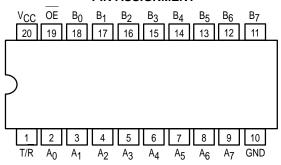
For:joe

Printed on:Fri, Aug 27, 1999 08:37:45

Document:mc74f640rev5ltb


Last saved on:Wed, Aug 25, 1999 12:45:29

OCTAL BUS TRANSCEIVER, INVERTING WITH 3-STATE OUTPUTS

The MC74F640 is an octal transceiver featuring inverting 3-state bus compatible outputs in both transmit and receive directions. The B port outputs are capable of sinking 64 mA and sourcing 15 mA, providing very good capacitive drive characteristics. The device features an Output Enable (OE) input for easy cascading and Transmit/Receive (T/R) input for direction control. The 3-state outputs, $B_0\!-\!B_7$, have been designed to prevent output bus loading if the power is removed from the device.

- High-Impedance NPN Base Inputs for Reduced Loading (70 μA in High and Low States)
- Ideal for Applications which Require High-Output Drive and Minimal Bus Loading
- Inverting Version of F245
- Octal Bidirectional Bus Interface
- 3-State Buffer Outputs Sink 64 mA and Source 15 mA
- ESD Sensitive 4000 V HBM

PIN ASSIGNMENT

FUNCTION TABLE

Inputs		
OE T/R		Outputs
	L H V	Bus B data to Bus A Bus A data to Bus B

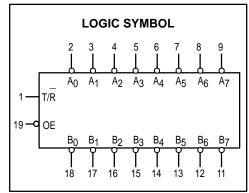
H = High Voltage Level L = Low Voltage Level X = Don't Care Z = High Impedance "Off" State MC74F640

OCTAL BUS TRANSCEIVER, INVERTING WITH 3-STATE OUTPUTS

FASTTM SCHOTTKY TTL

20

J SUFFIX CERAMIC CASE 732-03


N SUFFIX PLASTIC CASE 738-03

DW SUFFIX SOIC CASE 751D-03

ORDERING INFORMATION

MC74FXXXJ Ceramic MC74FXXXN Plastic MC74FXXXDW SOIC

LAST SHIP 30/09/99

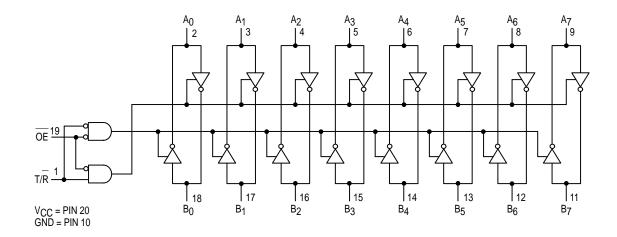
MC74F640

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit		
Vcc	DC Supply Voltage	74	4.5	5.0	5.5	V	
TA	Operating Ambient Temperature Range	74	0	25	70	°C	
loн	Output Current — High	A _n Outputs	74			-3.0	mA
IOH	Output Current — High	B _n Outputs	74			-15	mA
loL	Output Current — Low	An Outputs	74			24	mA
loL	Output Current — Low B _n Outputs		74			64	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

					Limits						
	Symbol	Parameter	eter			Тур	Max	Unit	Test Conditions ¹		
	VIH	Input HIGH Voltage			2.0			V	Guaranteed as a	HIGH Signal	
	V _{IL}	Input LOW Voltage					0.8	V	Guaranteed as a	LOW Signal	
	VIK	Input Clamp Diode Voltage					-1.2	V	V _{CC} = MIN, I _{IN}	= –18 mA	
			A _n	74	2.4	3.3		V	$I_{OH} = -3.0 \text{ mA}$	V _{CC} = 4.5 V	
				74	2.7	3.3		V	$I_{OH} = -3.0 \text{ mA}$	V _{CC} = 4.75 V	
	Vон	Output HIGH Voltage		74	2.4	3.4		V	I _{OH} = -3.0 mA	V _{CC} = 4.5 V	
			Bn	74	2.7	3.4		V	$I_{OH} = -3.0 \text{ mA}$	V _{CC} = 4.75 V	
				74	2.0			V	I _{OH} = -15 mA	V _{CC} = 4.5 V	
	V _{OL}	Output LOW Voltage	An	74		0.35	0.5	V	I _{OL} = 24 mA	V _{CC} = MIN	
	V _{OL}	Output LOW Voltage	B _n	74			0.55	V	I _{OL} = 64 mA	V _{CC} = MIN	
	lozh + lih	Output Off Current HIGH					70	μΑ	V _{CC} = MAX	V _{OUT} = 2.7 V	
	I _{OZL} + I _{IL}	Output Off Current LOW					-70	μΑ	V _{CC} = MAX	V _{OUT} = 0.5 V	
			OE, T/R	OE, T/R			40	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
	lін	Input HIGH Current	OE, T/R				100	μΑ	$V_{CC} = 0 \text{ V}, V_{IN} = 7.0 \text{ V}$		
			Others	Others			1.0	mA	$V_{CC} = MAX, V_{IN} = 5.5 V$		
	I _{IL}	Input LOW Current	OE, T/R				-40	μΑ	$V_{CC} = MAX$, $V_{IN} = 0.5 V$		
	los	Output Short Circuit Current ²	A ₀ -A ₇		-60		-150	A	V _{CC} = MAX, V _{OUT} = GND		
			B ₀ -B ₇		-100		-225	mA			
	ICC	Power Supply Current	Іссн				85		V _{out} = HIGH T/R = 4.5 V		
			^I CCL				120	mA	V _{out} = LOW T/R = 0 V	V _{CC} = MAX	
			ICCZ				100		OE = 4.5 V V _{out} = HIGH Z		


NOTES:

^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

^{2.} Not more than one output should be shorted at a time, nor for more than 1 second.

LAST SHIP 30/09/99

LOGIC DIAGRAM

AC ELECTRICAL CHARACTERISTICS

			74F			74F		
		$T_A = +25$ °C $V_{CC} = +5.0 V$ $C_L = 50 pF$ $R_L = 500 Ω$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0 V \pm 10$ % $C_L = 50 pF$ $R_L = 500 Ω$				
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit
^t PLH ^t PHL	Propagation Delay A_n to B_n , B_n to A_n	2.0 1.0		7.0 5.0	2.0 1.0		8.0 5.5	ns
^t PZH ^t PZL	Output Enable Time to High or Low Level	3.5 6.0		11 11	3.5 6.0		13 12	ns
^t PHZ ^t PLZ	Output Disable Time to High or Low Level	1.5 1.0		8.0 7.0	1.5 1.0		9.0 7.5	ns

Mfax is a trademark of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Customer Focus Center: 1-800-521-6274

- TOUCHTONE 1-602-244-6609 Mfax™: RMFAX0@email.sps.mot.com Motorola Fax Back System

- US & Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

