3XCLK Timer 3 External Clock Select.

This bit selects the external clock source for Timer 3. If Timer 3 is in 8-bit mode, this bit 
selects the external oscillator clock source for both timer bytes. However, the Timer 3 
Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select 
between the external clock and the system clock for either timer. Note: External clock 
sources are synchronized with the system clock.
00: External Clock is SYSCLK/12. Capture trigger is RTC.
01: External Clock is External Oscillator/8. Capture trigger is RTC.
10: External Clock is SYSCLK/12. Capture trigger is External Oscillator/8.
11: External Clock is RTC. Capture trigger is External Oscillator/8.

Table 32.15. TMR3CN Register Bit Descriptions

Bit Name Function
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Register 32.14. TMR3RLL: Timer 3 Reload Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3RLL

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x92

Table 32.16. TMR3RLL Register Bit Descriptions

Bit Name Function

7:0 TMR3RLL Timer 3 Reload Low Byte.

When operating in one of the auto-reload modes, TMR3RLL holds the reload value for 
the low byte of Timer 3 (TMR3L). When operating in capture mode, TMR3RLL is the cap-
tured value of TMR3L.
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Register 32.15. TMR3RLH: Timer 3 Reload High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3RLH

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x93

Table 32.17. TMR3RLH Register Bit Descriptions

Bit Name Function

7:0 TMR3RLH Timer 3 Reload High Byte.

When operating in one of the auto-reload modes, TMR3RLH holds the reload value for 
the high byte of Timer 3 (TMR3H). When operating in capture mode, TMR3RLH is the 
captured value of TMR3H.
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Register 32.16. TMR3L: Timer 3 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3L

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x94

Table 32.18. TMR3L Register Bit Descriptions

Bit Name Function

7:0 TMR3L Timer 3 Low Byte.

In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-bit 
mode, TMR3L contains the 8-bit low byte timer value.
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Register 32.17. TMR3H: Timer 3 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3H

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0x95

Table 32.19. TMR3H Register Bit Descriptions

Bit Name Function

7:0 TMR3H Timer 3 High Byte.

In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit 
mode, TMR3H contains the 8-bit high byte timer value.
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33.  Programmable Counter Array (PCA0)

The programmable counter array (PCA0) provides enhanced timer functionality while requiring less CPU 
intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 
16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is 
routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase 
that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, 
the external oscillator clock source divided by 8, SmaRTClock divided by 8, Timer 0 overflows, or an external clock 
signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of 
six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 11-Bit PWM, or 
16-Bit PWM (each mode is described in Section “33.3. Capture/Compare Modules” on page 423). The external 
oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision 
external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled 
through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 33.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode 
following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 
33.4 for details.

Figure 33.1. PCA Block Diagram
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33.1.  PCA Counter/Timer
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 
16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H 
into a “snapshot” register; the following PCA0H read accesses this “snapshot” register. Reading the PCA0L 
Register first guarantees an accurate reading of the entire 16-bit PCA0 counter. Reading PCA0H or PCA0L 
does not disturb the counter operation. The CPS2–CPS0 bits in the PCA0MD register select the timebase for the 
counter/timer as shown in Table 33.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to 
logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 
enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the 
CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL bit in the 
PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

Figure 33.2. PCA Counter/Timer Block Diagram

Table 33.1. PCA Timebase Input Options

CPS2 CPS1 CPS0 Timebase

0 0 0 System clock divided by 12
0 0 1 System clock divided by 4
0 1 0 Timer 0 overflow
0 1 1 High-to-low transitions on ECI (max rate = system clock divided by 4)
1 0 0 System clock
1 0 1 External oscillator source divided by 81

1 1 0 SmaRTClock oscillator source divided by 82

1 1 1 Reserved
Notes:

1. External oscillator source divided by 8 is synchronized with the system clock.
2. SmaRTClock oscillator source divided by 8 is synchronized with the system clock.
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33.2.  PCA0 Interrupt Sources
Figure 33.3 shows a diagram of the PCA interrupt tree. There are five independent event flags that can be used to 
generate a PCA0 interrupt. They are: the main PCA counter overflow flag (CF), which is set upon a 16-bit overflow 
of the PCA0 counter, an intermediate overflow flag (COVF), which can be set on an overflow from the 8th, 9th, 
10th, or 11th bit of the PCA0 counter, and the individual flags for each PCA channel (CCF0, CCF1, and CCF2), 
which are set according to the operation mode of that module. These event flags are always set when the trigger 
condition occurs. Each of these flags can be individually selected to generate a PCA0 interrupt, using the 
corresponding interrupt enable flag (ECF for CF, ECOV for COVF, and ECCFn for each CCFn). PCA0 interrupts 
must be globally enabled before any individual interrupt sources are recognized by the processor. PCA0 interrupts 
are globally enabled by setting the EA bit and the EPCA0 bit to logic 1.

Figure 33.3. PCA Interrupt Block Diagram
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33.3.  Capture/Compare Modules
Each module can be configured to operate independently in one of six operation modes: edge-triggered capture, 
software timer, high-speed output, frequency output, 8 to 11-bit pulse width modulator, or 16-bit pulse width 
modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. 
These registers are used to exchange data with a module and configure the module's mode of operation. 
Table 33.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM registers used to select the PCA 
capture/compare module’s operating mode. Note that all modules set to use 8, 9, 10, or 11-bit PWM mode must 
use the same cycle length (8–11 bits). Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn 
interrupt.

Table 33.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

Operational Mode PCA0CPMn PCA0PWM

Bit Number 7 6 5 4 3 2 1 0 7 6 5 4–2 1–0

Capture triggered by positive edge on CEXn X X 1 0 0 0 0 A 0 X B XXX XX

Capture triggered by negative edge on CEXn X X 0 1 0 0 0 A 0 X B XXX XX

Capture triggered by any transition on CEXn X X 1 1 0 0 0 A 0 X B XXX XX

Software Timer X C 0 0 1 0 0 A 0 X B XXX XX

High Speed Output X C 0 0 1 1 0 A 0 X B XXX XX

Frequency Output X C 0 0 0 1 1 A 0 X B XXX XX

8-Bit Pulse Width Modulator (Note 7) 0 C 0 0 E 0 1 A 0 X B XXX 00

9-Bit Pulse Width Modulator (Note 7) 0 C 0 0 E 0 1 A D X B XXX 01

10-Bit Pulse Width Modulator (Note 7) 0 C 0 0 E 0 1 A D X B XXX 10

11-Bit Pulse Width Modulator (Note 7) 0 C 0 0 E 0 1 A D X B XXX 11

16-Bit Pulse Width Modulator 1 C 0 0 E 0 1 A 0 X B XXX XX

Notes:
1. X = Don’t Care (no functional difference for individual module if 1 or 0).
2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
3. B = Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).
4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will 

not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is 

accessed via addresses PCA0CPHn and PCA0CPLn.
6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.
7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting. 
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33.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and 
load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn 
and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-
high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative 
edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt 
request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by 
hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn 
and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to 
determine whether a rising-edge or falling-edge caused the capture.

Figure 33.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.
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33.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register 
(PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to 
logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not 
automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by 
software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare 
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to 
PCA0CPHn sets ECOMn to 1.

Figure 33.5. PCA Software Timer Mode Diagram
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33.3.3. High-Speed Output Mode

In High-Speed Output mode, a module’s associated CEXn pin is toggled each time a match occurs between the 
PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match 
occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the 
CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU 
vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn 
bits in the PCA0CPMn register enables the High-Speed Output mode. If ECOMn is cleared, the associated pin will 
retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare 
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to 
PCA0CPHn sets ECOMn to 1.

Figure 33.6. PCA High-Speed Output Mode Diagram
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33.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module’s associated CEXn pin. 
The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The 
frequency of the square wave is then defined by Equation 33.1.

Equation 33.1. Square Wave Frequency Output
Where FPCA is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The 
lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled 
and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is 
enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register. Note that the MATn bit should 
normally be set to 0 in this mode. If the MATn bit is set to 1, the CCFn flag for the channel will be set when the 16-
bit PCA0 counter and the 16-bit capture/compare register for the channel are equal.

Figure 33.7. PCA Frequency Output Mode
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33.3.6.  8-Bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/
compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in 
PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output 
will be reset (see Figure 33.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, 
PCA0CPLn is reloaded automatically with the value stored in the module’s capture/compare high byte 
(PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register, and 
setting the CLSEL bits in register PCA0PWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MATn bit is 
set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The 
COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will occur every 256 PCA clock 
cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 33.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare 
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to 
PCA0CPHn sets ECOMn to 1.

Equation 33.2. 8-Bit PWM Duty Cycle
Using Equation 33.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% 
(PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 33.8. PCA 8-Bit PWM Mode Diagram
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33.3.7.  9/10/11-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an “Auto-Reload” 
Register, which is dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The data written to define 
the duty cycle should be right-justified in the registers. The auto-reload registers are accessed (read or written) 
when the bit ARSEL in PCA0PWM is set to 1. The capture/compare registers are accessed when ARSEL is set to 
0.

When the least-significant N bits of the PCA0 counter match the value in the associated module’s capture/compare 
register (PCA0CPn), the output on CEXn is asserted high. When the counter overflows from the Nth bit, CEXn is 
asserted low (see Figure 33.9). Upon an overflow from the Nth bit, the COVF flag is set, and the value stored in the 
module’s auto-reload register is loaded into the capture/compare register. The value of N is determined by the 
CLSEL bits in register PCA0PWM.

The 9, 10 or 11-bit PWM mode is selected by setting the ECOMn and PWMn bits in the PCA0CPMn register, and 
setting the CLSEL bits in register PCA0PWM to the desired cycle length (other than 8-bits). If the MATn bit is set to 
1, the CCFn flag for the module will be set each time a comparator match (rising edge) occurs. The COVF flag in 
PCA0PWM can be used to detect the overflow (falling edge), which will occur every 512 (9-bit), 1024 (10-bit) or 
2048 (11-bit) PCA clock cycles. The duty cycle for 9/10/11-Bit PWM Mode is given in Equation 33.2, where N is the 
number of bits in the PWM cycle.

Important Note About PCA0CPHn and PCA0CPLn Registers: When writing a 16-bit value to the PCA0CPn 
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to 
PCA0CPHn sets ECOMn to 1.

Equation 33.3. 9, 10, and 11-Bit PWM Duty Cycle

A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 33.9. PCA 9, 10 and 11-Bit PWM Mode Diagram
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33.3.8.  16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/
11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the 
low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted 
high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes 
should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, 
PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled 
(ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the 
CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in 
PCA0CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by 
Equation 33.4. 

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare 
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to 
PCA0CPHn sets ECOMn to 1.

Equation 33.4. 16-Bit PWM Duty Cycle
Using Equation 33.4, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% 
(PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 33.10. PCA 16-Bit PWM Mode
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33.4.  Watchdog Timer Mode
A programmable watchdog timer (WDT) function is available through the PCA Module 2. The WDT is used to 
generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The 
WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 2 operates as a watchdog timer (WDT). The Module 2 high 
byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT 
updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are 
restricted while the Watchdog Timer is enabled. The WDT will generate a reset shortly after code begins 
execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if 
it is used in the system).

33.4.1. Watchdog Timer Operation

While the WDT is enabled:

 PCA counter is forced on.

 Writes to PCA0L and PCA0H are not allowed.

 PCA clock source bits (CPS2–CPS0) are frozen.

 PCA Idle control bit (CIDL) is frozen.

 Module 2 is forced into software timer mode.

 Writes to the Module 2 mode register (PCA0CPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the 
WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but user software has 
not enabled the PCA counter. If a match occurs between PCA0CPH2 and PCA0H while the WDT is enabled, a 
reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to 
PCA0CPH2. Upon a PCA0CPH2 write, PCA0H plus the offset held in PCA0CPL2 is loaded into PCA0CPH2 (See 
Figure 33.11).

Figure 33.11. PCA Module 2 with Watchdog Timer Enabled
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Equation 33.5. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. 
Software may force a WDT reset by writing a 1 to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

33.4.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

1. Disable the WDT by writing a 0 to the WDTE bit.

2. Select the desired PCA clock source (with the CPS2–CPS0 bits).

3. Load PCA0CPL2 with the desired WDT update offset value.

4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).

5. Enable the WDT by setting the WDTE bit to 1.

6. Reset the WDT timer by writing to PCA0CPH2.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is 
enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be 
disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit. 

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, 
PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 33.5, this results in a WDT timeout 
interval of 256 PCA clock cycles, or 3072 system clock cycles. Table 33.3 lists some example timeout intervals for 
typical system clocks.

Table 33.3. Watchdog Timer Timeout Intervals1

System Clock (Hz) PCA0CPL2 Timeout Interval (ms)

24,500,000 255 32.1

24,500,000 128 16.2

24,500,000 32 4.1

3,062,5002 255 257

3,062,5002 128 129.5

3,062,5002 32 33.1

32,000 255 24576

32,000 128 12384

32,000 32 3168

Notes:
1. Assumes SYSCLK/12 as the PCA clock source, and a PCA0L value of 

0x00 at the update time.
2. Internal SYSCLK reset frequency = Internal Oscillator divided by 8.

Offset 256 PCA0CPL2  256 PCA0L– +=
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33.5.  PCA0 Control Registers

Register 33.1. PCA0CN: PCA Control

Bit 7 6 5 4 3 2 1 0

Name CF CR Reserved CCF2 CCF1 CCF0

Type RW RW R RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xD8 (bit-addressable)

Table 33.4. PCA0CN Register Bit Descriptions

Bit Name Function

7 CF PCA Counter/Timer Overflow Flag.

Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When 
the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to 
vector to the PCA interrupt service routine. This bit is not automatically cleared by hard-
ware and must be cleared by firmware.

6 CR PCA Counter/Timer Run Control.

This bit enables/disables the PCA Counter/Timer.
0: Stop the PCA Counter/Timer.
1: Start the PCA Counter/Timer running.

5:3 Reserved Must write reset value.

2 CCF2 PCA Module 2 Capture/Compare Flag.

This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is 
enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. 
This bit is not automatically cleared by hardware and must be cleared by firmware.

1 CCF1 PCA Module 1 Capture/Compare Flag.

This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is 
enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. 
This bit is not automatically cleared by hardware and must be cleared by firmware.

0 CCF0 PCA Module 0 Capture/Compare Flag.

This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is 
enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. 
This bit is not automatically cleared by hardware and must be cleared by firmware.
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Register 33.2. PCA0MD: PCA Mode

Bit 7 6 5 4 3 2 1 0

Name CIDL WDTE WDLCK Reserved CPS ECF

Type RW RW RW R RW RW

Reset 0 1 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xD9

Table 33.5. PCA0MD Register Bit Descriptions

Bit Name Function

7 CIDL PCA Counter/Timer Idle Control.

Specifies PCA behavior when CPU is in Idle Mode.
0: PCA continues to function normally while the system controller is in Idle Mode.
1: PCA operation is suspended while the system controller is in Idle Mode.

6 WDTE Watchdog Timer Enable.

If this bit is set, PCA Module 2 is used as the watchdog timer.
0: Disable Watchdog Timer.
1: Enable PCA Module 2 as the Watchdog Timer.

5 WDLCK Watchdog Timer Lock.

This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog 
Timer may not be disabled until the next system reset.
0: Watchdog Timer Enable unlocked.
1: Watchdog Timer Enable locked.

4 Reserved Must write reset value.

3:1 CPS PCA Counter/Timer Pulse Select.

These bits select the timebase source for the PCA counter.
000: System clock divided by 12.
001: System clock divided by 4.
010: Timer 0 overflow.
011: High-to-low transitions on ECI (max rate = system clock divided by 4).
100: System clock.
101: External clock divided by 8 (synchronized with the system clock).
110: RTC divided by 8.
111: Reserved.

0 ECF PCA Counter/Timer Overflow Interrupt Enable.

This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt.
0: Disable the CF interrupt.
1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.
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Register 33.3. PCA0PWM: PCA PWM Configuration

Bit 7 6 5 4 3 2 1 0

Name ARSEL ECOV COVF Reserved CLSEL

Type RW RW RW R RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xDF

Table 33.6. PCA0PWM Register Bit Descriptions

Bit Name Function

7 ARSEL Auto-Reload Register Select.

This bit selects whether to read and write the normal PCA capture/compare registers 
(PCA0CPn), or the Auto-Reload registers at the same SFR addresses. This function is 
used to define the reload value for 9 to 11-bit PWM modes. In all other modes, the Auto-
Reload registers have no function.
0: Read/Write Capture/Compare Registers at PCA0CPHn and PCA0CPLn.
1: Read/Write Auto-Reload Registers at PCA0CPHn and PCA0CPLn.

6 ECOV Cycle Overflow Interrupt Enable.

This bit sets the masking of the Cycle Overflow Flag (COVF) interrupt.
0: COVF will not generate PCA interrupts.
1: A PCA interrupt will be generated when COVF is set.

5 COVF Cycle Overflow Flag.

This bit indicates an overflow of the 8th to 11th bit of the main PCA counter (PCA0). The 
specific bit used for this flag depends on the setting of the Cycle Length Select bits. The 
bit can be set by hardware or firmware, but must be cleared by firmware.
0: No overflow has occurred since the last time this bit was cleared.
1: An overflow has occurred since the last time this bit was cleared.

4:2 Reserved Must write reset value.

1:0 CLSEL Cycle Length Select.

When 16-bit PWM mode is not selected, these bits select the length of the PWM cycle. 
This affects all channels configured for PWM which are not using 16-bit PWM mode. 
These bits are ignored for individual channels configured to 16-bit PWM mode.
00: 8 bits.
01: 9 bits.
10: 10 bits.
11: 11 bits.
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Register 33.4. PCA0L: PCA Counter/Timer Low Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0L

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xF9

Table 33.7. PCA0L Register Bit Descriptions

Bit Name Function

7:0 PCA0L PCA Counter/Timer Low Byte.

The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.

Note: When the WDTE bit is set to 1, the PCA0L register cannot be modified by firmware. To change the contents of the 
PCA0L register, the Watchdog Timer must first be disabled.
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Register 33.5. PCA0H: PCA Counter/Timer High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0H

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xFA

Table 33.8. PCA0H Register Bit Descriptions

Bit Name Function

7:0 PCA0H PCA Counter/Timer High Byte.

The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads 
of this register will read the contents of a "snapshot" register, whose contents are 
updated only when the contents of PCA0L are read.

Note: When the WDTE bit is set to 1, the PCA0H register cannot be modified by firmware. To change the contents of the 
PCA0H register, the Watchdog Timer must first be disabled.
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Register 33.6. PCA0CPM0: PCA Channel 0 Capture/Compare Mode 0

Bit 7 6 5 4 3 2 1 0

Name PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xDA

Table 33.9. PCA0CPM0 Register Bit Descriptions

Bit Name Function

7 PWM16 Channel 0 16-bit Pulse Width Modulation Enable.

This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.
0: 8 to 11-bit PWM selected.
1: 16-bit PWM selected.

6 ECOM Channel 0 Comparator Function Enable.

This bit enables the comparator function.

5 CAPP Channel 0 Capture Positive Function Enable.

This bit enables the positive edge capture capability.

4 CAPN Channel 0 Capture Negative Function Enable.

This bit enables the negative edge capture capability.

3 MAT Channel 0 Match Function Enable.

This bit enables the match function. When enabled, matches of the PCA counter with a 
module's capture/compare register cause the CCF0 bit in the PCA0MD register to be set 
to logic 1.

2 TOG Channel 0 Toggle Function Enable.

This bit enables the toggle function. When enabled, matches of the PCA counter with the 
capture/compare register cause the logic level on the CEX0 pin to toggle. If the PWM bit 
is also set to logic 1, the module operates in Frequency Output Mode.

1 PWM Channel 0 Pulse Width Modulation Mode Enable.

This bit enables the PWM function. When enabled, a pulse width modulated signal is out-
put on the CEX0 pin. 8 to 11-bit PWM is used if PWM16 is cleared to 0; 16-bit mode is 
used if PWM16 is set to 1. If the TOG bit is also set, the module operates in Frequency 
Output Mode.

0 ECCF Channel 0 Capture/Compare Flag Interrupt Enable.

This bit sets the masking of the Capture/Compare Flag (CCF0) interrupt.
0: Disable CCF0 interrupts.
1: Enable a Capture/Compare Flag interrupt request when CCF0 is set.
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Register 33.7. PCA0CPL0: PCA Channel 0 Capture Module Low Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPL0

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xFB

Table 33.10. PCA0CPL0 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPL0 PCA Channel 0 Capture Module Low Byte.

The PCA0CPL0 register holds the low byte (LSB) of the 16-bit capture module. This reg-
ister address also allows access to the low byte of the corresponding PCA channel's 
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will clear the module's ECOM bit to a 0.
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Register 33.8. PCA0CPH0: PCA Channel 0 Capture Module High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPH0

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xFC

Table 33.11. PCA0CPH0 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPH0 PCA Channel 0 Capture Module High Byte.

The PCA0CPH0 register holds the high byte (MSB) of the 16-bit capture module. This 
register address also allows access to the high byte of the corresponding PCA channel's 
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will set the module's ECOM bit to a 1.
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Register 33.9. PCA0CPM1: PCA Channel 1 Capture/Compare Mode

Bit 7 6 5 4 3 2 1 0

Name PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xDB

Table 33.12. PCA0CPM1 Register Bit Descriptions

Bit Name Function

7 PWM16 Channel 1 16-bit Pulse Width Modulation Enable.

This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.
0: 8 to 11-bit PWM selected.
1: 16-bit PWM selected.

6 ECOM Channel 1 Comparator Function Enable.

This bit enables the comparator function.

5 CAPP Channel 1 Capture Positive Function Enable.

This bit enables the positive edge capture capability.

4 CAPN Channel 1 Capture Negative Function Enable.

This bit enables the negative edge capture capability.

3 MAT Channel 1 Match Function Enable.

This bit enables the match function. When enabled, matches of the PCA counter with a 
module's capture/compare register cause the CCF1 bit in the PCA0MD register to be set 
to logic 1.

2 TOG Channel 1 Toggle Function Enable.

This bit enables the toggle function. When enabled, matches of the PCA counter with the 
capture/compare register cause the logic level on the CEX1 pin to toggle. If the PWM bit 
is also set to logic 1, the module operates in Frequency Output Mode.

1 PWM Channel 1 Pulse Width Modulation Mode Enable.

This bit enables the PWM function. When enabled, a pulse width modulated signal is out-
put on the CEX1 pin. 8 to 11-bit PWM is used if PWM16 is cleared to 0; 16-bit mode is 
used if PWM16 is set to 1. If the TOG bit is also set, the module operates in Frequency 
Output Mode.

0 ECCF Channel 1 Capture/Compare Flag Interrupt Enable.

This bit sets the masking of the Capture/Compare Flag (CCF1) interrupt.
0: Disable CCF1 interrupts.
1: Enable a Capture/Compare Flag interrupt request when CCF1 is set.
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Register 33.10. PCA0CPL1: PCA Channel 1 Capture Module Low Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPL1

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xE9

Table 33.13. PCA0CPL1 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPL1 PCA Channel 1 Capture Module Low Byte.

The PCA0CPL1 register holds the low byte (LSB) of the 16-bit capture module. This reg-
ister address also allows access to the low byte of the corresponding PCA channel's 
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will clear the module's ECOM bit to a 0.
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Register 33.11. PCA0CPH1: PCA Channel 1 Capture Module High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPH1

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xEA

Table 33.14. PCA0CPH1 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPH1 PCA Channel 1 Capture Module High Byte.

The PCA0CPH1 register holds the high byte (MSB) of the 16-bit capture module. This 
register address also allows access to the high byte of the corresponding PCA channel's 
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will set the module's ECOM bit to a 1.
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Register 33.12. PCA0CPM2: PCA Channel 2 Capture/Compare Mode

Bit 7 6 5 4 3 2 1 0

Name PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xDC

Table 33.15. PCA0CPM2 Register Bit Descriptions

Bit Name Function

7 PWM16 Channel 2 16-bit Pulse Width Modulation Enable.

This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.
0: 8 to 11-bit PWM selected.
1: 16-bit PWM selected.

6 ECOM Channel 2 Comparator Function Enable.

This bit enables the comparator function.

5 CAPP Channel 2 Capture Positive Function Enable.

This bit enables the positive edge capture capability.

4 CAPN Channel 2 Capture Negative Function Enable.

This bit enables the negative edge capture capability.

3 MAT Channel 2 Match Function Enable.

This bit enables the match function. When enabled, matches of the PCA counter with a 
module's capture/compare register cause the CCF2 bit in the PCA0MD register to be set 
to logic 1.

2 TOG Channel 2 Toggle Function Enable.

This bit enables the toggle function. When enabled, matches of the PCA counter with the 
capture/compare register cause the logic level on the CEX2 pin to toggle. If the PWM bit 
is also set to logic 1, the module operates in Frequency Output Mode.

1 PWM Channel 2 Pulse Width Modulation Mode Enable.

This bit enables the PWM function. When enabled, a pulse width modulated signal is out-
put on the CEX2 pin. 8 to 11-bit PWM is used if PWM16 is cleared to 0; 16-bit mode is 
used if PWM16 is set to 1. If the TOG bit is also set, the module operates in Frequency 
Output Mode.

0 ECCF Channel 2 Capture/Compare Flag Interrupt Enable.

This bit sets the masking of the Capture/Compare Flag (CCF2) interrupt.
0: Disable CCF2 interrupts.
1: Enable a Capture/Compare Flag interrupt request when CCF2 is set.
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Register 33.13. PCA0CPL2: PCA Channel 2 Capture Module Low Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPL2

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xEB

Table 33.16. PCA0CPL2 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPL2 PCA Channel 2 Capture Module Low Byte.

The PCA0CPL2 register holds the low byte (LSB) of the 16-bit capture module. This reg-
ister address also allows access to the low byte of the corresponding PCA channel's 
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will clear the module's ECOM bit to a 0.
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Register 33.14. PCA0CPH2: PCA Channel 2 Capture Module High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPH2

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xEC

Table 33.17. PCA0CPH2 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPH2 PCA Channel 2 Capture Module High Byte.

The PCA0CPH2 register holds the high byte (MSB) of the 16-bit capture module. This 
register address also allows access to the high byte of the corresponding PCA channel's 
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will set the module's ECOM bit to a 1.
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34.  C2 Interface

C8051F97x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and 
in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal 
(C2CK) and a bidirectional C2 data signal (C2D) to transfer information between the device and a host system. 
Details on the C2 protocol can be found in the C2 Interface Specification.

34.1.  C2 Pin Sharing
The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and flash 
programming may be performed. C2CK is shared with the RST pin, while the C2D signal is shared with a port I/O 
pin. This is possible because C2 communication is typically performed when the device is in the halt state, where 
all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely “borrow” the 
C2CK and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the 
user application. A typical isolation configuration is shown in Figure 34.1.

Figure 34.1. Typical C2 Pin Sharing

The configuration in Figure 34.1 assumes the following:

1.  The user input (b) cannot change state while the target device is halted.

2.  The RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.
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34.2.  C2 Interface Registers
The following describes the C2 registers necessary to perform flash programming through the C2 interface. All C2 
registers are accessed through the C2 interface, and are not available in the SFR map for firmware access.

Register 34.1. C2ADD: C2 Address

Bit 7 6 5 4 3 2 1 0

Name C2ADD

Type RW

Reset 0 0 0 0 0 0 0 0

This register is part of the C2 protocol.

Table 34.1. C2ADD Register Bit Descriptions

Bit Name Function

7:0 C2ADD C2 Address.

The C2ADD register is accessed via the C2 interface. The value written to C2ADD 
selects the target data register for C2 Data Read and Data Write commands.
0x00: C2DEVID
0x01: C2REVID
0x02: C2FPCTL
0xB4: C2FPDAT
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Register 34.2. C2DEVID: C2 Device ID

Bit 7 6 5 4 3 2 1 0

Name C2DEVID

Type R

Reset 0 0 1 0 1 0 0 1

C2 Address: 0x00

Table 34.2. C2DEVID Register Bit Descriptions

Bit Name Function

7:0 C2DEVID Device ID.

This read-only register returns the 8-bit device ID: 0x29 (C8051F97x).
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Register 34.3. C2REVID: C2 Revision ID

Bit 7 6 5 4 3 2 1 0

Name C2REVID

Type R

Reset X X X X X X X X

C2 Address: 0x01

Table 34.3. C2REVID Register Bit Descriptions

Bit Name Function

7:0 C2REVID Revision ID.

This read-only register returns the 8-bit revision ID. For example: 0x01 = Revision A.
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Register 34.4. C2FPCTL: C2 Flash Programming Control

Bit 7 6 5 4 3 2 1 0

Name C2FPCTL

Type RW

Reset 0 0 0 0 0 0 0 0

C2 Address: 0x02

Table 34.4. C2FPCTL Register Bit Descriptions

Bit Name Function

7:0 C2FPCTL Flash Programming Control Register.

This register is used to enable flash programming via the C2 interface. To enable C2 
flash programming, the following codes must be written in order: 0x02, 0x01. Note that 
once C2 flash programming is enabled, a system reset must be issued to resume normal 
operation.
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Register 34.5. C2FPDAT: C2 Flash Programming Data

Bit 7 6 5 4 3 2 1 0

Name C2FPDAT

Type RW

Reset 0 0 0 0 0 0 0 0

C2 Address: 0xB4

Table 34.5. C2FPDAT Register Bit Descriptions

Bit Name Function

7:0 C2FPDAT C2 Flash Programming Data Register.

This register is used to pass flash commands, addresses, and data during C2 flash 
accesses. Valid commands are listed below.
0x03: Device Erase
0x06: Flash Block Read
0x07: Flash Block Write
0x08: Flash Page Erase
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DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1
Updated packaging information for QFN48 and QFN32 packages in "5.  QFN-48 Package Specifications" 

on page 43 and "6. QFN-32 Package Specifications" on page 46.

Added a note about an additional divide-by-2 stage on RC and C oscillator modes in "24.3.2. External RC 
Mode" on page 243 and "24.3.3. External Capacitor Mode" on page 245.

Fixed the first sentence in "26.3. Priority Crossbar Decoder" on page 281 that referred to UART0 as the top 
priority peripheral on the crossbar.

Removed all ADC0MX channels other than ADC0.0 and marked them as Reserved, since pin selections 
are made using AMUX0.

Updated Table 3.1, “Pin Definitions for C8051F970/3-A-GM (QFN-48),” on page 32, Table 3.2, “Pin 
Definitions for C8051F971/4-A-GM (QFN-32),” on page 36, and Table 3.3, “Pin Definitions for C8051F972/
5-A-GM (QFN-24),” on page 39 to replace ADC0.n with AMUX0.n.

Updated QFN-32 and QFN-24 pin definitions with correct pin numbering.

Added wake-up request and RTC oscillator output to Table 3.1, “Pin Definitions for C8051F970/3-A-GM 
(QFN-48),” on page 32 and specified in Register 16.4, “PMU0MD: Power Management Unit Mode,” on 
page 103 that these outputs are not available on QFN-32 and QFN-24 packages.

Removed a mention of UART0 routing to P0.4 and P0.5 in Register 26.1, “XBR0: Port I/O Crossbar 0,” on 
page 285.

Updated Figure 22.4, “DMA Mode Operation Flow Chart,” on page 206 to remove clearing ACCMD to 0 
and added a note in "22.6. DMA Mode Operation" on page 205 regarding generating the MAC output for 
two arrays.

Updated all references of “QFN-28” to “QFN-24.”

Added a note to "16.5. Sleep Mode" on page 97 that entering Sleep mode may cause a device to 
disconnect while debugging.

Updated the PERIPH field in Register 21.6, “DMA0NCF: DMA0 Channel Configuration,” on page 195 to 
swap values 6 and 7.

Updated references to MSTEN to refer to SPI0CFG instead of SPI0CN in "28. Serial Peripheral Interface 
(SPI0)" on page 328.

Updated the example in "22.11.3. Initializing Memory Block Using DMA0 and MAC0" on page 212 to refer 
to the MAC0ITER register instead of MAC0ICT.

Removed section 24.4.2 SMBus Pin Swap and 29.4.3 SMBus Timing Control because these features are 
not available on this device family.

Revision 0.1 to Revision 1.0
Updated Capacitive Sense and ADC input channels listed on the front page.

Removed mention of the -I temperature grade from Figure 4.1, “C8051F97x Part Numbering,” on page 41.

Updated Digital Supply Current numbers in Table 1.2, “Global Electrical Characteristics,” on page 10 to 
reflect the latest data.

Removed mention of 12-bit mode for ADC0.

Added a note to "17.1. ADC0 Analog Multiplexer" on page 105, the ADC0MX register, and all AMUX0 
registers regarding disconnecting the AMUX0 when measuring an internal signal with the ADC.

Updated "24. Clocking Sources" on page 241 to mention that the external oscillator is not available on 
QFN-24 (C8051F972/5) packages.

Updated "25. SmaRTClock (Real Time Clock, RTC0)" on page 253 references to RTC0CN at address 0x05 
to correctly refer to RTC0XCN.

Updated "25. SmaRTClock (Real Time Clock, RTC0)" on page 253 to remove mention of using an external 
CMOS clock with the SmaRTClock.

Updated port pins associated with the crystal pins on each package in Table 26.1, “Port I/O Assignment for 
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Analog Functions,” on page 279.



http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Smart. 
Connected. 
Energy-Friendly.

Products
www.silabs.com/products

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or 
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" 
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes 
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included 
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted 
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of 
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant 
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass 
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, 
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, 
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of 
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or 
brand names mentioned herein are trademarks of their respective holders. 




