

RRIS HGTG34N100E2

April 1995

34A, 1000V N-Channel IGBT

Features

- 34A, 1000V
- Latch Free Operation
- Typical Fall Time 710ns
- High Input Impedance
- Low Conduction Loss

Description

The HGTG34N100E2 is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOS-FET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.

The IGBTs are ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND
HGTG34N100E2	TO-247	G34N100E2

NOTE: When ordering, use the entire part number.

Formerly Developmental Type TA9895.

Package

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	HGTG34N100E2	UNITS
Collector-Emitter Voltage	1000	V
Collector-Gate Voltage, R _{GE} =1MΩ	1000	٧
Collector Current Continuous at T _C = +25°C	55	Α
at V _{GE} = 15V, at T _C = +90°C	34	Α
Collector Current Pulsed (Note 1)	200	Α
Gate-Emitter Voltage Continuous	±20	V
Gate-Emitter Voltage Pulsed	±30	V
Switching Safe Operating Area at T _J = +150°C	200A at 0.8 BV _{CES}	-
Power Dissipation Total at T _C = +25°C	208	W
Power Dissipation Derating T _C > +25°C	1.67	W/ºC
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C
Short Circuit Withstand Time (Note 2) at V _{GE} = 15V	3	μs
at V _{GE} = 10V	10	μs

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. $V_{CE(PEAK)} = 600V$, $T_C = +125^{\circ}C$, $R_{GE} = 25\Omega$.

HARRIS	SEMICONDUCTOR	IGBT PRODU	CT IS COVERED	BY ONE OR MO	ORE OF THE FO	LLOWING U.S. I	PATENTS:
4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures Copyright C Harris Corporation 1995

File Number 2827.3

Specifications HGTG34N100E2

Electrical Specifications T_C = +25°C, Unless Otherwise Specified

		TEST CONDITIONS		LIMITS			
PARAMETERS	SYMBOL			MIN	TYP -	MAX -	UNITS V
Collector-Emitter Breakdown Voltage	BV _{CES}			1000			
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	T _C = +25°C	-		1.0	mA
		V _{CE} = 0.8 BV _{CES}	T _C = +125°C	-		4.0	mA
lector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = I _{C90} , V _{GE} = 15V	T _C = +25°C	-	2.8	3.2	٧
			T _C = +125°C	-	2.8	3.1	٧
		I _C = I _{C90} , V _{GF} = 10V	T _C = +25°C	-	2.9	3.3	٧
	,	VGE = 10 V	$T_C = +125^{\circ}C$		3.0	3.4	٧
Gate-Emitter Threshold Voltage	V _{GE(TH)}	I _C = 1mA, V _{CE} = V _{GE}	T _C = +25°C	3.0	4.5	6.0	٧
Gate-Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 20V$ $I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$		-	-	±500	nA
Gate-Emitter Plateau Voltage	V _{GEP}				7.3	-	٧
On-State Gate Charge	Q _{G(ON)}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}	V _{GE} = 15V	-	185	240	nC
			V _{GE} = 20V	-	240	315	nC
Current Turn-On Delay Time	t _{D(ON)I}	$V_{GE} = 15V$, $T_{J} = +125^{\circ}C$, $V_{CE} = 0.8 \text{ BV}_{CES}$			100		ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}			-	610	795	ns
Current Fall Time	t _{El}			-	710	925	ns
Turn-Off Energy (Note 1)	W _{OFF}			-	7.1		mJ
Current Turn-On Delay Time	t _{D(ON)I}	L = 50µH, I _C = I _{C9}	₀ , R _G = 25Ω,	-	100	-	ns
Current Rise Time	t _{RI}	$V_{GE} = 10V, T_{J} = +125^{\circ}C,$ $V_{CE} = 0.8 \text{ BV}_{CES}$		-	150		ns
Current Turn-Off	t _{D(OFF)}				460	600	ns
Current Fall Time	t _{Fi}			-	670	870	ns
Turn-Off Energy (Note 1)	W _{OFF}	7		-	6.5		mJ
Thermal Resistance	R _{BJC}			٠.	0.5	0.6	°C/W

NOTE: 1. Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG34N100E2 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves (Continued)

FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER CURRENT

FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

FIGURE 8. TURN-OFF SWITCHING LOSS VS COLLECTOR-EMITTER CURRENT

PD = ALLOWABLE DISSIPATION PC = CONDUCTION DISSIPATION

FIGURE 10. OPERATING FREQUENCY VS COLLECTOR-EMITTER CURRENT AND VOLTAGE

FIGURE 11. COLLECTOR-EMITTER SATURATION VOLTAGE

Test Circuit

FIGURE 12. INDUCTION SWITCHING TEST CIRCUIT

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/f_{D(OFF)I}$. $f_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $f_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)l}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2} = (P_D \cdot P_C)/W_{OFF}$. The allowable dissipation (P_D) is defined by $P_D = (T_{JMAX} \cdot T_C)/R_{BJC}$. The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C = (V_{CE} \bullet I_{CE})/2$. W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE} = 0A)$.

The switching power loss (Figure 10) is defined as $f_{MAX2} \bullet W_{OFF}$. Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.